定値折り目特異点の消去と
特異レベルシェッツ束

佐伯 修
（九州大学，マス・フォア・インダストリ研究所）
(Institute of Mathematics for Industry, Kyushu University)

June 6, 2011
§1. Broken Lefschetz Fibrations
We will work in the **smooth category** ($= \text{real } C^\infty$ category).
We will work in the **smooth category** (= real C^∞ category).

Definition 1.1

M, Σ: closed connected oriented manifolds, $\dim_\mathbb{R} M = 4, \dim_\mathbb{R} \Sigma = 2$
We will work in the **smooth category** (= real C^∞ category).

Definition 1.1

M, Σ: closed connected oriented manifolds, $\dim_{\mathbb{R}} M = 4$, $\dim_{\mathbb{R}} \Sigma = 2$

(1) A singularity of a C^∞ map $M \to \Sigma$ that has the normal form

$$ (z, w) \mapsto zw $$

w.r.t. complex coordinates compatible with the orientations, is called a **Lefschetz singularity**.
We will work in the **smooth category** (= real C^∞ category).

Definition 1.1

M, Σ: closed connected oriented manifolds, $\dim \mathbb{R} M = 4$, $\dim \mathbb{R} \Sigma = 2$

1. A singularity of a C^∞ map $M \to \Sigma$ that has the normal form

\[
(z, w) \mapsto zw
\]

w.r.t. complex coordinates compatible with the orientations, is called a **Lefschetz singularity**.

2. A singularity that has the normal form

\[
(x_1, x_2, x_3, x_4) \mapsto (x_1, x_2^2 + x_3^2 - x_4^2)
\]

is called an **indefinite fold singularity**.
Definition 1.2 (Auroux–Donaldson–Katzarkov, 2005, etc.)

Let $f : M^4 \to \Sigma^2$ be a C^∞ map.

f is a **broken Lefschetz fibration** (BLF, for short) if it has at most Lefschetz and indefinite fold singularities.
Definition 1.2 (Auroux–Donaldson–Katzarkov, 2005, etc.)

Let \(f : M^4 \to \Sigma^2 \) be a \(C^\infty \) map.

\(f \) is a **broken Lefschetz fibration** (BLF, for short) if it has at most **Lefschetz** and **indefinite fold** singularities.

In this case, \(S_I(f) \), the set of indefinite fold singularities of \(f \), is a closed submanifold of \(M^4 \) of dimension 1.
Definition 1.2 (Auroux–Donaldson–Katzarkov, 2005, etc.)

Let $f : M^4 \rightarrow \Sigma^2$ be a C^∞ map.

f is a **broken Lefschetz fibration** (BLF, for short) if it has at most Lefschetz and indefinite fold singularities.

In this case, $S_I(f)$, the set of indefinite fold singularities of f, is a closed submanifold of M^4 of dimension 1.

A usual **Lefschetz fibration** (LF, for short) is a special case of a BLF. (LF \iff BLF with $S_I(f) = \emptyset$)
Fibers of a BLF

Donaldson, Gompf, ~ 2000

Lefschetz fibrations \iff symplectic structures (up to blow-up)
Donaldson, Gompf, ∼2000

Lefschetz fibrations \iff symplectic structures (up to blow-up)

Symplectic structure: $\omega \in \Omega^2(M^4)$, $d\omega = 0$, non-degenerate ($\omega^2 > 0$)
Donaldson, Gompf, ~2000

Lefschetz fibrations \iff symplectic structures (up to blow-up)

Symplectic structure: $\omega \in \Omega^2(M^4), \ d\omega = 0, \ \text{non-degenerate} \ (\omega^2 > 0)$

Kähler \implies symplectic \implies almost complex
Donaldson, Gompf, ~2000

Lefschetz fibrations \iff symplectic structures (up to blow-up)

Symplectic structure: $\omega \in \Omega^2(M^4)$, $d\omega = 0$, non-degenerate ($\omega^2 > 0$)

Kähler \implies symplectic \implies almost complex

\sim Gauge theoretic invariants can be defined.
Donaldson, Gompf, ~2000

Lefschetz fibrations \iff **symplectic structures** (up to blow-up)

Symplectic structure: $\omega \in \Omega^2(M^4)$, $d\omega = 0$, non-degenerate ($\omega^2 > 0$)

Kähler \implies **symplectic** \implies almost complex

\sim Gauge theoretic invariants can be defined.

Auroux–Donaldson–Katzarkov, 2005

broken Lefschetz fibrations \iff **near-symplectic structures**

(↑ admitting 1-dim. zero locus)

(up to blow up)
Donaldson, Gompf, \(\sim 2000\)

Lefschetz fibrations \(\iff\) **symplectic structures** (up to blow-up)

Symplectic structure: \(\omega \in \Omega^2(M^4), \ d\omega = 0, \ \text{non-degenerate} \ (\omega^2 > 0)\)

\[\text{Kähler} \implies \text{symplectic} \implies \text{almost complex} \]
\[\sim \implies \text{Gauge theoretic invariants can be defined.} \]

Auroux–Donaldson–Katzarkov, 2005

broken Lefschetz fibrations \(\iff\) **near-symplectic structures**

(\(\uparrow \) admitting 1-dim. zero locus)

(\(\uparrow \) up to blow up)

Near-symplectic structure: \(\omega \in \Omega^2(M^4), \ d\omega = 0, \ \omega^2 \geq 0, \)
\[\omega \ \text{vanishes along a 1-dim. submanifold \textit{“transversely”}.} \]
Theorem 1.3 (ADK, 2005) \(M^4 \): closed oriented 4-manifold, \(Z \subset M^4 \): 1-dim. closed submanifold

Then, the following two are equivalent.

(1) \(\exists \) near-symplectic form \(\omega \) on \(M^4 \) with zero locus \(Z \).

(2) \(\exists \) broken Lefschetz pencil (BLP) \(f \) over \(S^2 \) with \(S_1(f) = Z \) s.t. there is an \(h \in H^2(M^4; \mathbb{R}) \) satisfying \(h(C) > 0 \) for every component \(C \) of every fiber of \(f \).

Furthermore, if (2) holds, then a deformation class of near-symplectic forms that restrict to a volume form on each fiber away from \(Z \) is canonically associated to \(f \).
Theorem 1.3 (ADK, 2005) \(M^4 \): closed oriented 4-manifold,
\(Z \subset M^4 \): 1-dim. closed submanifold

Then, the following two are equivalent.

(1) \(\exists \) near-symplectic form \(\omega \) on \(M^4 \) with zero locus \(Z \).
(2) \(\exists \) broken Lefschetz pencil (BLP) \(f \) over \(S^2 \) with \(S_1(f) = Z \)
 s.t. there is an \(h \in H^2(M^4; \mathbb{R}) \) satisfying \(h(C) > 0 \) for every
 component \(C \) of every fiber of \(f \).

Furthermore, if (2) holds, then a deformation class of near-symplectic forms that restrict to a volume form on each fiber away from \(Z \) is canonically associated to \(f \).

\(\exists \text{BLP} \quad \Longrightarrow \quad \exists \text{BLF} \) on a blown up 4-manifold
Theorem 1.3 (ADK, 2005) \(M^4 \): closed oriented 4-manifold, \(Z \subset M^4 \): 1-dim. closed submanifold

Then, the following two are equivalent.

(1) \(\exists \) near-symplectic form \(\omega \) on \(M^4 \) with zero locus \(Z \).

(2) \(\exists \) broken Lefschetz pencil (BLP) \(f \) over \(S^2 \) with \(S_1(f) = Z \) s.t. there is an \(h \in H^2(M^4; \mathbb{R}) \) satisfying \(h(C) > 0 \) for every component \(C \) of every fiber of \(f \).

Furthermore, if (2) holds, then a deformation class of near-symplectic forms that restrict to a volume form on each fiber away from \(Z \) is canonically associated to \(f \).

\(\exists \text{BLP} \implies \exists \text{BLF} \) on a blown up 4-manifold

BLF is a special case of a BLP (BLF = BLP without base points).
Remark 1.4
Not every 4-manifold admits a symplectic structure.
(e.g. $\#^n CP^2$, $n \geq 2$, etc.)
Remark 1.4

Not every 4-manifold admits a symplectic structure.
(e.g. \#^nC P^2, n \geq 2, etc.)

On the other hand, it is known that every closed oriented 4-manifold M^4 with $b_2^+(M^4) > 0$ admits a near-symplectic structure.
Remark 1.4
Not every 4-manifold admits a symplectic structure.
(e.g. $\#^n CP^2$, $n \geq 2$, etc.)

On the other hand, it is known that every closed oriented 4-manifold M^4 with $b_2^+(M^4) > 0$ admits a near-symplectic structure.

In fact, there are a variety of such structures on a given 4-manifold M^4.
§2. Singularities of Generic Maps
Let us discuss the relation to the singularity theory of C^∞ maps.
Let us discuss the relation to the singularity theory of C^∞ maps.

Definition 2.5 (1) A singularity that has the normal form

$$(x_1, x_2, x_3, x_4) \mapsto (x_1, x_2^2 + x_3^2 + x_4^2)$$

is called a **definite fold singularity**.
Let us discuss the relation to the singularity theory of C^∞ maps.

Definition 2.5 (1) A singularity that has the normal form

$$(x_1, x_2, x_3, x_4) \mapsto (x_1, x_2^2 + x_3^2 + x_4^2)$$

is called a **definite fold singularity**.

(2) A singularity that has the normal form

$$(x_1, x_2, x_3, x_4) \mapsto (x_1, x_2^3 - 3x_1x_2 + x_3^2 \pm x_4^2)$$

is called a **cusp**.
Figure 1: **Indefinite fold**
Base Diagrams for Folds

1. Broken Lefschetz Fibrations

2. Singularities of Generic Maps

3. Elimination of Definite Fold

4. Moves for BLFs

5. Simplified BLFs

vanishing cycle

Figure 1: **Indefinite fold**

Figure 2: **Definite fold**
Figure 3: Indefinite cusp
Figure 3: Indefinite cusp

Figure 4: Definite cusp
Facts.

Whitney (1955) Every C^∞ map $M^4 \to \Sigma^2$ is homotopic to (actually, approximated by) a C^∞ map with at most definite fold, indefinite fold, definite cusp, and indefinite cusp singularities.
Facts.

Whitney (1955) Every C^∞ map $M^4 \to \Sigma^2$ is homotopic to (actually, approximated by) a C^∞ map with at most definite fold, indefinite fold, definite cusp, and indefinite cusp singularities. Such a map is called an excellent map.
Facts.

Whitney (1955) Every C^∞ map $M^4 \to \Sigma^2$ is homotopic to (actually, approximated by) a C^∞ map with at most definite fold, indefinite fold, definite cusp, and indefinite cusp singularities. Such a map is called an **excellent map**.

Levine (1965) [Cusps can be eliminated in pairs.]
Every C^∞ map $M^4 \to \Sigma^2$ is homotopic to an excellent map without a cusp if $\chi(M^4)$ is even, and with exactly one cusp if $\chi(M^4)$ is odd.
Facts.

Whitney (1955) Every C^∞ map $M^4 \to \Sigma^2$ is homotopic to (actually, approximated by) a C^∞ map with at most definite fold, indefinite fold, definite cusp, and indefinite cusp singularities. Such a map is called an excellent map.

Levine (1965) [Cusps can be eliminated in pairs.] Every C^∞ map $M^4 \to \Sigma^2$ is homotopic to an excellent map without a cusp if $\chi(M^4)$ is even, and with exactly one cusp if $\chi(M^4)$ is odd.

Excellent maps may have definite folds and cusps, but have no Lefschetz critical point.
Facts.

Whitney (1955) Every C^∞ map $M^4 \to \Sigma^2$ is homotopic to (actually, approximated by) a C^∞ map with at most definite fold, indefinite fold, definite cusp, and indefinite cusp singularities. Such a map is called an excellent map.

Levine (1965) [Cusps can be eliminated in pairs.] Every C^∞ map $M^4 \to \Sigma^2$ is homotopic to an excellent map without a cusp if $\chi(M^4)$ is even, and with exactly one cusp if $\chi(M^4)$ is odd.

Excellent maps may have definite folds and cusps, but have no Lefschetz critical point.

BLFs may have Lefschetz critical points, but have no definite fold or cusp.
§3. Elimination of Definite Fold
Theorem 3.1 (S., 2006)
Every C^∞ map $g : M^4 \to S^2$ is homotopic to an excellent map without definite fold singularities, and possibly with a cusp.
Theorem 3.1 (S., 2006)

Every C^∞ map $g : M^4 \rightarrow S^2$ is homotopic to an excellent map without definite fold singularities, and possibly with a cusp.

In other words, we can eliminate **definite fold singularities** by homotopy.
Sketch of Proof

Sketch of Proof

We may assume that g is an excellent map.
Sketch of Proof

We may assume that g is an excellent map.

$S(g) (\subset M^4)$: set of **singular points**

$S_D(g) (\subset S(g))$: set of **definite fold** singular points
Sketch of Proof

We may assume that g is an excellent map.

$S(g) (\subset M^4)$: set of singular points

$S_D(g) (\subset S(g))$: set of definite fold singular points

Step 1. Modify $S_D(g)$ to a single “unknotted” component.
Sketch of Proof

We may assume that g is an excellent map.

$S(g) \subset M^4$: set of singular points
$S_D(g) \subset S(g)$: set of definite fold singular points

Step 1. Modify $S_D(g)$ to a single “unknotted” component.

For this, we use the proof of the following theorem.
Sketch of Proof

We may assume that g is an excellent map.

$S(g) \subset M^4$: set of singular points

$S_D(g) \subset S(g)$: set of definite fold singular points

Step 1. Modify $S_D(g)$ to a single “unknotted” component.

For this, we use the proof of the following theorem.

Theorem 3.2 (S., 1995)

\[g : M^4 \rightarrow \Sigma^2 \text{ a } C^\infty \text{ map} \]

$L \subset M^4$: a non-empty closed 1-dim. submanifold

\[\exists \text{ excellent map } f : M^4 \rightarrow \Sigma^2 \text{ homotopic to } g \text{ s.t. } S(f) = L \]

\[\iff [L]_2 = 0 \text{ in } H_1(M^4; \mathbb{Z}_2) \]
Figure 5: Moves for modifying the **definite fold locus**
Step 2. Arrange g so that $g|_{S_D(g)}$ is an embedding into S^2.
Step 2. Arrange \(g \) so that \(g|_{S_D(g)} \) is an embedding into \(S^2 \).

Use Reidemeister-like moves on \(S^2 \) and their “lifts”. This is possible, since the target is the 2-sphere.
Step 2. Arrange g so that $g|_{S_{D}(g)}$ is an embedding into S^2.

Use Reidemeister-like moves on S^2 and their “lifts”. This is possible, since the target is the 2-sphere.

For Step 3, we need the following additional move.

Figure 6: Birth
Step 3. Definite fold circle \leadsto Indefinite one (Williams, 2010)
Step 3. Definite fold circle $\sim\rightarrow$ Indefinite one (Williams, 2010)
Corollary 3.3 (Baykur, 2008)

Every closed oriented 4-manifold admits a BLF over S^2.
Corollary 3.3 (Baykur, 2008)

*Every closed oriented 4-manifold admits a BLF over S^2.***

Figure 7: Sinking and Unsinking (Lekili, 2009)
Corollary 3.3 (Baykur, 2008)

Every closed oriented 4-manifold admits a BLF over S^2.

Figure 7: Sinking and Unsinking (Lekili, 2009)

Remark 3.4 For the existence of BLF, several proofs are known (Gay–Kirby, Baykur, Lekili, Akbulut–Karakurt).
We can also prove the following (cf. Lekili, 2009).
We can also prove the following (cf. Lekili, 2009).

Theorem 3.5 \(g : M^4 \to S^2 \) a \(C^\infty \) map

\(L \subset M^4 \): a non-empty closed 1-dim. submanifold

\(\exists f : M^4 \to S^2 \) BLF homotopic to \(g \) s.t. \(S_1(f) = L \)

\[\iff [L]_2 = 0 \text{ in } H_1(M^4; \mathbb{Z}_2) \]
We can also prove the following (cf. Lekili, 2009).

Theorem 3.5 $g : M^4 \to S^2$ a C^∞ map

$L \subset M^4$: a non-empty closed 1-dim. submanifold

$\exists f : M^4 \to S^2$ BLF homotopic to g s.t. $S_1(f) = L$

$\iff [L]_2 = 0$ in $H_1(M^4; \mathbb{Z}_2)$

Using similar techniques in the context of near-symplectic structures (Perutz, 2006; Lekili, 2009), we can prove the following.
We can also prove the following (cf. Lekili, 2009).

Theorem 3.5 \(g : M^4 \to S^2 \) a \(C^\infty \) map

\(L \subset M^4 \): a non-empty closed 1-dim. submanifold

\(\exists f : M^4 \to S^2 \) BLF homotopic to \(g \) s.t. \(S_1(f) = L \)

\(\iff [L]_2 = 0 \) in \(H_1(M^4; \mathbb{Z}_2) \)

Using similar techniques in the context of near-symplectic structures (Perutz, 2006; Lekili, 2009), we can prove the following.

Theorem 3.6 \(M^4 \): closed oriented 4-manifold with \(b_2^+(M^4) > 0 \)

\(L \subset M^4 \): a non-empty closed 1-dim. submanifold

\(\exists \text{near-symplectic structure } \omega \) whose zero locus coincides with \(L \)

\(\iff [L]_2 = 0 \) in \(H_1(M^4; \mathbb{Z}_2) \)
Recent Result by Gay–Kirby

Theorem 3.7 (Gay–Kirby, 2011) \(g : M^4 \to \Sigma^2 \) a \(C^\infty \) map

\[\exists f : M^4 \to \Sigma^2 \text{ BLF homotopic to } g \]

\[\iff [\pi_1(\Sigma^2) : g_*\pi_1(M^4)] < +\infty \]

Furthermore, if \(g_* : \pi_1(M^4) \to \pi_1(\Sigma^2) \) is surjective, then we can arrange so that \(\forall \) fibers are connected.

Remark 3.8 *Fiber connectedness* is very important!
Theorem 3.7 (Gay–Kirby, 2011)

\[g : M^4 \to \Sigma^2 \text{ a } C^\infty \text{ map} \]

\[\exists f : M^4 \to \Sigma^2 \text{ BLF homotopic to } g \]

\[\iff [\pi_1(\Sigma^2) : g_*\pi_1(M^4)] < +\infty \]

Furthermore, if \(g_* : \pi_1(M^4) \to \pi_1(\Sigma^2) \) *is surjective, then we can arrange so that* \(\forall \text{ fibers are connected} \).

Remark 3.8

Fiber connectedness is very important!
Recall the cohomological condition appearing in the ADK theorem on the existence and uniqueness of near-symplectic structures.
§ 4. Moves for BLFs
There is a set of “moves” for BLFs, called \textbf{Lekili’s moves}.
There is a set of “moves” for BLFs, called \textbf{Lekili’s moves}.

\begin{tikzpicture}[scale=1,thick]
 \node at (0,0) [draw] {\textbf{Birth}};
 \node at (1,0) [draw] {\textbf{Merge}};
 \node at (2,0) [draw] {\textbf{Flip}};
 \node at (3,0) [draw] {\textbf{Wrinkle}};
 \node at (4,0) [draw] {\textbf{Sinking}};

 % Birth
 \draw [->] (-0.5,0) -- (0.5,0);
 % Merge
 \draw [<-] (1.5,0) -- (2.5,0);
 % Flip
 \draw [->] (2.5,0) -- (3.5,0);
 % Wrinkle
 \draw [<-] (3.5,0) -- (4.5,0);
 % Sinking
 \draw [<-] (4.5,0) -- (5.5,0);
\end{tikzpicture}

\textbf{Figure 8: Lekili’s moves}
Theorem 4.1 (Williams, 2010; Gay–Kirby, 2011)
If two BLFs $M^4 \rightarrow \Sigma^2$ are homotopic, then one is obtained from the other by a finite sequence of Lekili’s moves (Birth, Merge, Flip, Wrinkle, and Sink operations, and their inverses), together with “Isotopies”.

Uniqueness

1. Broken Lefschetz Fibrations
2. Singularities of Generic Maps
3. Elimination of Definite Fold
4. Moves for BLFs
5. Simplified BLFs

Theorem 4.1 (Williams, 2010; Gay–Kirby, 2011)
If two BLFs $M^4 \to \Sigma^2$ are homotopic, then one is obtained from the other by a finite sequence of Lekili’s moves (Birth, Merge, Flip, Wrinkle, and Sink operations, and their inverses), together with “Isotopies”.

If one can describe the change in the corresponding near-symplectic structures, one would be able to define a gauge theoretic invariant for 4-manifolds \Rightarrow **Lagrangian matching invariant** (Perutz, 2007)
Uniqueness

Theorem 4.1 (Williams, 2010; Gay–Kirby, 2011)
If two BLFs $M^4 \to \Sigma^2$ are homotopic, then one is obtained from the other by a finite sequence of Lekili’s moves (Birth, Merge, Flip, Wrinkle, and Sink operations, and their inverses), together with “Isotopies”.

If one can describe the change in the corresponding near-symplectic structures, one would be able to define a gauge theoretic invariant for 4-manifolds \Rightarrow Lagrangian matching invariant (Perutz, 2007)

It is conjectured that Lagrangian matching invariants equal the Seiberg–Witten invariants.
Problem 4.2 (Baykur)

Find a sufficient sequence of moves that guarantees to stay within the class of fibrations without null-homologous fiber components.
Problem 4.2 (Baykur)

Find a sufficient sequence of moves that guarantees to stay within the class of fibrations without null-homologous fiber components.

How about the class of fibrations with connected fibers?
Problem 4.2 (Baykur)

Find a sufficient sequence of moves that guarantees to stay within the class of fibrations without null-homologous fiber components.

How about the class of fibrations with connected fibers?

Note.

These guarantee that if we start with a **near-symplectic BLF**, then we can perform the moves within the subclass of **near-symplectic BLFs**.
Theorem 4.3 (Gay–Kirby, 2011)

\(f_0, f_1 : M^4 \to \Sigma^2 \) excellent maps without definite folds
s.t. all the fibers are connected.

\[\Rightarrow \exists \text{generic homotopy } f_t \text{ between } f_0 \text{ and } f_1 \]

s.t. \(\forall \text{fibers of } f_t \text{ are connected.} \)
Theorem 4.3 (Gay–Kirby, 2011)

\[f_0, f_1 : M^4 \to \Sigma^2 \text{ excellent maps without definite folds} \]
\[\text{s.t. all the fibers are connected.} \]

\[\implies \exists \text{generic homotopy } f_t \text{ between } f_0 \text{ and } f_1 \]
\[\text{s.t. } \forall \text{fibers of } f_t \text{ are connected.} \]

Idea: A careful application of the classical Cerf theory.
An Answer

1. Broken Lefschetz Fibrations
2. Singularities of Generic Maps
3. Elimination of Definite Fold
4. Moves for BLFs
5. Simplified BLFs

Theorem 4.3 (Gay–Kirby, 2011)

\[f_0, f_1 : M^4 \to \Sigma^2 \] excellent maps without definite folds
s.t. all the fibers are connected.

\[\implies \exists \text{generic homotopy } f_t \text{ between } f_0 \text{ and } f_1 \]
s.t. \(\forall \) fibers of \(f_t \) are connected.

Idea: A careful application of the classical Cerf theory.

cf. The proof that the Kirby moves are enough for converting one
framed link diagram to another for a given 3-manifold.
§5. Simplified BLFs
Let \(f : M^4 \to S^2 \) be a BLF.
Let $f : M^4 \to S^2$ be a BLF. Suppose

1. $S_I(f) \cong S^1$,
2. $f|_{S_I(f)}$ is an embedding onto the equator of S^2,
3. all fibers are connected.
Let $f : M^4 \to S^2$ be a BLF. Suppose

1. $S_I(f) \cong S^1$,
2. $f|_{S_I(f)}$ is an embedding onto the equator of S^2,
3. All fibers are connected.

Then, f is a simplified broken Lefschetz fibration (SBLF, for short).
Let $f : M^4 \to S^2$ be a BLF. Suppose

1. $S_I(f) \cong S^1$,
2. $f|_{S_I(f)}$ is an embedding onto the equator of S^2,
3. all fibers are connected.

Then, f is a simplified broken Lefschetz fibration (SBLF, for short).
Let $f : M^4 \to S^2$ be a BLF. Suppose

(1) $S_I(f) \cong S^1$,
(2) $f|_{S_I(f)}$ is an embedding onto the equator of S^2,
(3) \forall fibers are connected.

Then, f is a **simplified broken Lefschetz fibration** (SBLF, for short).

It is known that **every closed oriented 4-manifold admits a SBLF** (Gay–Kirby, etc.).
Williams (2010): Convert the Lefschetz singularities to cusps by Lekili’s moves.
Williams (2010): Convert the Lefschetz singularities to cusps by Lekili’s moves.
Williams (2010): Convert the Lefschetz singularities to cusps by Lekili’s moves.

Then, one can represent the 4-manifold by a finite sequence of simple closed curves on a fiber surface. \(\rightsquigarrow\) **surface diagram** of a 4-manifold.
Williams (2010): Convert the Lefschetz singularities to cusps by Lekili’s moves.

Then, one can represent the 4-manifold by a finite sequence of simple closed curves on a fiber surface. → **surface diagram** of a 4-manifold

Theorem 5.1 (Williams, 2011)
Surface diagram of a given closed oriented 4-manifold is unique up to certain moves, called stabilization, handleslide, multislide, and shift.
(1) Every closed oriented 4-manifold admits a lot of **BLFs**; when $b_2^+(M^4) > 0$, a lot of BLFs with associated **near-symplectic structures**.

(2) Two BLFs in a fixed homotopy class are related by **Lekili’s moves**. They are also related in the class of BLFs with **connected fibers**. This would lead to prove the conjecture that the **Lagrangian matching invariant** defined for near-symplectic structures equals the **Seiberg-Witten invariant**.

(3) The **indefinite locus** of a BLF can be prescribed, and the **zero locus** of a near-symplectic structure as well.

(4) **Surface diagrams** arising from SBLFs may be useful to describe a given 4-manifold, like Heegaard diagrams or framed link diagrams for 3-manifolds.
Thank you for your attention!