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Abstract
We bring forward a logical system of transition algebras that enhances many-sorted first-order
logic using features from dynamic logics. The sentences we consider include compositions, unions,
and transitive closures of transition relations, which are treated similarly to the actions used in
dynamic logics in order to define necessity and possibility operators. This leads to a higher degree of
expressivity than that of many-sorted first-order logic. For example, one can finitely axiomatize both
the finiteness and the reachability of models, neither of which are ordinarily possible in many-sorted
first-order logic. We introduce syntactic entailment and study basic properties such as compactness
and completeness, showing that the latter does not hold when standard finitary proof rules are
used. Consequently, we define proof rules having both finite and countably infinite premises, and we
provide conditions under which completeness can be proved. To that end, we generalize the forcing
method introduced in model theory by Robinson from a single signature to a category of signatures,
and we apply it to obtain a completeness result for signatures that are at most countable.
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1 Introduction

Algebraic specification is one of the main approaches to formal methods that supports both
the formal specification of software and hardware systems and the formal verification of
their requirements. The underlying logic of an algebraic specification language is often
presented as an institution [13], a category-theoretic formalization of the intuitive notion of
logic that includes its syntax, semantics and the satisfaction relation between them. A lot of
theoretical computer science has been developed within institution theory [9, 31, 10] based on
the principle that formal specification should be based rigorously upon a concrete institution.
Two notable specification languages have been designed by following this principle: CafeOBJ
in Japan [11] and CASL in Europe [1]. However, there also is an exception given by the
Maude system [3], which was originally developed at SRI International in the United States.
The underlying logic of Maude, called rewriting logic [25], is not given as an institution,
which has led to a series of developments that diverged from mainstream institution-theoretic
approaches to topics such as modularization and heterogeneity [4].

Motivation. The main goal of the present study is to apply a body of methods and principles
developed within institutional model theory for defining a denotational semantics of algebraic
specification languages that are executable by term rewriting such that:
1. it enjoys the modular properties of the logic underlying CafeOBJ such as the satisfaction

condition for signature morphisms, and therefore it can be formalized as an institution;
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2. it has the rich expressivity of rewriting logic, in the sense that it can provide a semantics
for the Maude language, in general, and for its strategy language [12], in particular.

In algebraic specification languages executable by rewriting such as Maude and CafeOBJ,
systems are specified using two kinds of atomic statements: (a) equations, which define an
algebraic structure on system states, with constructors and derived operations, for example;
and (b) transition rules, which capture the behaviour of a system by telling us how the states
may change as a result of certain actions. In the present contribution, we propose a logic of
transition algebras where the models consist of many-sorted algebras equipped with binary
relations that give semantics to the transition rules. From transition rules one can construct
actions by applying composition, union, and the Kleene star (i.e., the reflexive and transitive
closure of a relation). For the sake of simplicity, we omit the subsorting relation [16].

Many-sorted logical systems. Many-sorted logics are widely acknowledged as being suitable
for applications in computer science. However, in pure mathematical logic, they tend to
be classified as “inessential variation[s]” [28] of their unsorted forms. This might be true
w.r.t. some classical aspects such as compactness or axiomatizability. However, in general,
moving from the unsorted to the many-sorted case is a far from trivial task. Allowing for
multiple sorts, and thus for multiple carriers in models, some of which may be empty, alters
the properties of the logics and significantly increases the complexity of proofs.

An important example of logical property that does not have a straightforward many-
sorted generalization is Craig interpolation [7]. This property generally holds in unsorted
first-order logic, but fails to hold in the many-sorted variant of the logic; a counterexample
can be found, for example, in [2]. Finding the most general criteria for Craig interpolation
property was an open problem originally stated in [33]. A solution based on techniques
advanced in institutional model theory was provided in [23] after nearly two decades.

Moreover, as noticed in [15], if we admit models with potentially empty carrier sets, then
proof rules for unsorted (or single-sorted) first-order logic may be unsound for its many-sorted
counterpart. This already suggests that generalizations to other variants of many-sorted
first-order logic may pose difficulties. The completeness results proved in an institutional
setting, such as [29, 22, 19] are applicable to logical systems where models interpret sorts
as non-empty sets. In fact, we are not aware of any completeness result for many-sorted
first-order logic in which models interpret sorts as possibly empty sets.

Forcing. In the present contribution, we prove the completeness of the many-sorted logic of
transition algebras by applying forcing. This technique was originally introduced by Paul
Cohen [5, 6] in set theory to show the independence of the continuum hypothesis from the
other axioms of Zermelo-Fraenkel set theory. Robinson [30] developed an analogous theory of
forcing in model theory. In our setting, forcing is a technique used for constructing expanded
models of consistent sets of sentences. More specifically, it allows one to expand a set of
sentences while preserving satisfiability even if compactness does not hold in the underlying
logical system. Transition algebra is not compact for the same reason classical dynamic
propositional logic is not compact. Therefore, the classical Henkin method for proving
completeness, which relies on compactness, is not applicable to transition algebra. Another
issue arises when proving completeness from the fact that we work with models with empty
carriers, because the addition of constants does not necessarily preserve the consistency of
theories. Therefore, we generalize the forcing method from a single signature to a category
of signatures using ideas from institutional model theory such that the so-called Henkin
constants can be added when needed in a way that preserves consistency.
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2 Transition algebra

In this section, we define the logic of many-sorted transition algebras, or transition algebra (TA),
for short. We present, in order: signatures, models, sentences, and the TA satisfaction relation.
Signatures. The signatures we consider are ordinary algebraic signatures endowed with
polymorphic transition labels and monotonic function symbols. We denote them by tuples of
the form (S, F ⊇ M,L), where:

(S, F ) is a many-sorted algebraic signature consisting of a set S of sorts and a family
F = {Fw,s | w ∈ S∗, s ∈ S} of sets of function symbols;
M is a family of subsets Mw,s ⊆ Fw,s of monotonic function symbols; and
L is a set whose elements we call transition labels.

We often write σ : w → s ∈ F to indicate that σ ∈ Fw,s, and we refer to w ∈ S∗ and
s ∈ S as the arity and sort, respectively, of the symbol σ. Under this notation, F can also be
regarded as an ordinary set consisting of function declarations of the form σ : w → s. When
w is the empty arity, we may speak of σ : → s as a constant (symbol) of sort s.

Throughout the paper, we let Σ, Σ′, and Σi range over arbitrary signatures of the form
(S, F ⊇ M,L), (S′, F ′ ⊇ M ′, L′), and (Si, Fi ⊇ Mi, Li), respectively.

As usual in institution theory [9, 31], important constructions such as signature extensions
with constants as well as open formulae and quantifiers are realized in a multi-signature
setting, so moving between signatures is common. A signature morphism χ : Σ → Σ′ consists
of an ordinary algebraic signature morphism χ : (S, F ) → (S′, F ′) such that χ(M) ⊆ M ′

together with a function L → L′, which we typically denote using the same symbol, χ.

▶ Remark 1. Signature morphisms compose componentwise. Their composition has identities
and is associative, thus leading to a category Sig of signatures.

Models. Given a signature Σ, a Σ-model A is an (S, F )-algebra A that interprets every
label λ ∈ L as a many-sorted transition relation λA ⊆ A × A (that is, λA = {λAs |
s ∈ S} and λAs ⊆ As × As for all sorts s ∈ S) that respects monotonic function sym-
bols (that is, for all function symbols σ : s1 · · · sn → s in M , all tuples (a1, . . . , an) ∈
As1 × · · · × Asn

, all indices k ∈ {1, . . . , n}, and all elements b ∈ Ask
, if ⟨ak, b⟩ ∈ λAsk

then
⟨σA(a1 . . . , ak, . . . , an), σA(a1 . . . , b, . . . , an)⟩ ∈ λAs ).

A homomorphism h : A → B over a signature Σ is an algebraic (S, F )-homomorphism that
preserves transitions: h(λA) ⊆ λB for all λ ∈ L. It is easy to see that Σ-homomorphisms form
a category, which we denote by Mod(Σ), under their obvious componentwise composition.

▶ Remark 2. Every signature morphism χ : Σ → Σ determines a model-reduct functor
_↾χ : Mod(Σ′) → Mod(Σ) such that:

for every Σ′-model A′, (A′↾χ)s = A′
χ(s) for each sort s ∈ S, σA′↾χ = χ(σ)A′ for each

symbol σ ∈ F , and λA
′↾χ = χ(λ)A′ for each label λ ∈ L; and

for every Σ′-homomorphism h′ : A′ → B′, (h′↾χ)s = h′
χ(s) for each s ∈ S.

Moreover, the mapping χ 7→ _↾χ is functorial.

For any signature morphism χ : Σ → Σ′, any Σ-model A and any Σ′-model A′ if A = A′↾χ,
we say that A is the χ-reduct of A′, and that A′ is a χ-expansion of A. For example, for any
many-sorted set X (say, of variables) that is disjoint from the set of constant-function symbols
in Σ, consider the inclusion morphism ιX : Σ ↪→ Σ[X], where Σ[X] = (S, F [X] ⊇ M,L) is
the signature obtained from Σ = (S, F ⊇ M,L) by adding the elements of X to F as new
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constant-operation symbols of appropriate sort. Then an expansion of a Σ-model A along ιX
can be seen as a pair ⟨A, g : X → A⟩, where g is a valuation of X in A.

As in many-sorted algebra, there is a special, initial model in Mod(Σ), which we denote
by TΣ, whose elements are ground terms built from function symbols, and whose transition
relations are all empty. The Σ-model TΣ(X) of terms with variables from X is defined as
the ιX -reduct of TΣ[X]; i.e., TΣ(X) = TΣ[X]↾ιX

. The following property is an immediate
consequence of the initiality of TΣ.

▶ Remark 3. Any signature morphism χ : Σ → Σ′ determines uniquely a Σ-homomorphism
TΣ → TΣ′↾χ. In order to simplify notations later on, we denote that homomorphism by
χ : TΣ → TΣ′↾χ; therefore, for any Σ-term σ(t1, t2, . . . , tn), we have χ(σ(t1, t2, . . . , tn)) =
χ(σ)(χ(t1), χ(t2), . . . , χ(tn)).

Sentences. The actions over a signature Σ are defined by the following grammar:

a ::= λ | a ; a | a ∪ a | a∗

where λ is a transition label of Σ. We let A denote the set of all actions obtained from
transition labels declared in a signature Σ, and we extend the notational convention that
we use for the components of signatures to their corresponding sets of actions; that is, we
usually denote by A′ the set of actions over a signature Σ′, by Ai the set of actions over a
signature Σi, and so on. Moreover, through a slight abuse of notation, we also denote by
χ : A → A′ the canonical map determined by a signature morphism χ : Σ → Σ′.

To define sentences, we assume a countably infinite set of variable names {vi | i < ω}.
A variable for a signature Σ is a triple ⟨vi, s,Σ⟩, where vi is a variable name and s is a
sort in Σ – the third component is used only to ensure that variables are distinct from the
constant-operation symbols declared in Σ, which is essential when dealing with quantifiers.
The set Sen(Σ) of sentences over Σ is given by the following grammar:

ϕ ::= t1 = t2 | t1
a⇒ t2 | ¬ϕ |

∨
Φ | ∃X ·ϕ′

where (a) t1 and t2 are (S, F )-terms of the same sort; (b) a ∈ A is an action; (c) Φ is a
finite set of Σ-sentences; and (d) X is a finite set of variables for Σ and ϕ′ is a Σ[X]-sentence.

When Φ = {ϕ1, ϕ2, . . . , ϕn}, we may write ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕn instead of
∨

Φ. Besides
the above core connectives, we also make use of the following convenient (and standard)
abbreviations:

∧
Φ := ¬

∨
{¬ϕ | ϕ ∈ Φ} for finite conjunctions; ⊥ :=

∨
∅ for falsity;

⊤ :=
∧

∅ = ¬⊥ for truth; ϕ1 → ϕ2 := ¬ϕ1 ∨ ϕ2 for implications; and ∀X ·ϕ′ := ¬∃X · ¬ϕ′

for universally quantified sentences.

▶ Remark 4. Any signature morphism χ : Σ → Σ′ can be canonically extended to a sentence-
translation function χ : Sen(Σ) → Sen(Σ′) given by:

χ(t1 = t2) = (χ(t1) = χ(t2));

χ(t1
a⇒ t2) = χ(t1) χ(a)=⇒ χ(t2);

χ(¬ϕ) = ¬χ(ϕ);

χ(
∨

Φ) =
∨
χ(Φ); and

χ(∃X ·ϕ′) = ∃X ′ ·χ′(ϕ′), where X ′ = {⟨x, χ(s),Σ′⟩ | ⟨x, s,Σ⟩ ∈ X} and χ′ : Σ[X] →
Σ′[X ′] is the extension of χ mapping each variable ⟨x, s,Σ⟩ ∈ X to ⟨x, χ(s),Σ′⟩ ∈ X ′.

Moreover, this sentence-translation mapping is functorial in χ.
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For the sake of simplicity, we identify variables only by their name and sort, provided that
there is no danger of confusion. Using this convention, each inclusion morphism ι : Σ ↪→ Σ′

determines an inclusion function ι : Sen(Σ) ↪→ Sen(Σ′), which corresponds to the approach
of classical model theory. This simplifies the presentation greatly. A situation when we
cannot apply this convention arises when translating a Σ-sentence ∃X ·ϕ along the inclusion
ιX : Σ ↪→ Σ[X].
Satisfaction relation. Actions are interpreted as binary transition relations in models. Given
a model A over a signature Σ, and actions a, a1, a2 ∈ A, we have:

(a1 ; a2)A = aA1 ; aA2 (i.e., diagrammatic composition of binary relations);
(a1 ∪ a2)A = aA1 ∪ aA2 (the union of binary relations); and
(a∗)A = (aA)∗ (the reflexive and transitive closure of binary relations).

We define the satisfaction relation between models and sentences as follows:

A |= t1 = t2 iff tA1 = tA2 ;
A |= t1

a⇒ t2 iff (tA1 , tA2 ) ∈ aA;
A |= ¬ϕ iff A ̸|= ϕ,
A |=

∨
Φ iff A |= ϕ for some sentence ϕ ∈ Φ, and

A |= ∃X ·ϕ′ iff A′ |= ϕ′ for some expansion A′ of A to the signature Σ[X].

For the sake of simplicity, we write d1
a=⇒ d2 if ⟨d1, d2⟩ ∈ aA.

Let ϕ, ϕ′ be sets of Σ-sentences, A a Σ-model. We also use the following notations:

A |= Φ iff A |= ϕ for all sentences ϕ ∈ Φ;
Γ |= Φ iff A |= Γ implies A |= Φ for all Σ-models A.

In particular, we write Γ |= ϕ instead of Γ |= {ϕ} for any set of sentences Γ and any single
sentence ϕ.

▶ Proposition 5. For all signature morphisms χ : Σ → Σ′, all Σ′-models A and all sentences
ϕ ∈ Sen(Σ) we have: A↾χ |= ϕ iff A |= χ(ϕ).

▶ Example 6 (CCS). To illustrate the expressivity of transition algebra, we refer to Robin
Milner’s calculus of communicating systems (CCS) [26, 27], which is emblematic of a broad
family of formal languages used for modelling and reasoning about concurrency. In a nutshell,
CCS is a process calculus that enables syntactic descriptions of concurrent systems to be
written, and subsequently manipulated and analysed, based on two kinds of atomic entities –
process identifiers and channel names – and a handful of composition operators.

To start, we assume two sets: PI of process identifiers, and CN of so-called channel
names, which capture the interaction capabilities of processes. Take, for instance, the
following famous quote by Alfréd Rényi: “A mathematician is a machine for turning coffee
into theorems” [32]. This can be modelled in CCS as an interaction between two processes,
a mathematician and a coffee vending machine, that trade coffee (in exchange, perhaps, of
coins or some other form of payment) in order to jointly produce theorems. Hence, we can
consider theorems, coffee, and coins as types of interactions between the two processes.

For each channel name c ∈ CN, we let c be a new symbol, distinct from all channel names,
called the co-name of c. We also let CN = {c | c ∈ CN} be the set of all co-names, and
L = CN ∪ CN be the set of labels. Intuitively, we may regard the symbols in CN as inputs
of some process, and the symbols in CN as outputs. Besides labels, we also consider an
additional silent-action symbol, denoted τ , that indicates an internal, unobservable behaviour
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of the system under consideration. Altogether, we refer to the symbols in A = L ∪ {τ} as
CCS actions.1 Processes over CN and PI are defined according to the following grammar:

P ::= 0 | π | a . P | P + P | P ‘|’ P | P \ k

where (a) 0 denotes a special terminal, inactive process; (b) π ∈ PI is a process identifier;
(c) a ∈ A is a CCS action, which can be used to prefix a process P in order to form a
new process, a . P , that intuitively performs a then continues as P ; (d) ‘+’ denotes the
non-deterministic choice between two processes; (e) ‘|’ denotes the parallel composition of
two processes; and (f ) k ∈ CN is a channel name, which can be used in expressions like
P \ k to form a new, restricted process with the same interaction capabilities as P except for
the labels k and k. To simplify the presentation, we omit the relabelling operator because it
plays no role in the examples we consider in this paper and it could be added with ease if
needed. For a comprehensive account of CCS, see for example [27].

A CCS context, or program, is a set of declarations of the form π ::= P , where π ∈ PI is
a process identifier and P is a process conforming to the grammar introduced above, such
that any two distinct declarations have distinct left-hand sides; in other words, we do not
admit multiple declarations of the same process identifier within a given context.

Using this syntax, the interaction between mathematicians and coffee vending machines
announced in Alfréd Rényi’s quote can be formalized as a parallel composition of processes
over PI = {Mathematician, CoffeeVM} and CN = {coin, coffee, theorem}, which we write
as Mathematician | CoffeeVM, where Mathematician and CoffeeVM are process identifiers
‘defined’ recursively according to the following context:

Mathematician ::= coin . coffee . theorem . Mathematician,
CoffeeVM ::= coin . coffee . CoffeeVM.

Thanks to the expressivity of transition algebra, we can easily capture both the syntax
and the operational semantics of CCS. For the syntax of processes, it suffices to consider a
many-sorted TA signature with S = {Channel, Action, Process} and with F given by the
following function symbols (which employ OBJ’s [17] and Maude’s [3] mixfix notation):

0: → Process,
π : → Process for each process identifier π ∈ PI,
a : → Action for each CCS action a ∈ A,
. : Action Process → Process,
+ , | : Process Process → Process,
k : → Channel for each channel name k ∈ CN ,2
\ : Process Channel → Process.

The parallel-composition operator is the only monotonic function symbol of this example.
For convenience, we also declare the parallel-composition operator and the non-deterministic
choice as associative, commutative, and with identity 0. These properties can be presented –
as usual in algebraic specification – using plain equations. To capture and reason about the
behaviour of processes, we regard each CCS action as an atomic action (i.e., a transition
label) in transition algebra – and those are the only TA labels that we consider here.

1 Although they share the name ‘action’, CCS actions are conceptually very different from the actions we
have defined for transition algebra. To distinguish the two, we always prefix the former by CCS.

2 To avoid subsorting, we overload channel names, which can be seen either as constants of sort Channel
or as constants of sort Action depending on the context in which they are used.
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The transitional semantics of a CCS program Pgm is given by the following collection of
axioms. The transition-algebra sentences below are all universally quantified over variables
P , P ′, Q, Q′ of sort Process and k of sort Channel; however, we drop the quantifiers in
order to simplify the notation. We also use names for the axioms (at the beginning of each
line) that are indicative of the transition rules defined in [27].

(Act) a . P
a⇒ P for all a ∈ A,

(Sum) P
a⇒ P ′ → P +Q

a⇒ P ′ for all a ∈ A,
(Com) P c⇒ P ′ ∧Q

c⇒ Q′ → P | Q τ⇒ P ′ | Q′ for all c ∈ CN,
(Res) P

a⇒ P ′ ∧ a ̸= k ∧ a ̸= k → P \ k a⇒ P ′ \ k for all a ∈ A,3

(Con) P
a⇒ P ′ → π

a⇒ P ′ for all π ::= P ∈ Pgm.

To simplify some of the notations used later on in the paper, for any process P and any
non-empty and finite sequence K = (ki | 1 ≤ i ≤ n) of channel names, we also write P \K
in place of P \ k1 \ · · · \ kn and we consider the following derived form of the axiom (Res):

(Res∗) P
a⇒ P ′ ∧

∧
{a ̸= ki ∧ a ̸= ki | 1 ≤ i ≤ n} → P \K a⇒ P ′ \K for all a ∈ A.

Similar encodings of CCS in languages that support transitions can be found in the
rewriting-logic literature, notably in [24, 34, 8]. But the encodings presented therein rely
on a notion of derivative of a process instead of reasoning about plain processes, which is
usually because labelled transitions cannot be used in the conditions of Horn clauses such
as Sum and Com. That is, the axiomatization is done in terms of pairs ⟨α, P ⟩, where P is
a process and α is a CCS action or a sequence of CCS actions leading to P . In TA, this
additional step can be avoided because the use of labelled transitions is unrestricted, which
allows our axioms to be nearly to-the-letter transcriptions of Robin Milner’s rules for CCS.

3 Entailment relations

In this section, we define the proof-theoretic properties necessary for proving our results
such as entailment relation, soundness and completeness. Before we proceed, let us recall an
example from [14], which shows that classical rules of first-order deduction are not sound.

▶ Example 7. Let Σ = (S, F ) be an algebraic signature consisting of:

two sorts, that is, S = {Elt,Bool}, and
five function symbols F = {true :→ Bool, false :→ Bool,∼_ : Bool → Bool,_&_ :
Bool Bool → Bool,_ + _ : Bool Bool → Bool, foo : Elt → Bool}.

Let Γ be a set of sentences over Σ which consists of the following sentences:

∼ true = false and ∼ false = true,
∀y · y & ∼ y = false and ∀y · y & y = y,
∀y · y + ∼ y = true and ∀y · y + y = y, and
∀x · ∼ foo(x) = foo(x).

3 As usual in CCS, we extend the over-line notation employed for channel co-names to a bijection · : A → A
given by c = c for all channel names c and by τ = τ for the silent action.
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Using the ordinary rules of first-order deduction, we can show that

true = foo(x)+ ∼ foo(x)
= foo(x) + foo(x)
= foo(x)
= foo(x) & foo(x)
= foo(x) & ∼ foo(x)
= false

(1)

As a result, one would expect true = false to hold in all algebras satisfying Γ. But that is
not the case. To see why, suppose A is the algebra obtained from TΣ through a factorization
under the congruence relation ≡Γ generated by Γ, that is:

ABool = {true/≡Γ , false/≡Γ} and AElt = ∅,
∼ is interpreted as the negation, & as the conjunction and + as the disjunction, and
fooA is the empty function.

Clearly, the algebra A satisfies the sentences in Γ referring to the negation, conjunction, and
disjunction of booleans. Moreover, since there is no function from {x} to AElt = ∅, we have
A |=Σ ∀x · ∼ foo(x) = foo(x). It follows that A |=Σ Γ but A ̸|=Σ true = false.

This shows that moving from the unsorted to the many-sorted case is not as straightforward
as one might expect. Since a model may have some empty domains, one needs to design
proof rules that take into account changes of signatures.

▶ Definition 8 (Entailment relation). An entailment relation ⊢= {⊢Σ}Σ∈|SigTA| is a family of
binary relations between sets of sentences indexed by signatures, that is, ⊢Σ⊆ P(Sen(Σ)) ×
P(Sen(Σ)) for all first-order signatures Σ, such that the following properties are satisfied:

(Monotonicity) Γ ⊇ Φ
Γ ⊢Σ Φ (T ransitivity) Γ ⊢Σ Φ Φ ⊢Σ Ψ

Γ ⊢Σ Ψ

(Union) Γ ⊢Σ ϕ for all ϕ ∈ Φ
Γ ⊢Σ Φ (T ranslation) Γ ⊢Σ Φ

χ(Γ) ⊢Σ′ χ(Φ) where χ : Σ → Σ′

For the sake of simplicity, we write Γ ⊢Σ ϕ rather than Γ ⊢Σ {ϕ}. Also, we omit the subscript
Σ from the notation ⊢Σ when it is clear from the context. An example of entailment relation
is |=. It is straightforward to prove that |= satisfies (Monotonicity), (Transitivity), (Union)
and (Translation).

▶ Definition 9 (Entailment properties). An entailment relation ⊢ is sound (complete) if
⊢ ⊆ |= (|= ⊆ ⊢). An entailment relation ⊢ is α-compact, where α is an infinite cardinal, if

Γ ⊢Σ ϕ implies Γα ⊢Σ ϕ for some subset Γα ⊆ Γ of cardinality card(Γα) < α,

for all signatures Σ, all sets of Σ-sentences Γ and all Σ-sentences ϕ. If α = ω, we say,
simply, that ⊢ is compact.

The dynamic entailment relation is defined in two steps. Firstly, we define an entailment
relation to reason about the logical consequences of atomic sentences, given as equations or
relations. Secondly, we define the dynamic entailment relation by adding proof rules to deal
with actions, Boolean connectives and quantifiers.
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3.1 Basic entailment relation

The fragment obtained from TA by restricting the sentences to atoms is studied in this
section.

▶ Definition 10 (Basic entailment relation). The basic entailment relation ⊢b is the least
entailment relation closed under the following basic proof rules:

(R) Γ ⊢Σ t = t
(S) Γ ⊢Σ t1 = t2

Γ ⊢Σ t2 = t1
(T ) Γ ⊢Σ t1 = t2 Γ ⊢Σ t2 = t3

Γ ⊢Σ t1 = t3

(F ) Γ ⊢Σ ti = t′
i for 1 ≤ i ≤ n

Γ ⊢Σ σ(t1, . . . , tn) = σ(t′
1, . . . , t′

n) (P ) Γ ⊢Σ t1 = t′
1 Γ ⊢Σ t2 = t′

2 Γ ⊢Σ t1
λ=⇒ t2

Γ ⊢Σ t′
1

λ=⇒ t′
2

(M) Γ ⊢Σ tj
λ=⇒ uj

Γ ⊢Σ f(t1, . . . , tj , . . . , tn) λ=⇒ f(t1, . . . , uj , . . . , tn)
where f ∈ M

▶ Lemma 11 (Basic compactness). The basic entailment relation is compact.

Any set of atomic sentences E defined over a signature Σ determines a congruence ≡E :=
{t1 ≡E t2 | E ⊢Σ t1 = t2} on TΣ. One can construct a model AE from the initial model of
terms TΣ factorized by the congruence ≡E interpreting each transition label λ in Σ as the
set {(t1, t2) | t1, t2 ∈ TΣ,s and E ⊢Σ t1

λ=⇒ t2}.

▶ Lemma 12. Let E be a set of atomic sentences defined over a signature Σ. For all
Σ-models A, we have A |= E iff there exists a unique homomorphism AE → A.

Lemma 12 says that the satisfaction of E by a model A is equivalent with the existence of a
unique homomorphism from AE to A. In particular, AE is the initial model of E. See [9] for
a proof of Lemma 12.

▶ Proposition 13 (Basic completeness). For any set of atomic sentences E and any atomic
sentence φ defined over a signature Σ, the following are equivalent:

(a) E |= φ, (b) AE |= φ, and (c) E ⊢b φ.

3.2 Dynamic entailment relation

The dynamic entailment relation is built on top of basic entailment relation by adding the
proof rules to reason about actions, Boolean connectives, and first-order quantifiers.

▶ Definition 14 (Dynamic entailment relation). The dynamic entailment relation ⊢ is the
least entailment relation closed under the basic proof rules presented in Definition 10 and the
following proof rules:

Proof rules for actions

(CompI) Γ ⊢Σ t1
a1=⇒ t Γ ⊢Σ t

a2=⇒ t2

Γ ⊢Σ t1
a1;a2=⇒ t2

(CompE)
Γ ⊢Σ t1

a1;a2=⇒ t2 Γ ∪ {t1
a1=⇒ x, x

a2=⇒ t2} ⊢Σ[x] ϕ

Γ ⊢Σ ϕ
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(UnionI) Γ ⊢Σ t1
ai=⇒ t2

Γ ⊢Σ t1
a1∪a2=⇒ t2

(UnionE) Γ ⊢Σ t1
a1∪a2=⇒ t2 Γ ∪ {t1

ai=⇒ t2} ⊢Σ ϕ for all i ∈ {1, 2}
Γ ⊢Σ ϕ

(StarI) Γ ⊢Σ t1
an

=⇒ t2

Γ ⊢Σ t1
a∗

=⇒ t2

(StarE) Γ ⊢Σ t1
a∗

=⇒ t2 Γ ∪ {t1
an

=⇒ t2} ⊢Σ ϕ for all n ∈ ω

Γ ⊢Σ ϕ

Proof rules for Boolean connectives

(NegD) Γ ⊢Σ ¬¬ϕ

Γ ⊢Σ ϕ
(F alse) Γ ⊢Σ ⊥

Γ ⊢Σ ϕ

(NegI) Γ ∪ {ϕ} ⊢Σ ⊥
Γ ⊢Σ ¬ϕ

(NegE) Γ ⊢Σ ¬ϕ

Γ ∪ {ϕ} ⊢Σ ⊥

(DisjI) Γ ⊢Σ ϕ

Γ ⊢Σ ∨Φ where ϕ ∈ Φ (DisjE) Γ ⊢Σ ∨Φ Γ ∪ {ϕ} ⊢Σ γ for all ϕ ∈ Φ
Γ ⊢Σ γ

Proof rules for first-order quantifiers

(QuantI)
Γ ∪ {ϕ} ⊢Σ[X] γ

Γ ∪ {∃X · ϕ} ⊢Σ γ
(QuantE) Γ ∪ {∃X · ϕ} ⊢Σ γ

Γ ∪ {ϕ} ⊢Σ[X] γ

(Subst) Γ ⊢Σ θ(ϕ)
Γ ⊢Σ ∃X · ϕ

where θ : X → TΣ is a substitution

▶ Proposition 15 (ω1-compactness). We have that

1. the dynamic entailment relation ⊢ is ω1-compact, and
2. the satisfaction relation |= is not ω1-compact.

The first statement holds because the dynamic entailment relation is generated by proof
rules with an at most countable number of premises. For uncountable signatures Σ, the
satisfaction relation |=Σ is not ω1-compact. It follows that the dynamic logic proposed in this
contribution, TA, is not complete. However, the restriction of TA to countable signatures,
TAc, is complete. Since TAc is not compact, the Henkin method for proving completeness is
not applicable.

▶ Example 16 (Analysis of CCS programs). Recall the CCS description of the interac-
tion between mathematicians and coffee vending machines discussed in Section 2, and let
Institute be an abbreviation for the following process:

(Mathematician | CoffeeVM) \ (coin, coffee).

In this context, can we check, as an example, that the process Institute is able to
continuously output theorems? The property can be formalized in TA as a transition

Institute
τ∗ ; theorem ; τ∗

==========⇒ Institute

whose τ -components correspond to internal communications between sub-processes of the
institute – i.e., mathematicians and vending machines. Therefore, we need to check an
entailment of the form Γ ⊢Σ ϕ, where (a) Σ is the TA-signature that consists of the process
identifiers Mathematician and CoffeeVM together with the CCS process-building operators
for action prefixing, non-deterministic choice, parallel composition, etc., discussed in Section 2;
(b) Γ is the set of Σ-sentences given by the axiom schemas Act, Sum, Com, Res∗, and Con
listed on page 7 together with equations pertaining to the axiomatization of CCS actions (e.g.,
theorem ≠ coffee), as well as equations that capture elementary properties of processes
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such as the associativity, commutativity, and identity element of the non-deterministic-choice
and parallel-composition operators; and (c) ϕ is the transition written above.

The proof mimics the following chain of CCS transitions:

Institute τ=⇒ (coffee . theorem . Mathematician | coffee . CoffeeVM) \ (coin, coffee)
τ=⇒ (theorem . Mathematician | CoffeeVM) \ (coin, coffee)
theorem=====⇒ (Mathematician | CofeeVM) \ (coin, coffee) = Institute

To shorten the presentation of the proof, we use the following derived proof rule:

(GMP)
Γ ⊢Σ ∀X ·

∧
Φ → γ Γ ⊢Σ θ(Φ)

Γ ⊢Σ θ(γ) where θ : X → TΣ is a substitution.

In addition, we simplify the notations by writing down only the conclusions of entailments
and by abbreviating Mathematician as M, CoffeeVM as CVM, and the sequence of channel
names (coin, coffee) as K. This leads us to the (sketch of) proof tree depicted in Figure 1.

4 Forcing

In this section, we develop a forcing technique for proving completeness which extends in a
non-straightforward way the classical forcing from one signature to a category of signatures.

▶ Definition 17 (Forcing property). A forcing property is a tuple P = (P,≤,∆, f), where:

(P,≤) Set

Sig∆

f

Senb

⊆

1. (P,≤) is a partially ordered set with a least element 0.
The elements of P are traditionally called conditions.

2. ∆ : (P,≤) → Sig is a functor, which maps each arrow (p ≤ q) ∈ (P,≤) to an inclusion
∆p ⊆ ∆q.

3. f : (P,≤) → Set is a functor from the small category (P,≤) to the category of sets Set
such that f ⊆ ∆; Senb is a natural transformation, that is: a. f(p) ⊆ Senb(∆p) for all
conditions p ∈ P , and b. f(p) ⊆ f(q) for all arrows (p ≤ q) ∈ (P,≤).

4. If f(p) |= ϕ then ϕ ∈ f(q) for some q ≥ p, for all atoms ϕ ∈ Senb(∆p).

A classical forcing property is a particular case of forcing property such that ∆p = ∆q for all
conditions p, q ∈ P .

▶ Example 18 (Syntactic forcing). Let Σ be a base signature and C an S-sorted set of new
constants such that card(Cs) = ω for all s ∈ S. Let P = (P,≤,∆, f) be a forcing property
defined as follows:

P is the set of presentations of the form p = (∆p,Γp), where (a) ∆p is obtained from Σ
by adding a finite set Cp of constants from C, and (b) Γp ⊆ Sen(∆p) is consistent, that
is, Γp ̸⊢∆p

⊥.
p ≤ q iff ∆p ⊆ ∆q and Γp ⊆ Γq, for all conditions p, q ∈ P .
∆ is the forgetful functor which maps each condition p ∈ P to ∆p.
f(p) = Γp ∩ Senb(∆p), for all conditions p ∈ P .
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Institute
τ∗ ; theorem ; τ∗

==========⇒ Institute (by CompI)

(M | CVM) \K τ∗

==⇒ Institute (by StarI for n = 0)

(M | CVM) \K = Institute (by R)
Institute

τ∗ ; theorem=======⇒ (M | CVM) \K (by CompI)

(theorem . M | CVM) \K theorem=====⇒ (M | CVM) \K (by GMP)

theorem . M | CVM theorem=====⇒ M | CVM (by M)

theorem . M theorem=====⇒ M (by GMP)

Act (by Monotonicity)
Res∗ (by Monotonicity)

Institute τ∗

==⇒ (theorem . M | CVM) \K (by StarI for n = 2)

Institute τ2

==⇒ (theorem . M | CVM) \K (by CompI)

(coffee . theorem . M | coffee . CVM) \K τ=⇒ (theorem . M | CVM) \K
(by GMP)

coffee . theorem . M | coffee . CVM τ=⇒ theorem . M | CVM (by GMP)
coffee . CVM coffee====⇒ CVM (by GMP)

Act (by Monotonicity)
coffee . theorem . M coffee====⇒ theorem . M (by GMP)

Act (by Monotonicity)
Com (by Monotonicity)

Res∗ (by Monotonicity)

Institute τ=⇒ (coffee . theorem . M | coffee . CVM) \K (by GMP)

coin . coffee . theorem . M | coin . coffee . CVM
τ=⇒ coffee . theorem . M | coffee . CVM (by GMP)

coin . coffee . CVM coin===⇒ coffee . CVM (by GMP)

Act (by Monotonicity)
coin . coffee . theorem . M coin===⇒ coffee . theorem . M (by GMP)

Act (by Monotonicity)
Com (by Monotonicity)

Res∗ (by Monotonicity)

Figure 1 Proof tree for the continuous output of theorems by the process Institute.
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The syntactic forcing described in the example above is used to prove completeness. The
constants from C are traditionally called Henkin constants and are used as witnesses for
existentially quantified sentences obtained by extending an initial theory to a maximally
consistent set of sentences.

As usual, forcing properties determine suitable relations between conditions and sentences.

▶ Definition 19 (Forcing relation). Let P = ⟨P,≤,∆, f⟩ be a forcing property. The forcing
relation ⊩ between conditions p ∈ P and sentences from Sen(∆p) is defined by induction on
the structure of sentences, as follows:

p ⊩ φ if φ ∈ f(p), for all atomic sentences φ ∈ Senb(∆p).
p ⊩ t1

a1;a2=⇒ t2 if p ⊩ t1
a1=⇒ t and p ⊩ t

a2=⇒ t2 for some t ∈ T∆p
.

p ⊩ t1
a1∪a2=⇒ t2 if p ⊩ t1

a1=⇒ t2 or p ⊩ t1
a2=⇒ t2.

p ⊩ t1
a∗

=⇒ t2 if p ⊩ t1
an

=⇒ t2 for some natural number n ∈ ω.
p ⊩ ¬ϕ if there is no q ≥ p such that q ⊩ ϕ.
p ⊩ ∨Φ if p ⊩ ϕ for some ϕ ∈ Φ.
p ⊩ ∃X ·ϕ if p ⊩ θ(ϕ) for some substitution θ : X → T∆p

.

The relation p ⊩ ϕ in P, is read as p forces ϕ. We say that p weakly forces ϕ, in symbols,
p ⊩w ϕ, if p ⊩ ¬¬ϕ.

A few basic properties of forcing are presented below.

▶ Lemma 20 (Forcing properties). Let P = (P,≤,∆, f) be a forcing property. For all
conditions p ∈ P and all sentences ϕ ∈ Sen(∆p) we have:
1. p ⊩ ¬¬ϕ iff for each q ≥ p there is a condition r ≥ q such that r ⊩ ϕ.
2. If p ≤ q and p ⊩ ϕ then q ⊩ ϕ.
3. If p ⊩ ϕ then p ⊩ ¬¬ϕ.
4. We can not have both p ⊩ ϕ and p ⊩ ¬ϕ.

The second property stated in the above lemma shows that the forcing relation is preserved
along inclusions of conditions. The fourth property shows that the forcing relation is
consistent, that is, a condition cannot force all sentences. The remaining conditions are
about negation.

▶ Definition 21 (Generic set). Let P = (P,≤,∆, f) be a forcing property. A subset of
conditions G ⊆ P is generic if

1. G is an ideal, that is: a. for all p ∈ G and all q ≤ p we have q ∈ G, and b. for all
p, q ∈ G there exists r ∈ G such that p ≤ r and q ≤ r; and

2. for all conditions p ∈ G and all sentences ϕ ∈ Sen(∆p) there exists a condition q ∈ G

such that q ≥ p and either q ⊩ ϕ or q ⊩ ¬ϕ holds.

We write G ⊩ ϕ if p ⊩ ϕ for some p ∈ G.

A generic set G describes a reachable model which satisfies all sentences forced by the
conditions in G.

▶ Lemma 22 (Existence). Let P = (P,≤,∆, f) be a forcing property. If any signature in
{∆p}p∈P is countable then every p ∈ P belongs to a generic set.
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Proof sketch. Let pair : ω × ω → ω be a bijective function defined by pair(i, j) :=
(
(i +

j)(i + j + 1) + 2j
)
/2 for all i, j ∈ ω. For all conditions p ∈ P , let ψp : ω → Sen(∆p) be a

bijective mapping, which gives an enumeration of Sen(∆p). We define an increasing chain of
conditions p0 ≤ p1 ≤ . . . in P recursively. Let p = p0. For the induction step, we assume
that we have defined pn and we define pn+1. Notice that there are unique natural numbers
i, j ∈ ω such that n = pair(i, j) and i, j ≤ n.

If there is q ≥ pn such that q ⊩ ψpi
(j), then let pn+1 := q.

Otherwise, pn+1 := pn, which means that pn+1 ⊩ ¬ψpi
(j).

Then G := {q ∈ P | q ≤ pn for some n ∈ ω} is generic and contains p. ◀

Lemma 22 is the key for a modular approach to forcing and it is the equivalent of the
Lindenbaum’s lemma from Henkin’s method for proving completeness.

▶ Remark 23. Since ∆ : (G,≤) → Sig is a directed diagram of signature inclusions, one can
construct a co-limit µ : ∆ ⇒ ∆G of the functor ∆ : (G,≤) → Sig such that µp : ∆p → ∆G is
an inclusion for all p ∈ G.

The results which leads to completeness are developed over the signature ∆G. If P is the
syntactic forcing described in Example 18, then ∆G is obtain from the base signature Σ by
adding all Henkin constants from {∆p}p∈G. In general, ∆G does not contain all Henkin
constants from C, which is one of the major differences between the classical approach and
the present developments.

▶ Definition 24 (Generic model). Let P = (P,≤,∆, f) be a forcing property and G ⊆ P a
generic set. A model A defined over ∆G is a generic model for G iff for every sentence
ϕ ∈

⋃
p∈G Sen(∆p), we have A |= ϕ iff G ⊩ ϕ.

The notion of generic model is the semantic counterpart of the definition of generic set. The
following result shows that every generic set has a generic model.

▶ Theorem 25 (Generic Model Theorem). Let P = (P,≤,∆, f) be a forcing property and
G ⊆ P a generic set. Then there is a generic model A for G which is countable and reachable.

Proof sketch. We define the set of all atomic sentences B := {ϕ ∈ Senb(∆G) | G ⊩ ϕ} forced
by the generic set G. The basic model AB given by Lemma 12 is the generic model for G. ◀

5 Completeness

The logical framework in which the results are developed in this section is the fragment TAc

obtained from TA by restricting the syntax to at most countable signatures. The syntactic
forcing property defined in Example 18 is the starting point for proving completeness.
Therefore, throughout this section, we let P = (P,≤,∆, f) be a syntactic forcing property in
TAc as described in Example 18. In particular, all signatures in {∆}p∈P are at most countable.
For the sake of simplicity, we write p ⊢ ϕ iff Γp ⊢∆p

ϕ, for all conditions p = (∆p,Γp) in P .

▶ Theorem 26. For all p ∈ P and all ϕ ∈ Sen(∆p), we have p ⊩w ϕ iff p ⊢ ϕ.

The above theorem says that a sentence is entailed by a condition if and only if it is weakly
forced by that condition. In other words, the entailment relation is the weak forcing relation.
Now, we can interpret Lemma 22 in the present context given by the syntactic forcing
property P set above. The following result is a direct consequence of Theorem 26 and
Lemma 22.
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▶ Corollary 27 (Lindenbaum’s lemma). Assume the following:
a condition p◦ = (∆p◦ ,Γp◦) from P , and
a generic set G which contains p◦ (by Lemma 22).

Let ∆G be the vertex of the co-limit µ : ∆ → ∆G of the functor ∆ : (G,≤) → Sig defined in
Remark 23. Then ΓG =

⋃
p∈G Γp is a maximally consistent set which includes Γp◦ .

The following example shows that ∆G does not contain all Henkin constants defined for the
base signature.

▶ Example 28. Let Σ be the base signature defined as follows: (a) S := {si | i ∈ ω},
(b) F := {c :→ s0, d :→ s0} (c) M := ∅, and (d) P := {λ}. Let Γ be the set of sentences over
Σ which consists of: (a) c λ∗

=⇒ d, and (b) (∃xn · ⊤) → ¬(c λn

=⇒ d) for all n ∈ ω, where xn is a
variable of sort sn.

The first sentence says that there is a transition from c to d in a finite number of steps. For
each natural number n, the sentence (∃xn · ⊤) → ¬(c λn

=⇒ d) says that if the sort sn is not
empty then there is no transition from c to d in exactly n steps. Recall that C = {Csn

}n∈ω

is the set of all Henkin constants, and card(Csn) = ω for all natural numbers n. Notice
that p◦ = (Σ,Γ) is consistent, but q = (Σ[C],Γ) is not consistent. By Corollary 27, one can
extend Γ to a maximally consistent set of sentences ΓG. Unlike in classical first-order logic,
ΓG does not contain all Henkin constants from C.

▶ Theorem 29 (Downwards Löwenheim-Skolem Theorem). For any consistent set of sentences
Γ defined over a countable signature Σ, there exists a countable Σ-model A that satisfies Γ.

Proof. Let P = (P,≤,∆, f) be the forcing property described in Definition 17. Notice that
p := (Σ,Γ) is a condition from P . Since all signatures are countable, by Lemma 22, p
belongs to a generic set G. By Theorem 25, G has a generic model B which is countable
and reachable. In particular, B |=∆G

Γ. Let A := B↾Σ, and by the satisfaction condition,
A |=Σ Γ. ◀

▶ Theorem 30 (Completeness). For all sets of sentences Γ and all sentences ϕ defined over
a countable signature Σ, we have: Γ ⊢Σ ϕ iff Γ |=Σ ϕ.

Proof. The forward implication holds because all proof rules are sound. For the backwards
implication assume Γ ̸⊢Σ ϕ. We have Γ ∪ {¬ϕ} ̸⊢Σ ⊥. By Theorem 29, there is a countable
Σ-model A such that A |=Σ Γ ∪ {¬ϕ}. Therefore, Γ ̸|=Σ ϕ. ◀

6 Conclusions

In this study, we have defined an extension of many-sorted first-order logic, called transition
algebra, that offers explicit support for state transitions; furthermore, we have investigated its
logical properties in order to apply the institutional model theory approach to new algebraic
specification languages based on this logic, and with a greater expressivity than Maude and
CafeOBJ. Transition algebra satisfies desirable properties such as truth invariance under
change of signature, and has an expressive power that goes beyond that of ordinary first-order
logic, which is important for formal-verification purposes. Our efforts have focused on two
main aspects of transition algebra: first, on its formal-specification capabilities, i.e., to show
that it forms a proper extension of first-order equational logic; and second, on support
for formal verification, for which we have studied a number of model-theoretic properties,
syntactic entailment and, most importantly, soundness and completeness results.
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Concerning its formal-specification capabilities, transition algebra blends features of
dynamic logic with features of many-sorted first-order logic. From the former, it borrows
the idea of expressing the dynamics of a system by means of actions, which are built from
atomic transitions using composition, iteration, and so on. The iteration of an action is a
key feature because it allows us to express reachability, which is not possible in ordinary
first-order logic. From the latter, our logic borrows term-building operators and quantifiers.
This allows us to capture system states as terms, and hence to reason about the structure of
states more freely and in a more complex manner than it is possible in dynamic logic.

For verification purposes, our contribution is twofold: on one hand, we have introduced a
sound proof system for transition algebra; and on the other hand, we have developed a new
general method for proving completeness based on forcing. The latter is highly important,
because it has enabled us to circumvent the lack of compactness of transition algebra, which
prevents the use of readily available methods for proving completeness. Moreover, it also
overcomes a significant limitation of existing forcing techniques, namely their reliance on
models with non-empty carriers, which is another basic property (like compactness) that
does not hold for transition algebra. We have demonstrated the use of this extended forcing
technique to show that the proof system for transition algebra is complete. We aim to further
develop and apply this technique to extensions of transition algebra that take into account,
for example, subsorting – to which we have already alluded in this paper. Furthermore, future
research includes applying forcing to prove omitting types theorem for logical systems that
interpret sorts as sets, possibly empty, thus upgrading the results from [18, 21]. Subsequently,
the application of omitting types theorem to Robinson consistency property and interpolation,
as demonstrated in [20], remains a feasible avenue for exploration.
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A Proofs for the results presented in Section 2

In order to prove Proposition 5 the following lemma is needed.

▶ Lemma 31. For all signature morphisms χ : Σ → Σ′, all Σ′-models A, all terms t ∈ TΣ
and all actions a ∈ A, we have

1. χ(t)A = t(A↾χ) and
2. χ(a)Aχ(s) = a

(A↾χ)
s for all sorts s ∈ S.

Proof. We prove the first statement by induction on the structure of terms.

[ c :→ s ∈ F ] From the definition of reduct, we get χ(c)A = c(A↾χ).
[ σ(t1, . . . , tn) ] By induction hypothesis, we have χ(ti)A = tA↾χ

i for all i ∈ {1, . . . , n}. It
follows that χ(σ(t1, . . . , tn))A = χ(σ)A(χ(t1)A, . . . , χ(tn)A) = σ(A↾χ)(t(A↾χ)

1 , . . . , t
(A↾χ)
n ) =

σ(t1, . . . , tn)(A↾χ).

For the second statement, it suffices to prove that d1
a=⇒ d2 in A↾χ iff d1

χ(a)=⇒ d2 in A.
We proceed by induction on the structure of actions:

[ λ ∈ L ] Straightforward, by the definition of λA↾χ .
[ a1 ; a2 ] d1

a1;a2=⇒ d2 in A↾χ iff d1
a1=⇒ d and d

a2=⇒ d2 for some element d in A↾χ iff (by IH)

d1
χ(a1)=⇒ d and d

χ(a2)=⇒ d2 for some element d in A iff d1
χ(a1;a2)=⇒ d2 in A.

[ a1 ∪ a2 ] This case is similar to the one above.
[ a∗ ] d1

a∗

=⇒ d2 in A↾χ iff d1
an

=⇒ d2 in A↾χ for some natural number n ∈ ω iff (by IH)

d1
χ(a)n

=⇒ d2 in A for some natural number n ∈ ω iff d1
χ(a)∗

=⇒ d2 in A.

◀

The proof of the satisfaction condition is given below.

Proof of Proposition 5. We show this by structural induction on ϕ.

[ t1 = t2 ] A |= χ(t1 = t2) iff A |= χ(t1) = χ(t2) iff χ(t1)A = χ(t2)A iff (by Lemma 31 (1))
t
A↾χ

1 = t
A↾χ

2 iff A ↾χ|= t1 = t2.

https://doi.org/10.1007/978-3-540-73859-6_28
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[ t1
a⇒ t2 ] A |= χ(t1

a⇒ t2) iff A |= χ(t1) χ(a)=⇒ χ(t2) iff χ(t1)A χ(a)=⇒ χ(t2)A iff (by Lemma 31
(2)) tA↾χ

1
a=⇒ t

A↾χ

2 iff A ↾χ|= t1
a⇒ t2.

[ ¬ϕ ] A |= χ(¬ϕ) iff A |= ¬χ(ϕ) iff A ̸|= χ(ϕ) iff (by IH) A ↾χ ̸|= ϕ iff A ↾χ|= ¬ϕ.

[ ∨Φ ] A |= χ(∨Φ) iff A |= ∨χ(Φ) iff A |= χ(ϕ) for some ϕ ∈ Φ iff (by IH) A ↾χ|= ϕ for some
ϕ ∈ Φ iff A ↾χ|= ∨Φ.

[ ∃X · ϕ ] The following are equivalent:
A |= χ(∃X ·ϕ) iff A |= ∃X ′ ·χ′(ϕ) iff
D |= χ′(ϕ) for some Σ′[X ′]-expansion D of A iff (by IH)

Σ[X] Σ′[X ′]

Σ Σ′

χ′

χ

D ↾χ′ |= ϕ for some Σ′[X ′]-expansion D of A iff
B |= ϕ for some Σ[X]-expansion B of A↾χ iff
A ↾χ|= ∃X ·ϕ.

◀

B Proofs for the results presented in Section 3

Proof of Lemma 11 (Basic compactness). Let ⊢ω be the compact entailment relation de-
termined by ⊢b: Γ ⊢ω Φ iff for each Φ′ ⊆ Φ finite there exists Γ′ ⊆ Γ finite such that Γ′ ⊢b Φ′.
One can easily show that ⊢ω is an entailment relation and it is closed under the basic proof
rules enumerated in Definition 10. Since ⊢b is the least entailment relation closed under the
basic proof rules, we get ⊢b=⊢ω. ◀

Proof of Lemma 12. Let Γ be a set of atomic sentences and create a basic model of Γ. First,
define ≡Γ by

≡Γ,s:= { ⟨t, u⟩ | t, u ∈ TΣ,s and Γ |= t = u} for all sorts s ∈ S.

One can easily show that ≡Γ= {≡Γ,s}s∈S is a congruence on TΣ. Let AΓ be the model
obtained from the algebra TΣ/≡Γ by interpreting each symbol λ ∈ L by λ(AΓ) = {⟨[t], [u]⟩ |
Γ |= t

λ⇒ u}, where [t] = t/≡Γ is the equivalence class of t under ≡Γ. We show that for all
f : s1 . . . sn → s ∈ M , the function f (AΓ) is monotone.

Assume that [tj ] λ=⇒ [uj ]. By the definition of λ(AΓ), Γ |= tj
λ⇒ uj . It follows that

Γ |= f(t1, . . . , tj , . . . , tn) λ⇒ f(t1, . . . , uj , . . . , tn). By the definition of λ(AΓ), we have that
f (AΓ)([t1], . . . , [tj ], . . . , [tn]) λ=⇒ f (AΓ)([t1], . . . , [uj ], . . . , [tn]).

Hence, AΓ is well-defined. By the definition of AΓ, for all φ ∈ Senb(Σ) we have that:
AΓ |= φ iff Γ |= φ.

Next we show that AΓ is a basic model, i.e. for all models A, we have that A |=
Γ iff there is a unique homomorphism h : AΓ → A.

[ ⇐ ] For the backwards implication, assume a homomorphism h : AΓ → A; since ho-
momorphisms preserves the satisfaction of atomic sentences and AΓ |= Γ, we obtain
A |= Γ.
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[ ⇒ ] We define a homomorphism h : AΓ → A by h([t]) = tA for all terms t ∈ TΣ.
We show that h is a function, that is, [t1] = [t2] implies h([t1]) = h([t2]) for all terms
t1, t2 ∈ TΣ. Indeed, if [t1] = [t2] then t1 ≡Γ t2, which means Γ |= t1 = t2. Since A |= Γ,
we have A |= t1 = t2, which means tA1 = tA2 . Hence, h([t1]) = h([t2]).
We show that h is homomorphic, that is, h(σ(AΓ)([t1], . . . , [tn])) = σA(h([t1]), . . . , h(tn))
for any function symbol σ : s1 . . . sn → s ∈ F and any term ti ∈ TΣ,si

, where
i ∈ {1, . . . , n}. Indeed,

h(σ(AΓ)([t1], . . . [tn])) =
h([σ(t1, . . . , t2)]) =
σ(t1, . . . , tn)A =
σA(tA1 , . . . , tAn ) =

σA(h([t1]), . . . , h([tn])).

We show that h preserves the validity of relations, that is, if [t1] λ=⇒ [t2] then tA1
λ=⇒ tA2

for all λ ∈ L and all terms t1, t2 ∈ TΣ,s. Indeed, if [t1] λ=⇒ [t2] then Γ |= t1
λ⇒ t2. Since

A |= Γ, we have A |= t1
λ⇒ t2, which means that tA1

λ=⇒ tA2 .
Since the elements of AΓ are interpretations of terms, h : AΓ → A is unique.

◀

Proof of Proposition 13 (Basic completeness). First, we define the following congruence
≡Γ on TΣ:

≡Γ,s:= { ⟨t, u⟩ | t, u ∈ TΣ,s and Γ ⊢b t = u} for all sorts s ∈ S.

By the basic proof rules, ≡Γ= {≡Γ,s}s∈S is well-defined. Let DΓ be the model obtained from
the algebra TΣ/≡Γ by interpreting each symbol λ ∈ L by λ(DΓ) = {⟨[t], [u]⟩ | Γ ⊢b t

λ⇒ u},
where [t] = t/≡Γ is the equivalence class of t under ≡Γ. By (P ) from Definition 10, λ(DΓ) is
well-defined. We show that for all f : s1 . . . sn → s ∈ M , the function f (DΓ) is monotone:

Assume that [tj ] λ=⇒ [uj ]. By the definition of λ(DΓ), we have Γ ⊢b tj
λ⇒ uj .

By (M), Γ ⊢b f(t1, . . . , tj , . . . , tn) λ⇒ f(t1, . . . , uj , . . . , tn).
By the definition of λ(DΓ), f (DΓ)([t1], . . . , [tj ], . . . , [tn]) λ=⇒ f (DΓ)([t1], . . . , [uj ], . . . , [tn]).

Hence, DΓ is well-defined.

1. By the definition of DΓ, DΓ |= φ iff Γ ⊢b φ. By (Monotonicity), we get DΓ |= Γ.
2. By soundness, Γ ⊢b φ implies Γ |=b φ.
3. Since DΓ |= Γ, Γ |=b φ implies DΓ |= φ.

Hence, Γ |=b φ iff Γ ⊢b φ iff DΓ |= φ. ◀

Proof of Proposition 15 (ω1-compactness). For the first statement, we define ⊢ω1 , the ω1-
compact entailment relation determined by ⊢: Γ ⊢ω1 Φ iff for each at most countable subset
Φ′ ⊆ Φ there exists Γ′ ⊆ Γ at most countable such that Γ′ ⊢ Φ′. One can easily show that
⊢ω1 is an entailment relation and it is closed under the dynamic proof rules enumerated in
Definition 14. Since ⊢ is the least entailment relation closed under the dynamic proof rules,
we get ⊢=⊢ω1 .

For the second statement, let Σ = (S, F ⊇ M,L) be an uncountable signature with at
least one transition label λ. It is sufficient to define a set of sentences Γ ⊆ Sen(Σ) without a
model such that any countable subset of Γ has a model. We consider three cases.
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[ S is uncountable ] Let {sα | α < card(S)} be an enumeration of S.
In first-order logic, for any natural number n and sort sα, we can construct a sentence
expressing that there are at least n elements of sort sα using n variables X = {x1, . . . , xn}
of sort sα:

φn
α := ∃X ·

∧
i ̸=j

¬(xi = xj)

In transition algebra, one can express that the number of elements of sort sα is finite:

ϕ ω
α := (∀z · ∃!x · x λ=⇒ z ∧ ∃!y · z λ=⇒ y) ∧ (∀x, y ·x λ∗

=⇒ y)

where, ∃!z ·φ(z) := ∃x ·φ(x) ∧ ∀y ·φ(y) ⇒ x = y, and the sorts of the variables are all sα.
The first term of the above conjunction means that every element has a unique successor
and predecessor. The second term of the above conjunction means that all elements are
connected by the relation λ.
Let A be a model that satisfies ϕω

α. Suppose Asα
≠ ∅. Take one element a from Asα

.
Since a λ∗

=⇒ a holds in A, a λn

=⇒ a holds in A for some natural number n. Therefore, there
exists a sequence of elements a1, ..., an from Asα

such that

a = a0
λ=⇒ a1

λ=⇒ · · · λ=⇒ an−1
λ=⇒ an = a

Due to the uniqueness of successors and predecessors, all elements of Asα appear in this
sequence. Therefore, Asα

is finite.

Using these sentences we define Γ as:

Γ := {ϕ ω
α | α < card(S)} ∪ {φn

α ⇒ φn+1
β | n ∈ ω, α < β < card(S)}.

What A |= Γ means is that all domains {As}s∈S are finite and the order of their sizes is
exactly the same as the order of the corresponding ordinals. This contradicts the fact
that S is uncountable. On the other hand, it is clear that any countable subset of Γ has
a model.

[ F is uncountable ] Assume S is at most countable. If not, this case is the same as the first
one. For simplicity, we assume that F has only constant symbols. Since F is uncountable
and S is at most countable, for at least one sort s ∈ S, there are uncountably many
constant symbols of sort s. We define Γs as follows:

Γs := {¬(c = c′) | (c :→ s), (c′ :→ s) ∈ F and c ̸= c′}

One can express an at most countable number of elements for the sort s as follows:

ϕ ω1
s := (∀z · ∃!x · x λ=⇒ z ∧ ∃!y · z λ=⇒ y) ∧ ∀x, y (x λ∗

=⇒ y ∨ y
λ∗

=⇒ x)

where the sort of each variable is s. 4

Let A be a model such that A |= ϕω1
s . For all elements a, b ∈ As, we have a λ∗

=⇒ b or
b

λ∗

=⇒ a, which means a λn

=⇒ b or b λn

=⇒ a for some natural number n. By the uniqueness of
successors and predecessors, all elements of As can be lined up in a sequence. Therefore,
As is at most countable.

4 This means that the upward Löwenheim–Skolem Theorem also does not hold in this logic.
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Let Γ := Γs ∪ {ϕ ω1
s } and assume A |= Γ. Since there are uncountably many con-

stant symbols whose sort is s, by Γs the size of the domain As is also uncountable,
which contradicts A |= ϕ ω1

s . Therefore, there is no model that satisfies Γ. However any
countable subset of Γ has a model.

[ L is uncountable ] Let s ∈ S be a sort and λ ∈ L a transition label. We define

Γ1 := {∀x, y, z · (x λ1=⇒ z ∧ x
λ2=⇒ y) ⇒ ¬(y = z) | λ1, λ2 ∈ P \ {λ} and λ1 ̸= λ2}

which says that different relations with the same source have different targets, and
Γ2 := {∀x · ∃!y · x λ′

=⇒ y | λ′ ∈ L \ {λ}}
which says that any relation is in fact a function.

Define Γ := Γ1 ∪ Γ2 ∪ {∃x · ⊤} ∪ {ϕ ω1
s }, where the sort of x is s, and ϕ ω1

s says that the
domain of s is at most countable. Since there is an uncountable number of transition
labels, by Γ1, Γ2 and ∃x · ⊤, any model of Γ should have uncountable elements of sort
s, which contradicts ϕ ω1

s . Therefore, there is no model that satisfies Γ. However any
countable subset of Γ has a model.

◀

C Proofs for the results presented in Section 4

Proof of Lemma 20 (Forcing properties).

1. p ⊩w φ iff p ⊩ ¬¬φ iff for each q ≥ p, q ̸⊩ ¬φ iff for each q ≥ p, there exists r ≥ q such
that r ⊩ φ.

2. Suppose p ≤ q and p ⊩ φ. We show q ⊩ φ by induction on sentence structure.

[ φ is atomic ] The conclusion follows from f(p) ⊆ f(q).
[ t1

a1;a2=⇒ t2 ] Since p ⊩ t1
a1;a2=⇒ t2, p ⊩ t1

a1=⇒ t and p ⊩ t
a2=⇒ t2 for some t ∈ T∆p

⊆ T∆q
.

By induction hypothesis, q ⊩ t1
a1=⇒ t and q ⊩ t

a2=⇒ t2, which means q ⊩ t1
a1;a2=⇒ t2.

[ t1
a1∪a2=⇒ t2 ] Since p ⊩ t1

a1∪a2=⇒ t2, p ⊩ t1
a1=⇒ t2 or p ⊩ t1

a2=⇒ t2. By induction
hypothesis q ⊩ t1

a1=⇒ t2 or q ⊩ t1
a2=⇒ t2, which means q ⊩ t1

a1∪a2=⇒ t2.
[ t1

a∗

=⇒ t2 ] By induction hypothesis and the case corresponding to the composition of
actions, the equivalence holds for an, where n ∈ ω, not only for a. Since p ⊩ t1

a∗

=⇒ t2

then, by definition, p ⊩ t1
an

=⇒ t2 for some natural number n ∈ ω. By induction
hypothesis, q ⊩ t1

an

=⇒ t2. Hence, q ⊩ t1
a∗

=⇒ t2.
[ ¬φ ] It is clear from the definition of negation of forcing relation.
[ ∨Φ ] p ⊩ φ for some φ ∈ Φ. By induction hypothesis q ⊩ φ which implies q ⊩ ∨Φ.
[ ∃X · φ ] Since p ⊩ ∃X ·φ then p ⊩ θ(φ) for some substitution θ : X → T∆p

. By
induction hypothesis, q ⊩ θ(φ). By the definition of forcing relation, q ⊩ ∃X ·φ.

3. Suppose p ⊩ φ. From 1, it is sufficient to show that for each q ≥ p, there exists r ≥ q

such that r ⊩ φ. this is clear from 2.
4. It is clear from the definition of negation.

◀

Proof of Lemma 22 (Existence). Let pair : ω × ω → ω be a bijective function defined
by pair(i, j) :=

(
(i + j)(i + j + 1) + 2j

)
/2 for all i, j ∈ ω. For all conditions p ∈ P , let

ψp : ω → Sen(∆p) be a bijective mapping, which gives an enumeration of Sen(∆p). We
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define an increasing chain of conditions p0 ≤ p1 ≤ . . . in P recursively. Let p = p0. For the
induction step, we assume that we have defined pn and we define pn+1. Notice that there
are unique natural numbers i, j ∈ ω such that n = pair(i, j) and i, j ≤ n.

If there is q ≥ pn such that q ⊩ ψpi(j), then let pn+1 := q.
Otherwise, pn+1 := pn, which means that pn+1 ⊩ ¬ψpi

(j).
Then we show that G := {q ∈ P | q ≤ pn for some n ∈ ω} is generic and contains p.

Suppose q ∈ G, r ∈ P , and r ≤ q. Since q ∈ G there is some n ∈ ω such that q ≤ pn.
Since r ≤ q ≤ pn, r is also in G.
Suppose q, q′ ∈ G. Since q, q′ ∈ G there is some m,n ∈ ω such that q ≤ pm and q′ ≤ pn

hold. By the definition of {pn}n∈ω, pm ≤ pn or pn ≤ pm is true. Let r be the larger one.
Then r ∈ G and q, q′ ≤ r.
Suppose q ∈ G and ϕ ∈ Sen(∆q). Since q ∈ G there is some i ∈ ω such that q ≤ pi,
and ϕ ∈ Sen(∆pi). Since ψpi : ω → Sen(∆pi) is bijection, ϕ = ψpi(j) for some j ∈ ω.
Let n = pair(i, j). Then, by the definition of {pk}k∈ω, we have pn+1 ≥ pi, and either
pn+1 ⊩ ψpi

(j) or pn+1 ⊩ ¬ψpi
(j) holds. Let r := pn+1, then r ∈ G, r ≥ q, and either

r ⊩ ϕ or r ⊩ ¬ϕ.

By definition of G, p belongs to G. Therefore, every p ∈ P belongs to a generic set. ◀

Proof of Theorem 25 (Generic Model Theorem). Let B = {φ ∈ Senb(∆G) | G ⊩ φ}. We
prove that for each ϕ ∈

⋃
p∈G Sen(∆p), AB |= ϕ iff G ⊩ ϕ, where AB is the basic model of B.

We proceed by induction on the structure of sentences.

[ φ ∈ Senb(∆G) ]
[ ⇐ ] Suppose G ⊩ φ then φ ∈ B, which means B |= φ. Since AB |= φ′ iff B |= φ′ for

all φ′ ∈ Senb(∆G), we have AB |= φ.
[ ⇒ ] Suppose AB |= φ then we have B |= φ. By Lemma 11, B′ |= φ for some finite

subset B′ ⊆ B. Since (G,≤) is directed and B′ is finite, there exists p ∈ G such that
B′ ⊆ f(p). Since B′ |= φ, we obtain f(p) |= φ. Since G is generic, we have G ⊩ φ or
G ⊩ ¬φ.

Suppose towards a contradiction that G ⊩ ¬φ. Then there is q ∈ G such that
q ⊩ ¬φ. Since G is generic, there is r ∈ G such that r ≥ p and r ≥ q. Since
r ≥ q and q ⊩ ¬φ, by Lemma 20(2), we have r ⊩ ¬φ. Also, since r ≥ p, we have
f(p) ⊆ f(r); since f(p) |= φ, we obtain f(r) |= φ; by the definition of forcing
property, r′ ⊩ φ for some r′ ≥ r. Since r′ ≥ r and r ⊩ ¬φ, by Lemma 20(2),
r′ ⊩ ¬φ. It follows that r′ ⊩ φ and r′ ⊩ ¬φ, which is a contradiction with
Lemma 20(4).

Hence, G ⊩ φ.
[ t1

a1;a2=⇒ t2 ]

[ ⇐ ] Suppose G ⊩ t1
a1;a2=⇒ t2. This means p ⊩ t1

a1=⇒ t and p ⊩ t
a2=⇒ t2 for some p ∈ G

and t ∈ T∆p
. By induction hypothesis, AB |= t1

a1=⇒ t and AB |= t
a2=⇒ t2. Therefore,

AB |= t1
a1;a2=⇒ t2.

[ ⇒ ] Suppose AB |= t1
a1;a2=⇒ t2. Since AB is reachable, AB |= t1

a1=⇒ t and AB |= t
a2=⇒ t2

for some t ∈ T∆G
. By induction hypothesis, G ⊩ t1

a1=⇒ t and G ⊩ t
a2=⇒ t2. In other

words p ⊩ t1
a1=⇒ t and q ⊩ t

a2=⇒ t2 for some p, q ∈ G. Since G is generic there is
r ∈ G such that r ≥ p and r ≥ q. By Lemma 20(2), r ⊩ t1

a1=⇒ t and r ⊩ t
a2=⇒ t2. By

the definition of forcing relation, r ⊩ t1
a1;a2=⇒ t2. Therefore, G ⊩ t1

a1;a2=⇒ t2.



24 Forcing, Transition Algebras, and Calculi

[ t1
a1∪a2=⇒ t2 ]

[ ⇐ ] Suppose G ⊩ t1
a1∪a2=⇒ t2. This means p ⊩ t1

a1=⇒ t2 or p ⊩ t1
a2=⇒ t2 for some

p ∈ G. By induction hypothesis, AB |= t1
a1=⇒ t2 or AB |= t1

a2=⇒ t2. Therefore
AB |= t1

a1∪a2=⇒ t2.
[ ⇒ ] Suppose AB |= t1

a1∪a2=⇒ t2. This is equivalent to AB |= t1
a1=⇒ t2 or AB |= t1

a2=⇒ t2.
By induction hypothesis, G ⊩ t1

a1=⇒ t2 or G ⊩ t1
a2=⇒ t2. So, p ⊩ t1

a1=⇒ t2 or
q ⊩ t1

a2=⇒ t2 for some p, q ∈ G. Since G is generic there is r ∈ G such that r ≥ p and
r ≥ q. By Lemma 20(2), r ⊩ t1

a1=⇒ t2 or r ⊩ t1
a2=⇒ t2. By the definition of forcing

relation, r ⊩ t1
a1∪a2=⇒ t2. Therefore, G ⊩ t1

a1∪a2=⇒ t2.

[ t1
a∗

=⇒ t2 ]
[ ⇐ ] By induction hypothesis and the case corresponding to the composition of actions,

the equivalence holds for an, where n ∈ ω, not only for a.
Suppose G ⊩ t1

a∗

=⇒ t2, then p ⊩ t1
a∗

=⇒ t2 for some p ∈ G. By definition, p ⊩ t1
an

=⇒ t2

for some n ∈ ω. By induction hypothesis, AB |= t1
an

=⇒ t2. Therefore, AB |= t1
a∗

=⇒ t2.
[ ⇒ ] Suppose AB |= t1

a∗

=⇒ t2. This is equivalent to AB |= t1
an

=⇒ t2 for some n ∈ ω.
By induction hypothesis, G ⊩ t1

an

=⇒ t2 in the same way as above. Therefore,
G ⊩ t1

a∗

=⇒ t2.
[ ¬ϕ ]

[ ⇐ ] Suppose towards a contradiction that p ⊩ ϕ and q ⊩ ¬ϕ for some p, q ∈ G. Since
G is generic there is r ∈ G such that r ≥ p and r ≥ q. By Lemma 20(2), we have
r ⊩ ϕ and r ⊩ ¬ϕ. By Lemma 20(4), this is a contradiction.
Suppose G ⊩ ¬ϕ. By the proof above, G ̸⊩ ϕ. By induction hypothesis, AB ̸|= ϕ.
Therefore AB |= ¬ϕ.

[ ⇒ ] Suppose AB |= ¬ϕ. This is equivalent to AB ̸|= ϕ. By induction hypothesis, G ̸⊩ ϕ.
Since G is generic, G ⊩ ϕ or G ⊩ ¬ϕ. Therefore G ⊩ ¬ϕ.

[ ∨Φ ]

[ ⇐ ] Suppose G ⊩ ∨Φ. By the definitions, p ⊩ ϕ for some p ∈ G and some ϕ ∈ Φ. By
induction hypothesis, AB |= ϕ. Therefore, AB |= ∨Φ.

[ ⇒ ] Suppose AB |= ∨Φ. There is some ϕ ∈ Φ such that AB |= ϕ. By induction
hypothesis, G ⊩ ϕ. So, p ⊩ ϕ for some p ∈ G. Therefore, p ⊩ ∨Φ.

[ ∃X · ϕ ]
[ ⇐ ] Suppose G ⊩ ∃X ·ϕ. We have p ⊩ ∃X ·ϕ for some p ∈ G. By the definition of

forcing relation, we have p ⊩ θ(ϕ) for some substitution θ : X → T∆p
. By induction

hypothesis, AB |= θ(ϕ). By semantics, AB |= ∃X ·ϕ.
[ ⇒ ] Suppose AB |= ∃X ·ϕ. Since AB is reachable, there is θ : X → T∆G

such that
AB |= θ(ϕ). By induction hypothesis, G ⊩ θ(ϕ). Therefore, p ⊩ θ(ϕ) for some p ∈ G.
And we have p ⊩ ∃X ·ϕ and G ⊩ ∃X ·ϕ.

◀

D Proof for the results presented in Section 5

In order to prove Theorem 26, we need two additional lemmas.

▶ Lemma 32. For all p ∈ P and all ϕ ∈ Sen(∆p), the following are equivalent:
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1. p ⊢ ϕ.
2. For all q ≥ p there exists r ≥ q such that r ⊢ ϕ.

Proof.

[ ⇒ ] Suppose p ⊢ ϕ and q ≥ p. We show that there is r ≥ q such that r ⊢ ϕ. Since ∆q ⊇ ∆p

and Γq ⊇ Γp, we have q ⊢ ϕ. So, let r := q.
[ ⇐ ] Suppose towards a contradiction that p ̸⊢ ϕ. By (NegD), p ̸⊢ ¬¬ϕ. By (NegI),

Γp ∪ {¬ϕ} ̸⊢∆p
⊥, which means that q := (∆p,Γp ∪ {¬ϕ}) belongs to P . Since q ≥ p,

there is r ≥ q such that r ⊢ ϕ. On the other hand, since r ≥ q and q ⊢ ¬ϕ, we get r ⊢ ¬ϕ,
which is a contradiction with the consistency of r. Hence, p ⊢ ϕ.

◀

▶ Lemma 33. For any condition p ∈ P , the following hold:

1. If p ⊢ φ and φ is atomic, there is q ≥ p such that φ ∈ f(q).
2. If p ⊢ t1

a1;a2=⇒ t2, there are q ≥ p and t ∈ T∆q
such that q ⊢ t1

a1=⇒ t and q ⊢ t
a2=⇒ t2.

3. If p ⊢ t1
a1∪a2=⇒ t2, there is q ≥ p such that q ⊢ t1

a1=⇒ t2 or q ⊢ t1
a2=⇒ t2.

4. If p ⊢ t1
a∗

=⇒ t2, there are q ≥ p and n ∈ ω such that q ⊢ t1
an

=⇒ t2.
5. If p ⊢ ∨Φ, there are q ≥ p and ϕ ∈ Φ such that q ⊢ ϕ.
6. If p ⊢ ∃X ·ϕ, there are q ≥ p and θ : X → T∆q

such that q ⊢ θ(ϕ).

Proof.

1. Suppose p ⊢ φ and φ is atomic. Since p ̸⊢ ⊥, we have Γp ∪ {φ} ̸⊢∆p
⊥. Let q :=

(∆p,Γp ∪{φ}) and we have q ∈ P and q ≥ p. Since φ is atomic, φ ∈ Γq ∩Senb(∆q) = f(q).
2. Suppose p ⊢ t1

a1;a2=⇒ t2. Let s be the sort of t1 and t2. Recall that Cp is the finite set of
all Henkin constants from ∆p. Let c be a constant of sort s from C \ Cp which does not
occur in t1 or t2. Let q := (∆p[c],Γp ∪ {t1

a1=⇒ c, c
a2=⇒ t2}). Notice that Cq is finite. We

show that q ̸⊢ ⊥:

Suppose towards a contradiction that Γp ∪ {t1
a1=⇒ c, c

a2=⇒ t2} ⊢∆p[c] ⊥. Since
Γp ⊢∆p

t1
a1;a2=⇒ t2, by (CompE), Γp ⊢∆p

⊥, which is a contradiction.

Therefore, q ∈ P , q ≥ p, q ⊢ t1
a1=⇒ c and q ⊢ c

a2=⇒ t2.
3. Suppose p ⊢ t1

a1∪a2=⇒ t2. Let qi := (∆p,Γp ∪ {t1
ai=⇒ t2}) for all i ∈ {1, 2}. We show that

either q1 or q2 belongs to P .

Suppose towards a contradiction that Γp ∪ {t1
ai=⇒ t2} ⊢∆p

⊥, for all i ∈ {1, 2}. Since
Γp ⊢∆p

t1
a1∪a2=⇒ t2, by (UnionE), we have Γp ⊢∆p

⊥, which is a contradiction.

Therefore, there exists i ∈ {1, 2} such that qi ∈ P , qi ≥ p, and qi ⊢ t1
ai=⇒ t2.

4. Suppose p ⊢ t1
a∗

=⇒ t2. Let qn := (∆p,Γp ∪ {t1
an

=⇒ t2}) for all n ∈ ω. We show that
qn ∈ P for some natural number n ∈ ω.

Suppose towards a contradiction that Γp ∪ {t1
an

=⇒ t2} ⊢∆p
⊥ for all natural numbers

n ∈ ω. Since Γp ⊢∆p
t1

a∗

=⇒ t2, by (StarE), we have Γp ⊢∆p
⊥, which is a contradiction.

Therefore, there exists n ∈ ω such that qn ∈ P , qn ≥ p and qn ⊢ t1
an

=⇒ t2.
5. Suppose p ⊢ ∨Φ. Let qϕ := (∆p,Γp ∪ {ϕ}) for all ϕ ∈ Φ. We show that qϕ ∈ P for some
ϕ ∈ Φ.
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Suppose towards a contradiction that Γp ∪ {ϕ} ⊢∆p
⊥ for all ϕ ∈ Φ. Since Γp ⊢∆p

∨Φ,
by (DisjE), we have Γp ⊢∆p

⊥, which is a contradiction.
Therefore, there exists ϕ ∈ Φ such that qϕ ∈ P , qϕ ≥ p, and qϕ ⊢ ϕ.

6. Suppose p ⊢ ∃X ·ϕ. Notice that p′ := (∆p,Γp ∪ {∃X ·ϕ}) ∈ P . Let θ : X → C \ Cp′ be
an injective mapping. We show that q := (∆p[θ(X)],Γp ∪ {θ(ϕ)}) belongs to P .

Suppose towards a contradiction that Γp ∪ {θ(ϕ)} ⊢∆q
⊥. Let χ : ∆q → ∆p[X]

be the signature morphism which is the identity on ∆p and maps each θ(x) to x.
Translate Γp ∪ {θ(ϕ)} ⊢∆q

⊥ along χ to obtain Γp ∪ {ϕ} ⊢∆p[X] ⊥. By (QuantI), we
get Γp ∪ {∃X ·ϕ} ⊢∆p

⊥, which is a contradiction with Γp ⊢∆p
∃X ·ϕ.

Therefore, q ∈ P , q ≥ p and q ⊢ θ(ϕ).

◀

Proof of Theorem 26. We proceed by induction on the structure of the sentence ϕ.

[ φ is atomic ]
[ ⇒ ] Assume p ⊩w φ.
1 let q ≥ p be a condition
2 r ⊩ φ for some r ≥ q by Lemma 20 (1), since p ⊩w φ

3 r ⊢ φ since φ ∈ f(r) ⊆ Γr

Since for all q ≥ p there is r ≥ q such that r ⊢ φ, by Lemma 32, p ⊢ φ.
[ ⇐ ] Assume p ⊢ φ.
1 let q ≥ p be a condition
2 q ⊢ φ by assumption
3 φ ∈ f(r) for some r ≥ q by Lemma 33
4 r ⊩ φ by the definition of forcing relation
5 p ⊩w φ since q ≥ p was arbitrarily chosen and r ≥ q

[ t1
a1;a2=⇒ t2 ]

[ ⇒ ] Assume p ⊩w t1
a1;a2=⇒ t2.

1 let q ≥ p be a condition
2 r ⊩ t1

a1;a2=⇒ t2 for some r ≥ q by Lemma 20 (1), since p ⊩w t1
a1;a2=⇒ t2

3 r ⊩ t1
a1=⇒ t and r ⊩ t

a2=⇒ t2

for some t ∈ T∆r

by the definition of forcing relation

4 r ⊩w t1
a1=⇒ t and r ⊩w t

a2=⇒ t2 by Lemma 20 (3)
5 r ⊢ t1

a1=⇒ t and r ⊢ t
a2=⇒ t2 by induction hypothesis

6 r ⊢ t1
a1;a2=⇒ t2 by (CompI)

Since for all q ≥ p there is r ≥ q such that r ⊢ t1
a1;a2=⇒ t2, by Lemma 32, p ⊢ t1

a1;a2=⇒ t2.
[ ⇐ ] Assume p ⊢ t1

a1;a2=⇒ t2.
1 let q ≥ p be a condition
2 q ⊢ t1

a1;a2=⇒ t2 since p ⊢ t1
a1;a2=⇒ t2

3 r′ ⊢ t1
a1=⇒ t and r′ ⊢ t

a2=⇒ t2

for some r′ ≥ q and some t ∈ T∆r′

by Lemma 33 (2)

4 r′ ⊩w t1
a1=⇒ t and r′ ⊩w t

a2=⇒ t2 by induction hypothesis
5 r′′ ⊩ t1

a1=⇒ t for some r′′ ≥ r′ by Lemma 20 (1), since r′ ≥ r′ and r′ ⊩w t1
a1=⇒ t

6 r ⊩ t
a2=⇒ t2 for some r ≥ r′′ by Lemma 20 (1), since r′′ ≥ r′ and r′ ⊩w t

a2=⇒ t2
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7 r ⊩ t1
a1=⇒ t by Lemma 20 (2) since r ≥ r′′ and r′′ ⊩ t1

a1=⇒ t

8 r ⊩ t1
a1;a2=⇒ t2 from 6 and 7

[ t1
a1∪a2=⇒ t2 ]

[ ⇒ ] Assume p ⊩w t1
a1∪a2=⇒ t2.

1 let q ≥ p be a condition
2 r ⊩ t1

a1∪a2=⇒ t2 for some r ≥ q by Lemma 20 (1), since p ⊩w t1
a1∪a2=⇒ t2

3 r ⊩ t1
a1=⇒ t2 or r ⊩ t1

a2=⇒ t2 by the definition of forcing relation
4 r ⊩w t1

a1=⇒ t2 or r ⊩w t1
a2=⇒ t2 by Lemma 20 (3)

5 r ⊢ t1
a1=⇒ t2 or r ⊢ t1

a2=⇒ t2 by induction hypothesis
6 r ⊢ t1

a1∪a2=⇒ t2 by (UnionI)

Since for all q ≥ p there is r ≥ q such that r ⊢ t1
a1∪a2=⇒ t2, by Lemma 32, p ⊢ t1

a1∪a2=⇒ t2.
[ ⇐ ] Assume p ⊢ t1

a1∪a2=⇒ t2.
1 let q ≥ p be a condition
2 q ⊢ t1

a1∪a2=⇒ t2 since p ⊢ t1
a1∪a2=⇒ t2

3 r′ ⊢ t1
a1=⇒ t2 or r′ ⊢ t1

a2=⇒ t2 for some r′ ≥ q by Lemma 33 (3)
4 r′ ⊩w t1

a1=⇒ t2 or r′ ⊩w t1
a2=⇒ t2 by induction hypothesis

5 r ⊩ t1
a1=⇒ t2 or r ⊩ t1

a2=⇒ t2 for some r ≥ r′ by Lemma 20 (1)
6 r ⊩ t1

a1∪a2=⇒ t2 by the definition of forcing relation
7 p ⊩w t1

a1∪a2=⇒ t2 since q ≥ p was arbitrarily chosen and
r ≥ q

[ t1
a∗

=⇒ t2 ]

[ ⇒ ] Assume p ⊩w t1
a∗

=⇒ t2.
1 let q ≥ p be a condition
2 r ⊩ t1

a∗
=⇒ t2 for some r ≥ q by Lemma 20 (1), since p ⊩w t1

a∗

=⇒ t2

3 r ⊩ t1
an

=⇒ t2 for some n ∈ ω by the definition of forcing relation

4 r ⊩w t1
an

=⇒ t2 by Lemma 20 (3)

5 r ⊢ t1
an

=⇒ t2 by induction hypothesis

6 r ⊢ t1
a∗

=⇒ t2 by (StarI)

Since for all q ≥ p there is r ≥ q such that r ⊢ t1
a∗

=⇒ t2, by Lemma 32, p ⊢ t1
a∗

=⇒ t2.
[ ⇐ ] Assume p ⊢ t1

a∗

=⇒ t2.
1 let q ≥ p be a condition
2 q ⊢ t1

a∗
=⇒ t2 since p ⊢ t1

a∗

=⇒ t2

3 r′ ⊢ t1
an

=⇒ t2 for some r′ ≥ q and n ∈ ω by Lemma 33 (4)

4 r′ ⊩w t1
an

=⇒ t2 by induction hypothesis

5 r ⊩ t1
an

=⇒ t2 for some r ≥ r′ by Lemma 20 (1)

6 r ⊩ t1
a∗

=⇒ t2 by the definition of forcing relation

7 p ⊩w t1
a∗

=⇒ t2 since q ≥ p was arbitrarily chosen

[ ¬ϕ ]
[ ⇒ ] Assume p ⊩w ¬ϕ.
1 let q ≥ p be a condition
2 p ⊩ ¬¬¬ϕ since p ⊩w ¬ϕ
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3 q ̸⊩ ¬¬ϕ by the definition of forcing relation
4 q ̸⊩w ϕ by the definition of ⊩w

5 q ̸⊢ ϕ by induction hypothesis
6 (∆q, Γq ∪ {¬ϕ}) ∈ P since Γq ̸⊢∆q

ϕ

7 r ⊢ ¬ϕ, where r := (∆q, Γq ∪ {¬ϕ})

Since for all q ≥ p there is r ≥ q such that r ⊢ ¬ϕ, by Lemma 32, p ⊢ ¬ϕ.
[ ⇐ ] Assume p ⊢ ¬ϕ.
1 q ⊢ ¬ϕ for all q ≥ p since p ⊢ ¬ϕ

2 q ̸⊢ ϕ for all q ≥ p since q is consistent
3 q ̸⊩w ϕ for all q ≥ p by induction hypothesis
4 q ̸⊩ ¬¬ϕ for all q ≥ p by the definition of ⊩w

5 p ⊩ ¬¬¬ϕ by the definition of forcing relation
6 p ⊩w ¬ϕ by the definition of ⊩w

[ ∨Φ ]
[ ⇒ ] Assume p ⊩w ∨Φ.
1 let q ≥ p be a condition
2 r ⊩ ∨Φ for some r ≥ q by Lemma 20 (1), since p ⊩w ∨Φ
3 r ⊩ ϕ for some ϕ ∈ Φ by the definition of forcing relation
4 r ⊩w ϕ by Lemma 20 (3)
5 r ⊢ ϕ by induction hypothesis
6 r ⊢ ∨Φ by (DisjI)

Since for all q ≥ p there is r ≥ q such that r ⊢ ∨Φ, by Lemma 32, p ⊢ ∨Φ.
[ ⇐ ] Assume p ⊢ ∨Φ.
1 let q ≥ p be a condition
2 q ⊢ ∨Φ since p ⊢ ∨Φ
3 r′ ⊢ ϕ for some r′ ≥ q and some ϕ ∈ Φ by Lemma 33 (5)
4 r′ ⊩w ϕ by induction hypothesis
5 r ⊩ ϕ for some r ≥ r′ by Lemma 20 (1)
6 r ⊩ ∨Φ by the definition of forcing relation
7 p ⊩w ∨Φ since q ≥ p was arbitrarily chosen and

r ≥ q

[ ∃X · ϕ ]
[ ⇒ ] Assume p ⊩w ∃X ·ϕ.
1 let q ≥ p be a condition
2 r ⊩ ∃X · ϕ for some r ≥ q by Lemma 20 (1), since p ⊩w ∃X · ϕ

3 r ⊩ θ(ϕ) for some θ : X → T∆r by the definition of forcing relation
4 r ⊩w θ(ϕ) by Lemma 20 (3)
5 r ⊢ θ(ϕ) by induction hypothesis
6 r ⊢ ∃X · ϕ by (Subst)

Since for all q ≥ p there is r ≥ q such that r ⊢ ∃X ·ϕ, by Lemma 32, p ⊢ ∃X ·ϕ.
[ ⇐ ] Assume p ⊢ ∃X ·ϕ.
1 let q ≥ p be a condition
2 q ⊢ ∃X · ϕ since p ⊢ ∃X · ϕ

3 r′ ⊢ θ(ϕ) for some r′ ≥ q and θ : X → T∆r′ by Lemma 33 (6)
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4 r′ ⊩w θ(ϕ) by induction hypothesis
5 r ⊩ θ(ϕ) for some r ≥ r′ by Lemma 20 (1)
6 r ⊩ ∃X · ϕ by the definition of forcing relation
7 p ⊩w ∃X · ϕ since q ≥ p was arbitrarily chosen r ≥ q

◀
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