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Abstract

The Wang tiling is a classical problem in combinatorics. A major theoretical question is to find a
(small) set of tiles which tiles the plane only aperiodically. In this case, resulting tilings are rather
restrictive. On the other hand, Wang tiles are used as a tool to generate textures and patterns
in computer graphics. In these applications, a set of tiles is normally chosen so that it tiles the
plane or its sub-regions easily in many different ways. With computer graphics applications
in mind, we introduce a class of such tileset, which we call sequentially permissive tilesets, and
consider tiling problems with constrained boundary. We apply our methodology to a special set
of Wang tiles, called Brick Wang tiles, introduced by Derouet-Jourdan et al. in 2015 to model
wall patterns. We generalise their result by providing a linear algorithm to decide and solve the
tiling problem for arbitrary planar regions with holes.
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1. Introduction

Wang tiles are a class of formal systems introduced by Hao Wang in 1961 [15]. A Wang
prototile can be thought of as a square tile with a colour on each side. Once a set of such
prototiles is given, copies of prototiles are placed side by side so that the colours of common
edges match. Given a finite set of Wang prototiles, the domino problem asks whether a whole
plane can be tiled with copies of them, and was proved undecidable by R. Berger in 1966 [2].
There are also sets of Wang prototiles which can tile the plane but only aperiodically ([2, 9, 4, 8]).

In practical applications, bounded planar regions are usually considered, with which the
corresponding domino problem is obviously decidable. Moreover, sets of Wang prototiles are
normally restricted to a permissive class so that there exist many solutions in general. In this
case, it is more reasonable to ask for efficient algorithms to decide tilability with constrained
boundary and give solutions if they exist. We make clear our framework in §2. In general, the
problem is known to be NP-complete [12], so we restrict ourselves to a certain sub-problem.
Namely, we deal with a specific setting which arises in computer graphics applications such
as procedural synthesis of textures, height fields, and sampling points [3, 10, 14]. In this case,
sets of Wang prototiles are often sequentially permissive (Def. 1), and we have a general strategy
described in Lemma 9. In §3, we specialise to the tiling problems with the Brick Wang tiles (Def.
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10) introduced in [6] to generate wall pattern textures. It is proved in [6] that any rectangle
region greater than the 2 × 2 square with any boundary colour condition can be tiled. This
result was then formally verified and implemented in [13] using the Coq proof assistant [1]. We
generalise the result by giving a complete characterisation of the set of regions which can be
tiled with any given boundary constraints. In §4, we provide a linear time algorithm for the
Brick Wang tiling problem, with an implementation with source codes at [5].

2. Problem setting

We begin with introducing a type of Wang tiling problem which can be regarded as an
extension problem or a tiling problem with boundary constraints. Then, we consider a class of Wang
prototiles having a special property (1) and discuss a strategy for a tiling algorithm (Lemma 9).

We first define the object to be tiled as an enriched graph.

Definition 1. A board is a finite undirected graph G = (V ∪ {v0},E) with a distinguished vertex
v0 called the constrainer which satisfies the following:

• at each v ∈ V, the set of edges N(v) adjacent to v is ordered: N(v) = {e1(v), . . . , edeg(v)(v)},
where deg(v) is the degree of v

• the full sub-graph on V is connected.

Vertices in V are called cells. We often identify a board with its underlying graph when there is
no confusion.

Figure 1 shows an intuitive correspondence between our graphical formalisation and the
usual Wang tile.

v
N

W

S

E v

Figure 1: Graph vs Wang tile

Definition 2. A tiling problem (G,C,W) consists of

• a board G = (V ∪ {v0},E)

• a set of colours C

• a set of prototiles W =
⋃
∞

k=1 Wk, where Wk ⊂ Ck.

A tiling of a subset F ⊂ E is a map τ : F → C satisfying (τ(e1(v)), . . . , τ(edeg(v)(v))) ∈ W for any
v ∈ V with N(v) ⊂ F. It is said to be full if F = E. A tiling τ′ : F′ → C is called an extension of
another tiling τ : F→ C with F ⊂ F′ if τ(e) = τ′(e) for any e ∈ F.
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Figure 2: Boundary constraints
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Figure 3: A full extension
Figure 4: Wang prototiles in
WE

We are particularly interested in finding a full extension τ : E → C of a given tiling β :
N(v0) → C, which we regard as boundary constraints. Edges in N(v0) are called constrained legs
and those in E \ N(v0) are called free legs. Given boundary constraints β : N(v0) → C, the tiling
problem with β is said to be solved if we find a full extension of β. A tiling problem is said to be
always solvable when there exists a full extension τ : E→ C of any tiling β : N(v0)→ C. Given a
tiling τ : F→ C, we informally say to tile v ∈ V with w ∈W when we can extend τ by assigning
τ(ei(v)) = wi (1 ≤ i ≤ deg(v)).

Remark 3. This formulation encompasses tiling of non-planar graphs such as a surface in the
three dimensional space ([7]). For example, a periodic tiling of a planar grid can be regarded as
a tiling of a grid graph on the torus.

Example 4. For n and m be natural numbers, we consider a rectangular region

V = {vi, j | 1 ≤ j ≤ n, 1 ≤ i ≤ m}, and
E = {(vi, j, vi+1, j) | 0 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {(vi, j, vi, j+1) | 1 ≤ i ≤ m, 0 ≤ j ≤ n},

where we set vi, j = v0 for i = 0, i = m+1, j = 0, or j = n+1. For each vi, j ∈ V, the set of edges N(vi, j)
adjacent to vi, j consists of four edges eE(vi, j) = (vi, j, vi+1, j), eN(vi, j) = (vi, j, vi, j+1), eW(vi, j) = (vi, j, vi−1, j),
and eS(vi, j) = (vi, j, vi, j−1). The order of N(vi, j) is given by eE, eN, eW, and eS. These data define a
board Gm,n = (V ∪ {v0},E).

Let C = {Red,Blue,Purple,Green}, WE be as in Figure 4, and consider the tiling problem
(G5,3,C,WE). We set boundary constraints β : N(v0) → C as in Figure 2. We note that edges
connected to v0 are denoted by arrows in the Figure. Also we consider double edges between
v0 and v1,1, v5,1, v1,3 and v5,3 which may have different colours. An example of full extension of
β is given by τ : E→ C defined as in Figure 3.

Example 5. Here we give an example of a board which is not a simple graph. For natural
numbers n and m, we consider again a rectangular region

V = {vi, j | 1 ≤ j ≤ n, 1 ≤ i ≤ m}.

This time however the edge set is given as follows: for each vi, j ∈ V, the set of adjacent edges is
given by

N(vi, j) = {eENE, eNE, eNNE, eNNW, eSE, eWNW, eWSW, eSW, eSSW, eSSE, eNW, eESE},

where the target of each edge is respectively

vi+1, j, , vi+1, j+1, , vi, j+1, vi, j+1, vi−1, j+1, vi−1, j, vi−1, j, vi−1, j−1, vi, j−1, vi, j−1, vi+1, j−1, vi+1, j.
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(See Figure 5.) Here our convention is vi, j = v0 for i = 0, i = m + 1, j = 0 or j = n + 1. These
data define a board G′m,n = (V ∪ {v0},E =

⋃
v∈V N(v)). The corner Wang tiling introduced in

[11] is a special instance of tiling problem (G′m,n,C,WC), where WC = {(ci) ∈ C12
| c3k+1 = c3k+2 =

c3k+3, k = 0, 1, 2, 3}. In Figure 5, We show an example of a correspondence between our graphical
formalisation and the corner Wang tile in [11].

For example, let C = {Red,Blue}, and consider a tiling problem (G′2,3,C,WC). Figure 6 gives a
solution to the problem.
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Figure 5: Corner Wang tile
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Figure 6: Corner Wang tiling

As mentioned in [11], a corner Wang tiling is equivalent to the ordinary Wang tiling with
more colours. Let C̃ = {Red,Blue,Purple,Green}. We think of a purple edge having blue and red
ends, and a green edge having red and blue ends. The tiling problem (G2,3, C̃,WE) defined in
Example 4 is equivalent to (G′2,3,C,WC). A solution of (G2,3, C̃,WE) in Figure 6 corresponds to
a solution of (G′2,3,C,WC) in Figure 7. In Figure 8, we display the solution using usual square
Wang tiles and corner Wang tiles.
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Figure 7: Equivalent Wang tiling Figure 8: Edge Wang tiling and Corner Wang tiling

Definition 6. For a board G = (V ∪ {v0},E) and its sub-graph (U,F), where U ⊂ V, the restriction
G|(U,F) of G is a board obtained by contracting the complement of (U,F) to the constrainer v0: The
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vertex set is the union U ∪ {v0} and the edge set is

E|(U,F) = F ∪ {(u, v0) | u ∈ U, (u, v) ∈ E \ F}.

That is, an edge not belonging to F is cut into two pieces and each of them is reconnected to v0.
For a full sub-graph of G on U ⊂ V, we abbreviate the corresponding restriction as G|U.

In many applications of Wang tiling in computer graphics, the set of Wang prototiles often
comes equipped with a nice property, which is rather permissive in terms of tilability.

Definition 7. For a natural number k, a set W of prototiles is said to be k-sequentially permissive
if the following holds:

πī : Wk → Ck−1 is surjective for all 1 ≤ i ≤ k, (1)

where πī is the projection dropping the i-th factor. In other words, a cell with k-legs can always
be tiled when it has at least one free leg.

Example 8. Figure 9 shows an example, taken from [3], of a set of prototiles in computer graphics
which is 4-sequentially permissive. In practical applications, the colours are replaced by parts
of an image to generate textures. Essentially, each side of an edge is one half of an image cut on
the diagonal. That way, when tiles are placed adjacently, the transition from one tile to another
in the picture is smooth. When all colours are taken from pieces of a given image, and the Wang
tiles stitch together the colours, it produces arbitrary large textures from a small example. In [3],
this technique is applied to create large Poisson distribution of points by replacing the image
parts with carefully designed point distributions.

Figure 9: Example of a set of Wang tiles used in computer graphics [3].

The following lemma provides a general reduction strategy to solve tiling problems:

Lemma 9. Let G be a board with the set of cells V. Let W be a set of prototiles which is k-
sequentially permissive (1) for all k ∈ {deg(v) | v ∈ V}. A tiling problem (G,C,W) is always
solvable when there exists a restriction G|U such that (G|U,C,W) is always solvable.

Proof. Pick a cell v ∈ V which is adjacent to U, and consider (G|U∪{v},C,W). The vertex v has
at least one free leg, which is connected to U. So we can tile v by (1) for any β : N(v0) → C.
Now we are left with (G|U,C,W) with extended constraints β̄, which can be fully extended by
assumption. Since V is finite, the assertion follows by induction. �

In practice, we proceed in the “opposite” way; we first construct a spanning tree of G|V\U
and tile it from leaves by (1), and then finally cells in U are tiled by assumption (see §4).
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3. Brick Wang tiles

From now on, we focus on a special set of prototiles which we call the brick Wang tiles. We
give a necessary and sufficient condition for a tiling problem to be always solvable.

The brick Wang tiles were introduced in [6] to model wall patterns. Each tile represents how
corners of four bricks meet. It is assumed that the edges of the bricks are axis aligned and that
each tile is traversed with a straight line, either vertically or horizontally. For aesthetic reasons,
crosses are forbidden, where all four bricks are aligned and the corresponding tile is traversed
by two straight lines. In this model, the colour in the Wang tiles indicates the position of the
edge of the brick on the side of the tile. The formal definition is given as follows:

Definition 10. We always assume #C ≥ 3. The set of brick Wang prototiles WB is defined by

WB = {(c1, c2, c3, c4) ∈ C4
| (c1 = c3 ∧ c2 , c4) or (c1 , c3 ∧ c2 = c4)}.

It is easy to see that WB is 4-sequentially permissive (1).

edge position c1

edge position c4

edge position c3

edge position c2

Figure 10: A brick Wang tile and a tiling of 3 × 3-board

In the previous work [6, 13], only rectangular regions are considered. Here, we deal with
any planar region possibly with holes. In practice, this allows the user to manually tile a part
of the region, and leave the rest to be automatically completed by our algorithm in §4. See
Example 16.

Definition 11. Consider the graph Ḡ = (V ∪ {v0},E), where

• V = {(i, j) ∈ Z ×Z}

• E = {((i, j), (i′, j′)) ∈ V × V | |i − i′| + | j − j′| = 1}.

The set N((i, j)) of edges adjacent to a vertex (i, j) are given ordering by

(((i, j), (i + 1, j)), ((i, j), (i, j + 1)), ((i, j), (i − 1, j)), ((i, j), (i, j − 1)).

A board is said to be square grid if it is a restriction of Ḡ to a finite sub-graph.

We give a simple necessary and sufficient condition for a square grid board G to be always
solvable with WB. A path is an ordered sequence of distinct cells (v1, v2, . . . , vl) where consecutive
cells are connected by an edge. A cycle is an ordered sequence of cells (v1, v2, . . . , vl−1, vl = v1)
where all vi are distinct, and consecutive cells are connected by an edge. A cell vi in a path or a
cycle is said to be straight if edges e j, ek ∈ N(vi) connected to consecutive cells satisfy | j − k| = 2
with the ordering of N(vi). Corner cells in a path or a cycle are those that are not straight.
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Lemma 12. A tiling problem (G,C,WB) for a square grid board G is always solvable when the
full sub-graph on the cells is a cycle.

Proof. Let β : N(v0)→ C be any colouring of the constrained legs, and (v1, . . . , vl = v1) be the full
sub-graph of G on the cells. For a cell vk, we say the edge connected to vk−1 the incoming leg,
denoted by in(vk), and the edge connected to vk+1 the outgoing leg, denoted by out(vk).

First, we can assume there is no straight cells whose constrained legs are given two different
colours since they have no effect. Denote by La,b a corner cell whose constrained leg opposite to
the incoming leg is coloured with a ∈ C and the outgoing leg with b ∈ C. Also, denote by S a
straight cell whose constrained legs are coloured with the same colour. These serve as a kind of
logical gate:

•

τ(in(Ca,b)) = a⇒ τ(out(Ca,b)) , b
τ(in(Ca,b)) , a⇒ τ(out(Ca,b)) = b

• in(S) , out(S).

We prove the assertion by case by case analysis. Note that we can change the ordering of
(v1, . . . , vl = v1) cyclically, or reverse it.

• Assume that v1 = S, v2 = Ca,b. Set τ(out(Ca,b)) = b and tile (v3, v4, . . . , vl−1) sequentially by
(1). If out(vl−1) is coloured with c, choose a colour for in(S) which is different from c. By
choosing a colour for out(S) which is different from both c and a, we obtain a solution.

• From the previous case, we can now assume that there is no straight cell. Assume that
v1 = Ca,b, v2 = Cc,d with b , c. Set τ(out(Cc,d)) = d and tile (v3, v4, . . . , vl−1) sequentially by
(1). If τ(out(vl−1)) = a, choose a colour for out(Ca,b) which are different from both b and c. If
τ(out(vl−1)) , a, set τ(out(Ca,b)) = b. This gives a solution.

• Now, the only remaining case is when (v1, v2, . . . , vl−1) = (Ca1,a2 ,Ca2,a3 , · · ·Cal−1,a1). Note
that l − 1 should be even since the board is a square grid. Set τ(in(Cai,ai+1)) = ai and
τ(out(Cai,ai+1)) , ai+1 for odd i. This gives a solution.

�

Combining Lemma 9 with Lemma 12, we obtain

Theorem 13. A tiling problem (G,C,WB) for a square grid board G is always solvable if and only
if the full sub-graph on the cells contains a cycle.

Proof. We only have to show the “only if” part. Given any board G whose full sub-graph on V
is a tree, we construct β : N(v0)→ C which cannot be fully extended. We proceed by induction
on the number of cells #V. Pick a leaf v ∈ V and set G′ = GV\{v}. Then, by induction, there exists
β′ : N′(v0)→ C which cannot be fully extended in G′, where N′(v0) is the edges of G′ adjacent to
v0. Let u be the cell connected to v with the edge e. We can choose the value of β for N(v) \ {e} so
that the colour of e is forced to coincide with β′(e) in order to tile v. Then, the resulting β cannot
be fully extended. �

Remark 14. Note that a 2 × 2 region discussed in [6] is a cycle of length four in our language. So
the above theorem is a generalisation of the result in [6].
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4. The tiling algorithm for brick Wang tiles

In this section, we will discuss an algorithm to decide what β can be extended to a full tiling
τ : E→ C and how we can obtain one. An implementation is given at [5].

Fix a tiling problem with a finite planar square grid board G with the Brick Wang tiles WB and
a number of colours #C ≥ 3. Fix also boundary constraints β : N(v0)→ C. Based on Theorem 13,
we design an algorithm to decide solubility and to construct a valid tiling of the problem. The
outline goes as follows: let G′ be the full sub-graph on the cells

1. Detect a cycle in G′ by performing a depth first traversal of G′. If there is no cycle, use the
tree solver given in Lemma 15.

2. Pick a cell v which is adjacent to but not in the cycle. Construct a tiling in a depth-first
manner; that is, tile sequentially from the leaves of a spanning tree rooted at v of the
connected component of the complement of the cycle.

3. Repeat Step 2 until there is no cell other than those in the cycle.
4. Construct a tiling of the cycle using the procedure of Lemma 12.

Since the degree of a cell is always four, then the complexity of the cycle extraction is linear
in the number of cells in G. Similarly, we will see that all other operations are performed in a
linear time with regards to the number of cells in the board.

The remaining task is now to decide and solve a tree-structured board. To this extent, we
introduce the condition propagation that will tell how the border colouring put constraints on the
inner legs.

A map f : C→ {true, f alse} of one of the following forms is called a condition:

• (c) It must match a given colour c; f (x) = true⇔ x = c.

• (¬c) It must not match a given colour c; f (x) = true⇔ x , c.

• (∗) It can match any colour; f (x) = true for any x.

To each free leg e, we assign a condition fe in such a way that a map τ : E → C satisfying
τ(x) = β(x) for x ∈ N(v0) and fe(τ(e)) = true for all free legs e gives a full extension of β.

Fix a cell v. If for every free leg of v except for one is assigned a condition, a condition for
the last free leg is canonically determined by choosing the weakest one (lower in the above list
means weaker). We say that the condition is inferred on the last leg. The precise rule of this is
described in Figure 11. For a tree rooted at v, we can propagate the condition recursively by
inferring from the leafs to the root v.

Lemma 15. Let G be a board whose full sub-graph on the cells is a tree rooted at v. For a tiling
problem (G,C,WB), boundary constraints β : N(v0) → C admit a full extension if and only if v
can be tiled in such a way that it matches propagated conditions on its legs. Furthermore, any
such tiling of v can be extended to a full extension.

Proof. Only if part is trivial by definition.
Observe that the inferred conditions are so that for any choice of a matching colour for a free

leg of a cell, there exists at least one colouring of all other free legs which gives a valid tiling of
the cell.

Tile v in such a way that it matches propagated conditions on its legs. Consider the connected
components obtained by removing v from G, with boundary constraints induced by β and the
tiling of v. Now the proof goes by induction on the number of cells. �
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The algorithm is illustrated in Figure 12. Since each cell is visited at most four times, it has
a linear complexity with respect to the number of cells.

(a)
·

(b)
C

C if a = b

C if a , b

(¬a)
·

(b)
C

C if a = b

(∗) if a , b

(¬a)
(∗)

(¬b)
C

Figure 11: Propagation of conditions for cells in a tree. When some of the legs of the cell are on the boundary, we
consider them input legs with a condition (c) where c is the colour of the leg. C denotes a given condition and C
its negation, with (a) = (¬a), (¬a) = (∗) and (∗) = (∗). When any of input conditions is (∗), then the output is (∗).

Example 16. Figure 13 shows an example of hand-filled regions (the background, the eyes and
the mouth of the smiley), completed with an automatically tiled region (the face of the smiley).

5. Conclusion and Future work

In this paper, we have proposed a graph theoretical approach to the Wang tiling problem.
We have introduced a property of Wang tile sets which is often possessed by those appearing
in computer graphics applications. For the class of Wang prototile sets with this property, we
have devised a general strategy to reduce a tiling problem to its sub-problem. Then, we used
the general result to give a linear algorithm for the tiling of planar regions with the brick Wang
tiles. In future work, we would like to consider tiling problems on hexagonal/triangular and
irregular polygonal surface meshes, and also volumetric meshes, which would be useful for
texturing and point sampling on meshes. Also, we would like to discuss enumeration of all
valid tilings for a given problem.
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Figure 12: Illustration of the tree solver. First, (a) we pick input legs on the leaves of the tree and an output leg on
the root of the tree (here it is the top cell). Then, we propagate the conditions to the nodes in the tree (b) and to the
root (c). If the conditions on the root are compatible, we propagate the solution back from the root (d) to the nodes
(e) and the leaves (f).
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