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Abstract

We explore a simple approach to quantum logic based on hybrid and dynamic modal
logic, where the set of states is given by some Hilbert space. In this setting, a notion
of quantum clause is proposed in a similar way the notion of Horn clause is advanced
in first-order logic, that is, to give logical properties for use in logic programming and
formal specification. We propose proof rules for reasoning about quantum clauses and
we investigate soundness and compactness properties that correspond to this proof
calculus. Then we prove a Birkhoff completeness result for the fragment of hybrid-
dynamic quantum logic determined by quantum clauses.
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1 Introduction

The logical framework for studying quantum theory was originally proposed
by Birkhoff and von Neumann [8]. The truth values of this quantum logic are
given by the elements of a Hilbert lattice, which is the lattice consisting of all
closed subspaces of a Hilbert space. A more modern view on the semantics of
quantum logic is based on Kripke structures and modal logics. One can express
in a modal logic (based on a local Boolean satisfaction) quantum properties
captured traditionally by (non-Boolean) Quantum Logic. For example, the
orthocomplement, also called quantum negation, ∼ φ, is defined as the set of
all vectors orthogonal on the vectors where φ holds, while quantum disjunction
φ1 ⊕ φ2 is defined by ∼ (∼ φ1∧ ∼ φ2). There are many approaches based on
extensions of: (a) dynamic logic such as Dynamic Quantum Logic [10], Logic of
Quantum Actions [3] and Logic of Quantum Programs [4], (b) temporal logic
such as Quantum Linear Temporal Logic [20] and Quantum Computation Tree
Logic [7], and (c) both dynamic and temporal logic such as Linear Temporal
Quantum Logic proposed in [21]. In this paper, we study a variant of quantum
logic with features from both hybrid and dynamic logics which was originally
proposed in [15].

1 This work has been partially supported by Japan Society for the Promotion of Science,
grant number 23K11048.
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Dynamic propositional logic is suitable for reasoning about classical pro-
grams. Naturally, quantum versions of dynamic propositional logic were devel-
oped to reason about quantum programs. On the other hand, hybrid logics are
known for their ability to name individual states of Kripke structures, which
allow a more uniform proof theory [9,17] and model theory [19,16,18] than non-
hybrid modal logics. Hybrid logics are equipped with features to distinguish
states and reason about their properties, which in turn is important to appli-
cations in formal methods. In addition, one can express temporal properties
using sentence operators inherent to hybrid logics such as store and retrieve [2].
Therefore, the variant of hybrid-dynamic quantum logic studied in this paper
allows one to express both temporal and dynamical properties.

The users of a quantum programming language must describe the dynamics
of quantum systems by relying on data types consisting of scalars and vec-
tors of a concrete Hilbert space. Therefore, a necessary feature of a quantum
programming language is the existence of some predefined data types for the
scalars and vectors used in applications. From a model theoretic point of view,
Hilbert spaces are vectorial spaces equipped with an inner product such that
each Cauchy sequence of vectors has a limit. Since this is not a first-order
property, the definition of Kripke structures whose states are given by some
Hilbert space and the development of the logical results for them are signif-
icantly more difficult. Following the ideas advanced in [15], we employ the
method of diagrams proposed by Robinson in model theory to define Hilbert
spaces and Kripke structures over them. We use constant symbols to stand for
the elements of the Hilbert space to be constructed, and we work within the
theory which contains all the equations and relations satisfied by that Hilbert
space. This means that the signature of nominals used to describe frames in
hybrid logics is replaced by positive diagrams of concrete Hilbert spaces. The
diagrams of Hilbert spaces can be regarded as the counterparts of libraries
defining scalars and vectors from quantum programming, since individual el-
ements of Hilbert spaces can be named in the hybrid-dynamic quantum logic
studied in this paper. This is an important feature which brings the present
work closer to applications in formal methods.

In this paper, we provide sound and complete proof calculi for a fragment
of hybrid-dynamic quantum logic of [15]. The sentences are restricted to quan-
tum clauses, which are obtained from propositional symbols by applying the
following sentence operators: both quantum and classical implication, necessity
over structural actions which, in turn, are constructed from projective measure-
ments and unitary transformations, etc. In addition, we provide proof rules
to reason formally about the properties of those Kripke structures that are
specified using quantum clauses. To conclude, the main result of the paper
is a completeness theorem for the fragment of hybrid-dynamic quantum logic
obtained by restricting the sentences to quantum clauses.

A brief comparison with the work recently reported in [15] is also in order:
both papers deal with properties of hybrid-dynamic quantum logic (however,
[15] is the contribution in which we introduced the logic); and in both papers we
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examine quantum clauses; but the results that we develop are complementary:
in [15], we focused on an initiality result and on Herbrand’s theorem, whereas
here we advance proof calculi for the logic. This latter endeavour is much more
complex, because it deals with syntactic entailment instead of semantic entail-
ment. In [13], the author proves a Birkhoff completeness result in the abstract
framework given by notion of stratified institution [1,12], which is a category-
based formalization of the notion of modal logic. Another completeness result
for Horn clauses can be found in [14] for a variant of hybrid-dynamic first-order
logic with user-defined sharing. It is worth noting that unlike [13] and [14], in
this work, cut rule is not used to prove completeness, which means that lemma
discovery is not needed in formal proofs.

According to [6], the correct semantics of quantum-logical connectives is
in terms of dynamic modalities, rather than purely propositional operators.
This philosophical interpretation is supported by some technical developments
reported in [3,4,5]. The present work is based on the same ideas, but it departs
from any of those studies due to the fact that the set of states is not the set
of one-dimensional closed subspaces of some Hilbert space but the entire set
of vectors of a Hilbert space. The present approach narrows the gap between
theory and its applications (e.g., to formal methods), since it allows one to
name concrete vectors and scalars and use them to build sentences.

2 Hybrid-Dynamic Quantum Logic

This section is dedicated to the presentation of Hybrid Dynamic Quantum
Logic (HDQL) proposed in [15]. This logic is an extension of Hybrid-Dynamic
Propositional Logic with some constraints on the possible world semantics.

2.1 Signatures

The signatures of HDQL are of the form ∆ = (Σ, E, Prop), where

i) Σ = (Sh, F h ∪ U ∪Q ∪D ∪ C,P h) is a first-order signature obtained from
a) the signature of Hilbert spaces Σh = (Sh, F h, P h), that is,
• Sh = {c, v} is a set of sorts, where c denotes the sort of complex numbers
and v denotes the sorts of vectors,

• F h is a set of function symbols such that F h = F c ∪ F v, where
1) F c consists of the usual operations on complex numbers such as ad-

dition + : c c→ c and multiplication ∗ : c→ c, and
2) F v consists of vector addition + : v v → v, scalar multiplication

: c v→ v, inner product ⟨ | ⟩ : v v→ c and origin vector 0 :→ v,
• P h is a set of relation symbols consisting of one element < : c c,

b) by adding
• a set U of unitary transformation symbols of the form u : v→ v,
• a set Q of projective measurement symbols of the form q : v→ v,
• a set D of constants of sort v, and
• a set C of constants of sort c;

ii) E is a set of first-order sentences over Σ;
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iii) Prop is a set of propositional symbols which contains a subset Propc of
closed propositional symbols.

An example of (Σ, E) is the positive Robinson diagram of some Hilbert space,
that is, all equations and relations satisfied by some Hilbert space. See
Section 3.1 for more details. We let ∆ range over signatures of the form
(Σ, E, Prop) as described above. Similarly, we let ∆i range over signatures
of the form (Σi, Ei, Propi), where Σi = (Sh, F h ∪ Ui ∪ Qi ∪ Di ∪ Ci) and i is
any index. Signature morphisms χ : ∆1 → ∆2 consists of:

(i) a first-order theory morphism χ : (Σ1, E1)→ (Σ2, E2), which is the iden-
tity on Σh, χ(U1) ⊆ U2 and χ(Q1) ⊆ Q2,

2 and

(ii) a mapping χ : Prop1 → Prop2 on propositional symbols, which preserves
closed propositional symbols, that is, χ(Propc1) ⊆ Propc2.

We overloaded the notation such that χ denotes not only the signature mor-
phism χ : ∆1 → ∆2 but also its restrictions χ : Σ1 → Σ2 and χ : Prop1 →
Prop2. We denote by Sig the category of signatures in HDQL.

2.2 Models

A quantum model over a signature ∆ is a Kripke structure (W,M) such that:

(i) W is a first-order model of the theory (Σ, E) such that
(a) W ↾Σh is a Hilbert space, where W ↾Σh is the reduct of W to the first-

order signature of Hilbert spaces Σh, 3

(b) for all symbols u : v→ v ∈ U , the function uW : Wv →Wv is a unitary
transformation, that is, uW is a bounded linear operation which has
an adjoint (uW )† that is its inverse, uW ; (uW )† = (uW )†; uW = 1W ,

(c) for all symbols q : v → v ∈ Q, the function qW : Wv → Wv is a
projective measurement, that is, there exists a closed subspace X ⊆
Wv such that qW (w) = PX (w)/

√
⟨w | PX (w)⟩ for all vectors w ∈ Wv,

where the function PX : Wv →Wv is the projection on X .
(ii) M : Wv → |ModPL(Prop)| is a mapping from the set of vectors Wv to the

class of propositional models |ModPL(Prop)| s.t. r(W,M) = {w ∈ Wv | r ∈
Mw} is a closed subspace for all closed propositional symbols r ∈ Propc.

4

A homomorphism h : (W,M) → (W ′,M ′) in HDQL is a first-order homomor-
phism h : W → W ′ such that (a) hc : Wc → W ′c is the identity on complex

2 This means that χ : Σ1 → Σ2 is a first-order signature morphism such that E2 satisfies
χ(E1), in symbols, E2 |= χ(E1).
3 A Hilbert space is a first-order model H defined over the signature Σh such that:

• Hc is the set of complex numbers C and the model H interprets all function symbols in F c

as the usual operations on complex numbers,
• Hv is a set of vectors, +H : Hv × Hv → Hv is the vector addition, H : Hc × Hv → Hv

is the scalar multiplication, ⟨ | ⟩H : Hv × Hv → Hc is the inner product in which each
Cauchy sequence of vectors has a limit, and

• <H is the usual strict ordering on real numbers.
4 Notice that the propositional logic modelMw at the state w consists of a set of propositional
symbols from Prop.
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numbers, and (b) Mw ⊆ M ′h(w) for all vectors w ∈ Wv. The proof of the
following lemma is known.

Lemma 2.1 All homomorphisms of Hilbert spaces are injective. In particular,
all homomorphisms of quantum models are injective.

Remark 2.2 The class of quantum models over a signature ∆ together with
their homomorphisms forms a category denoted Mod(∆).

Given a signature morphism χ : ∆ → ∆′, the reduct (W ′,M ′)↾χ of a
∆′-model (W ′,M ′) is a ∆-model defined by (W ′,M ′)↾χ = (W,M), where

(i) W is the reduct of W ′ across χ : Σ → Σ′ in first-order logic, in symbols,
W = W ′ ↾χ, and

(ii) Mw = {p ∈ Prop | χ(p) ∈ M ′w} is the reduct of M ′w across χ : Prop →
Prop′ in propositional logic, in symbols, Mw = M ′w ↾ χ, for all vectors
w ∈W ′v.

The reduct h′ ↾χ of a homomorphism h′ ∈ Mod(∆′) is defined by (h′ ↾χ)v = h′v
and (h′ ↾χ)c = h′c.

Remark 2.3 For each signature morphism χ : ∆ → ∆′ in Sig, the model
reduct ↾χ : Mod(∆′) → Mod(∆) is a functor. Moreover, Mod : Sig → Catop
defined by Mod(χ)(h′) = h′ ↾χ for all signature morphisms χ : ∆ → ∆′ and all
homomorphisms h′ ∈ Mod(∆′), is a functor.

2.3 Sentences

The set of actions over a signature ∆ is defined by the following grammar:

a ::= u | q | a ; a | a ∪ a | a∗,
where u is a unitary transformation symbol and q is a quantum measurement
symbol. The set of sentences, Sen(∆), is defined by the following grammar:

γ ::= p | @k γ | γ ∧ γ | ¬γ |∼ γ | [a]γ | ↓z · γ,
where p is a propositional symbol, k is a term of sort vector, a is an action,
and z is a variable of sort vector. We refer to the sentence operators, in order,
as retrieve, conjunction, negation, quantum negation, necessity, and store, re-
spectively. Other quantum operators can be introduced as abbreviations. For
example, quantum disjunction γ1 ⊕ γ2 is defined by ∼ (∼ γ1∧ ∼ γ2), for all
sentences γ1 and γ2.

Each signature morphism χ : ∆1 → ∆2 induces a sentence translation
χ : Sen(∆1)→ Sen(∆2) that replaces, in an inductive manner, in any sentence
γ ∈ Sen(∆1) the symbols from ∆1 with symbols from ∆2 according to χ :
∆1 → ∆2. As in ordinary hybrid propositional logic, we can define the Until
operator [2]: Until(γ1, γ2) = ↓x · ⟨a⟩↓y · γ1 ∧ @x ([a](⟨a⟩y ⇒ γ2)). The current
state is named x and then ⟨a⟩ is used to move to an accessible state, which
is named y. The first argument of the conjunction says that γ1 holds in the
state y. The second argument of the conjunction sets the current state to x by
applying @x ; then γ2 hold in any state which succeeds x and precedes y.
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Remark 2.4 The mapping Sen : Sig → Set from the category of signatures
Sig to the category of sets Set is a functor.

2.4 Local satisfaction relation

Let (W,M) be a quantum model over a signature ∆. The semantics of actions is
defined in the standard way: (a) (a1 ;a2)W = aW1 ;aW2 ; (b) (a1∪a2)W = aW1 ∪aW2 ;
(c) (a∗)W =

⋃
n∈N(a

n)W , where a0 denotes the identity, and an+1 = a ; an for
all natural numbers n ∈ N. The semantics of sentences is defined as follows:

• p(W,M) = {w ∈Wv | p ∈Mw} for all propositional symbols p in ∆;

• (@k γ)
(W,M) =

{
Wv if kW ∈ γ(W,M),
∅ if kW ̸∈ γ(W,M);

• (γ1 ∧ γ2)
(W,M) = γ

(W,M)
1 ∩ γ

(W,M)
2 ;

• (¬γ)(W,M) = Wv \ γ(W,M);

• (∼ γ)(W,M) = (γ(W,M))⊥; 5

• ([a]γ)(W,M) = {w ∈Wv | aW (w) ⊆ γ(W,M)},
where aW (w) = {v ∈Wv | (w, v) ∈ aW };

• (↓z · γ)(W,M) = {w ∈ Wv | w ∈ γ(W z←w,M)}, where (W z←w,M) is the
unique expansion of (W,M) to ∆[z] which interprets z as w. Notice that
(W z←w,M) interprets all symbols in ∆ as (W,M).

We say that (W,M) satisfies γ in the state w, in symbols, (W,M) |=w γ, if
w ∈ γ(W,M). The following result shows that the truth is invariant w.r.t. the
change of notation, that is, HDQL is a stratified institution.

Theorem 2.5 (Local satisfaction condition) For all signature morphisms
χ : ∆ → ∆′, all quantum models (W ′,M ′) defined over the signature ∆′, all
sentences γ defined over the signature ∆, and all vectors w ∈ W ′v, we have:
(W ′,M ′) |=w χ(γ) iff (W ′,M ′)↾χ |=w γ.

Let (W,M) be the reduct of (W ′,M ′) across χ : ∆ → ∆′. Since χ is the
identity on the signature of Hilbert spaces Σh, the Hilbert spaces (W,M) ↾ Σh

and (W ′,M ′) ↾ Σh coincide. It follows that Wv = W ′v which means that the
local satisfaction condition is well-defined.

2.5 Global satisfaction relation

The global satisfaction relation between models and sentences is defined below:

• (W,M) |= γ, read (W,M) globally satisfies γ, when γ(W,M) = Wv.

In formal methods, the global satisfaction relation is at the core of formal
verification, since the engineers need to model software and hardware systems
with sets of sentences that need to be satisfied globally. The global satisfaction
relation between models and sentences is naturally extended to a satisfaction
relation between sets of sentences.

5 The orthocomplement of a set of vectors X ⊆ Wv is X⊥ := {w ∈ Wv | w ⊥ X}.
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• Γ |= γ, read Γ globally satisfies γ, when (W,M) |= Γ implies (W,M) |= γ,
for all models (W,M).

Notice that ∅ |=
∧
Γ ⇒ γ implies Γ |= γ but the backward implication does

not hold. This means that the semantics of the satisfaction relation |= between
sentences is different from the standard one use in modal logic literature.

• Γ |=k γ, read Γ satisfies γ at k, when (W,M) |= Γ implies (W,M) |=(kW ) γ,
for all models (W,M).

Notice that Γ |=k γ iff Γ |= @k γ. Also, ∅ |=k
∧
Γ⇒ γ implies Γ |=k γ but the

backward implication does not hold. The following result is a direct corollary
of Theorem 2.5.

Corollary 2.6 Γ |=k γ implies χ(Γ) |=χ(k) χ(γ), for all signature morphisms
χ : ∆→ ∆′, all sets of ∆-sentences Γ and all ∆-sentences γ.

2.6 Closed sentences

In quantum logic literature, a distinguished class of sentences consist of all
sentences that are interpreted as closed spaces. In this section, we will briefly
look into some of their properties. The results presented in this subsection are
from [15]. The set of closed sentences Senc(∆) over a signature ∆ is defined
by the following grammar:

ρ ::= r |∼ ρ | ρ ∧ ρ | [b]ρ,
where r is a closed propositional symbol, b is a unitary action, that is, an
action free of quantum measurement symbols. The following result shows that
the interpretation of any closed sentence in a model is a closed subspace.

Theorem 2.7 The semantics of any closed sentence is a closed subspace, i.e.,
for all models (W,M) and all closed sentences ρ defined over the same signa-
ture, ρ(W,M) is a closed subspace.

Closed sentences have some unique features which distinguish them from
the rest of the sentences. Some properties of closed sentences are stated in the
next corollary.

Corollary 2.8 For all models (W,M) and all closed sentences ρ defined over
the same signature, we have:

(i) (W,M) |=(0W ) ρ.

(ii) If (W,M) |=w ρ then (W,M) |=aw ρ, for all vectors w ∈ Wv and all
complex numbers a ∈Wc.

(iii) If (W,M) |=w1 ρ and (W,M) |=w2 ρ then (W,M) |=w1+w2 ρ, for all
vectors w1, w2 ∈Wv.

(iv) Let {wn}n∈N be a Cauchy sequence of vectors, and let w be its limit.
If (W,M) |=wn ρ for all n ∈ N then (W,M) |=w ρ.

Sasaki hook ρ1 ; ρ2 is defined by ∼ (ρ1∧ ∼ (ρ1 ∧ ρ2)), for all closed
sentences ρ1 and ρ2. The following lemma shows that Sasaki hook can be
viewed as an implication for closed sentences, that is, a quantum implication.
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Lemma 2.9 (Quantum implication) For all quantum models (W,M) and
all closed sentences ρ1, ρ2 defined over the same signature, we have:

(i) ρ
(W,M)
1 ∩ (ρ1 ; ρ2)

(W,M) ⊆ ρ
(W,M)
2 and

(ii) ρ
(W,M)
1 ⊆ ρ

(W,M)
2 iff (W,M) |= ρ1 ; ρ2.

2.7 Entailment systems

The syntactic counterpart of the satisfaction relation for reasoning about the
logical consequences of sentences is defined below.

(Monotonicity)
γ ∈ Γ

Γ ⊢k γ
(Unions)

Γ ⊢k γ

Γ ∪ Γ′ ⊢k γ

(Cut)
Γ ⊢k γ2 Γ ∪ {γ2} ⊢k γ1

Γ ⊢k γ1
(Translation)

Γ ⊢k γ

χ(Γ) ⊢χ(k) χ(γ)
where χ : ∆→ ∆′

Fig. 1. Entailment systems

Definition 2.10 [Entailment systems] An entailment system is a family of
relations ⊢= {⊢k∆}∆∈|Sig|,k∈TΣ

between sets of sentences and sentences (that is,

⊢k∆⊆ P(Sen(∆))×Sen(∆) for all signatures ∆ and all terms k ∈ TΣ) satisfying
(Monotonicity), (Unions) and (Translation) defined in Fig. 1.

We drop the subscript ∆ from the notion ⊢k∆ when there is no danger of
confusion. (Cut) is omitted from the definition of entailment system which
shows that lemma discovery is not needed for the proof calculus developed in
this paper.

Definition 2.11 [Entailment properties] Let ⊢ be an entailment system.

(i) ⊢ is sound (complete) if for all signatures ∆ and all terms k, we have:
⊢k∆ ⊆ |=k

∆ (|=k
∆ ⊆ ⊢k∆).

(ii) ⊢ is compact if for all signatures ∆, all sets of sentences Γ, all sentences γ,
and all terms k, we have: Γ ⊢k∆ γ implies Γf ⊢k∆ γ for some finite Γf ⊆ Γ.

3 Birkhoff completeness

We introduce two classes of sentences for which we study soundness, compact-
ness and completeness.

Definition 3.1 [Clauses] Let ∆ be any signature in HDQL.

(i) The set of basic sentences over ∆ is defined by the following grammar:

φ ::= p | φ ∧ φ | @k φ | [a]φ | ↓z ·φ,
where p is a propositional symbol, k is a term of sort vector, a is an action,
and z is a variable of sort vector.

(ii) The set of quantum clauses over ∆ is defined by the following grammar:

γ ::= p | ρ1 ; ρ2 | φ⇒ γ | γ ∧ γ | @k γ | [a]γ | ↓z · γ,
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where p is a propositional symbol, ρ1 is a closed basic sentence, ρ2 is a
closed quantum clause, φ is a basic sentence, k is a term of sort vector, a
is an action, and z is a variable of sort vector.

3.1 Logical framework L
We define the logical framework in which the results will be proved. This is a
fragment of HDQL defined in Section 2.

Let ∆ = (Σ, ∅, Prop) be a signature such that Σ = (Sh, F h ∪ U ∪ Q,P h),
where Σh = (Sh, F h, P h) is the signature of Hilbert spaces defined in Section 2,
U is a set of unitary transformation symbols and Q is a set of measurement
symbols. Let W be a first-order model defined over the signature Σ such that

(i) W ↾Σh is a Hilbert space,

(ii) uW :Wv →Wv is a unitary transformation for all u : v→ v ∈ U , and

(iii) qW :Wv →Wv is a quantum measurement for all q : v→ v ∈ Q.

We make the following notational conventions:

(i) Let ΣW be the first-order signature obtained from Σ by adding all elements
in W as constants, that is, ΣW = (Sh, F h ∪U ∪Q∪DW ∪CW , P h), where
(a) DW =Wv, the set of vectors in W, and
(b) CW = C, the set of complex numbers.

(ii) LetWW be the first-order model over ΣW obtained fromW by interpreting
each constant c ∈ CW as the complex number c and each constant w ∈ DW
as the vector w.

(iii) Let EW be the set of (ground) equations and relations satisfied by WW ,
which means that (ΣW , EW) is the positive diagram of W.

In classical model theory, it is well-known that ΣW -models which satisfy EW
are in one-to-one correspondence with the Σ-homomorphisms with the domain
W, that is, there is an isomorphism of categories Mod(ΣW , EW) ∼=W/Mod(Σ).

The underlying logic in which the subsequent results will be developed is
an arbitrary fragment L of HDQL satisfying the following two properties:

(i) All signatures are of the form (ΣW , EW , Prop) as described above.

(ii) Retrieve @ belongs to the vocabulary of L if classical implication ⇒ or
quantum implication ; belongs to the vocabulary of L.

The fragment L is obtained from HDQL by restricting its syntax, that is, its
signatures and sentences. Given a signature morphism χ : (ΣW , EW , Prop)→
(Σ′W′ , EW′ , Prop

′) in L, since (ΣW , EW) and (ΣW′ , EW′) are the positive di-
agrams of the first-order models W and W ′, respectively, by Lemma 2.1,
the first-order signature morphism χ : ΣW → Σ′W′ is injective. Moreover,
χ : ΣW → Σ′W′ is the identity on complex numbers. In addition, one or more
sentence operators from HDQL can be discarded. Of course, if retrieve is dis-
carded from the grammar used to define sentences in HDQL then both classical
and quantum implication must be dropped. This condition is necessary be-
cause the proof rules for both classical and quantum implication depend on the
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existence of retrieve. See Section 3.3. Other than that, the sentence operators
are independent. For example, quantum implication is not required by any of
the results in this paper. If quantum implication occurs, there are proof rules
and arguments to deal with it. If quantum implication is not part of the vo-
cabulary then the proofs still hold, since the cases corresponding to quantum
implication can be, simply, discarded. L can be regarded as a parameter for the
subsequent developments which can be adjusted depending on the applications.

(Origin)
Γ ⊢0 r

(Mult)
Γ ⊢w r

Γ ⊢aw r

(Add)
Γ ⊢w1 r Γ ⊢w2 r

Γ ⊢w1+w2 r
(Cauchy)

Γ ⊢wn r for all n ∈ N
Γ ⊢w r

where {wn}n∈N is a Cauchy sequence such that limn→∞ wn = w

Fig. 2. Closed propositional symbols

Fig. 2 contains the proof rules for reasoning about closed propositions. No-
tice that r ranges over closed propositional symbols, w ranges over vectors and
a ranges over complex numbers. (Cauchy) is an infinitary rule, since it has a
countably infinite number of premises, one for each natural number n ∈ N. In
applications, it is rarely used. Assume, for example, that each closed propo-
sitional symbol r is defined by an orthonormal basis {v1, . . . , vn} of a closed
subspace, that is, {@v1

r, . . . ,@vn r} ⊆ Γ and r does not occur positively in any
of the sentences from Γ\{@v1 r, . . . ,@vn r}. However, r can occur, for example,
in the conditional part of the clauses from Γ \ {@v1 r, . . . ,@vn r}. In this case,
(Cauchy) can be discarded because the set of states where each r holds is the
closed subspace generated by linear combinations of vectors from {v1, . . . , vn}.

Definition 3.2 [Models defined by sentences] Let ⊢ be any sound entailment
system of L closed under the proof rules defined in Fig. 2. Any set of sentences
Γ over a signature ∆W defines a model (WΓ,MΓ) as follows:

(i) WΓ =WW , and

(ii) MΓ : WΓ
v → |ModPL(ΣW)| is defined by MΓ

w = {p ∈ Prop | Γ ⊢w p} for all
vectors w ∈WΓ

v .

The proof rules from Fig. 2 ensure that (WΓ,MΓ) is well-defined. We will
show that (WΓ,MΓ) is the initial model of Γ if Γ is a set of quantum clauses.

3.2 Basic sentences

In this subsection, we define proof rules for reasoning about basic sentences
and then we prove their completeness.

(EQ) defined in Fig. 3 says that for each equation k1 = k2 in EW , if Γ ⊢k1 γ
holds then one can deduce Γ ⊢k2 γ. In practice, it is necessary to have an
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(EQ)
Γ ⊢k1 γ

Γ ⊢k2 γ
for all k1 = k2 ∈ EW

(RetI)
Γ ⊢k1 γ

Γ ⊢k2 @k1 γ
(RetE)

Γ ⊢k2 @k1
γ

Γ ⊢k1 γ

(StoreI)
Γ ⊢k γ[z ← k]

Γ ⊢k ↓z · γ
(StoreE)

Γ ⊢k ↓z · γ
Γ ⊢k γ[z ← k]

(ConjI)
Γ ⊢k γ1 Γ ⊢k γ2

Γ ⊢k γ1 ∧ γ2
(ConjE)

Γ ⊢k γ1 ∧ γ2
Γ ⊢k γi

for all i ∈ {1, 2}

Fig. 3. Basic proof rules

efficient way to compute projective measurements and unitary transformations
for establishing the validity of k1 = k2. See Section 4 for a concrete example.

(FTI)
Γ ⊢f(k) γ
Γ ⊢k [f ]γ

(FTE)
Γ ⊢k [f ]γ

Γ ⊢f(k) γ
for all f ∈ U ∪Q

(CompI)
Γ ⊢k [a1 ; a2]γ
Γ ⊢k [a1][a2]γ

(CompE)
Γ ⊢k [a1][a2]γ

Γ ⊢k [a1 ; a2]γ

(UnionI)
Γ ⊢k [a1]γ Γ ⊢k [a2]γ

Γ ⊢k [a1 ∪ a2]γ
(UnionE)

Γ ⊢k [a1 ∪ a2]γ

Γ ⊢k [ai]γ
for all i ∈ {1, 2}

(StarI)
Γ ⊢k [an]γ for any n ∈ N

Γ ⊢k [a∗]γ
(StarE)

Γ ⊢k [a∗]γ

Γ ⊢k [an]γ
for all n ∈ N

Fig. 4. Necessity

The sentence γ[z ← k] used to define (StoreI) and (StoreE) in Fig. 4 is
obtained from γ by substituting the term k for the variable z. Notice that
(StarI) is an infinitary proof rule, since it has a countably infinite number of
premises, one for each natural number n ∈ N. One needs inductive arguments
to ensure that the premises of (StarI) are satisfied. However, if ∗ is missing
from the grammar which defines actions in L then completeness still holds.

Lemma 3.3 (Basic soundness) The least entailment system of L closed un-
der the proof rules defined in Fig. 2 – 4 is sound.

The proof of soundness relies on the closure of satisfaction relation under
the proof rules defined in Fig. 2 – 4.

Proposition 3.4 (Basic compactness) Assume that the signatures of L
have no closed propositional symbols, and the actions of L are free of the op-
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erator ∗. Then the least entailment system of L closed under the proof rules
defined in Fig. 3 – 4 is compact.

Proposition 3.4 establishes an important result, since it provides conditions
for making deductions from a finite number of premises. The number of vectors
is uncountable, but according to Proposition 3.4, for the formal proofs, it is
enough to know the result of applying unitary transformations and projective
measurements to the vectors occurring in the underlying specification.

Theorem 3.5 (Basic completeness) Let ⊢ be any sound entailment system
of L closed under the proof rules defined in Fig. 2 – 4. Let φ be a basic sentence
defined over a signature ∆W . Let k be a term of sort vector defined over ΣW .
We denote by w the interpretation of k in WΓ.

(i) Γ ⊢k φ iff (WΓ,MΓ) |=w φ, for all sets of sentences Γ.

(ii) Φ ⊢k φ iff Φ |=k φ iff (WΦ,MΦ) |=w φ, for all sets of basic sentences Φ.

The sentences in Γ from the first statement of Theorem 3.5 are not neces-
sarily basic. An application of the first statement is obtained in the following
subsection where Γ is instantiated by a set of quantum clauses. The second
statement of Theorem 3.5 is a direct consequence of the first due to the fact
that (WΦ,MΦ) satisfies globally Φ. It says that in order to reason about basic
sentences one needs to consider only its initial models.

3.3 Quantum clauses

In this section, we define proof rules for reasoning about quantum clauses and
then we prove their completeness.

(MP )
Γ ⊢k φ⇒ γ Γ ⊢k φ

Γ ⊢k γ
(MPc)

Γ ⊢k ρ1 ; ρ2 Γ ⊢k ρ1
Γ ⊢k ρ2

(Imp)
Γ ∪ {@k φ} ⊢k γ

Γ ⊢k φ⇒ γ
(Impc)

Γ ∪ {@k ρ1} ⊢k ρ2
Γ ⊢k ρ1 ; ρ2

Fig. 5. Implication

The proof rules for implication are defined in Fig. 5. Recall that retrieve @
belongs to the vocabulary of L if classical implication⇒ or quantum implication
; belongs to the vocabulary of L. Therefore, (Imp) and (Impc) are well-
defined.

Lemma 3.6 (Soundness) The least entailment system of L closed under the
proof rules defined in Fig. 2 – 5 is sound.

As usual, the proof of soundness is based on the closure of satisfaction
relation under the proof rules defined in Fig. 2 – 5.

Proposition 3.7 (Compactness) Assume that the signatures of L have no
closed propositional symbols, and the actions of L are free of the operator ∗.
Then the least entailment system of L closed under the proof rules defined in
Fig. 3 – 5 is compact.
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Compactness for quantum clauses holds under the same conditions as for
basic sentences. Initiality is proved in [15] using semantic arguments, while in
the present contribution the proof of initiality relies on syntactic arguments
based on proof rules.

Theorem 3.8 (Initiality) Let ⊢ be any sound entailment system of L closed
under the proof rules from Fig. 2 – 5. For all sets of quantum clauses Γ, all
quantum clauses γ, all basic sentences φ and all terms k, we have:

(i) Γ ⊢k γ implies (WΓ,MΓ) |=w γ, where w = k(W
Γ).

In particular, (WΓ,MΓ) is the initial model of Γ.

(ii) Γ ⊢k φ iff Γ |=k φ iff (WΓ,MΓ) |=w φ, where w = k(W
Γ).

The first statement of Theorem 3.8 shows that any set of quantum clauses
has an initial model which, in particular, means that any set of quantum clauses
is satisfiable. The second statement of Theorem 3.8 shows that the satisfaction
of basic sentences by a set of quantum clauses can be established by checking
if the satisfaction holds in the initial model. It is worth mentioning that the
proof of Theorem 3.8 does not rely on (Imp) and (Impc). The proof rules
(Imp) and (Impc) are needed for the proof of completeness.

Theorem 3.9 (Completeness) Let ⊢ be any sound entailment system of L
closed under the proof rules defined in Fig. 2 – 5. For all sets of quantum
clauses Γ, all quantum clauses γ and all terms k, we have Γ |=k γ iff Γ ⊢k γ.

4 A case study

We show the practicality of the proof-theoretic infrastructure developed above.
Working within a positive diagram of a Hilbert space means in practice that
there is a library defining scalars, vectors and the operations on them which
is available to the engineers to specify quantum programs. The projection on
a closed space X with an orthonormal basis {v1, . . . , vn}, PX : Wv → X , is
defined by PX (w) = a1v1+ · · ·+anvn, where ai = ⟨vi | w⟩ for all i ∈ {1, . . . , n}.
Therefore, projective measurements are not difficult to define once an orthonor-
mal basis for the corresponding closed space is provided. There are many
examples of unitary transformations which are called quantum gates. In prac-
tice, all quantum gates used to define quantum circuits are obtained from
the single qubit gates and the controlled-NOT gate in the 2-qubit system,

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

. Examples of frequently used single qubit gates are the

Hadamard gate H =
1√
2

(
1 1
1 −1

)
and the Pauli gates X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
. Therefore, assuming that the quantum gates and the pro-

jective measurements are predefined, that is, working in a logical framework in
which a positive diagram of a Hilbert space is given, is not a shortcoming.



14 Birkhoff style proof systems for hybrid-dynamic quantum logic

4.1 Quantum teleportation

Quantum teleportation is a protocol for moving the state of a quantum system
in the absence of a quantum communication channel linking a sender to a
recipient. The sender and the recipient, traditionally called Alice and Bob, are

separated in space. Each has one qubit of |β00⟩ =
|00⟩+ |11⟩√

2
. In addition to

her part of β00, Alice holds a qubit w = α |0⟩+β |1⟩, where α and β are unknown
amplitudes. Alice “teleports” the qubit |w⟩ to Bob, that is, she performs a
program that has the input |w0⟩ = |w⟩ ⊗ |β00⟩ and the output |i⟩ ⊗ |j⟩ ⊗ |w⟩,
where i, j ∈ {0, 1}. The quantum circuit is depicted in Fig. 6. The Hilbert
space for this protocol is the 3-qubit system H⊗H⊗H, where H denotes the
2-dimensional Hilbert space. The starting signature is ∆ = (Σ, ∅, Prop), where
(i) Σ is obtained from the signature of Hilbert spaces Σh by adding the set of

unitary transformation symbols U = {u0, u1, σ0, σ1, δ0, δ1} and the set of
measurement symbols Q = {q00, q01, q10, q11}, and

(ii) Prop = {p}.
The first-order model W is obtained from the 3-qubit system H ⊗ H ⊗ H by
interpreting

(i) the unitary transformation as follows: (a) uW0 = CNOT ⊗ I2,
(b) uW1 = H⊗ I4, (c) σ

W
0 = I4⊗X0, (d) σW1 = I4⊗X1, (e) δW0 = I4⊗Z0,

(f) δW1 = I4 ⊗ Z1;

(ii) the quantum measurement symbols as follows: qWij is the measurement
corresponding to the projection on the closed subspace generated by the
vectors {|ij⟩ ⊗ |0⟩ , |ij⟩ ⊗ |1⟩}, where i, j ∈ {0, 1}.

i

j

|w⟩ H

|β00⟩
Xj Zi |w⟩

Fig. 6. Quantum teleportation

Let Φ be the set of basic sentences {@|ij⟩⊗|w⟩ p | i, j ≤ 1}. We formally verify

that the output is |i⟩ ⊗ |j⟩ ⊗ |w⟩, that is, (WΦ,MΦ) |=|w⟩⊗|β00⟩ [
⋃

i,j∈{0,1} aij ]p,

where aij = u0 ; u1 ; qij ; σj ; δi for all i, j ∈ {0, 1}. By Theorem 3.8, we have:

(i) (WΦ,MΦ) is the initial model of Φ, and

(ii) (WΦ,MΦ) |=|w⟩⊗|β00⟩ [
⋃

i,j∈{0,1} aij ]p iff Φ |=|w⟩⊗|β00⟩ [
⋃

i,j∈{0,1} aij ]p.

Notice that since @|ij⟩⊗|w⟩ p ∈ Φ, by (Monotonicity), Φ ⊢k @|ij⟩⊗|w⟩ p for any

term k of sort vector. By (RetE), Φ ⊢|ij⟩⊗|w⟩ p. The following are equivalent:
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1 Φ ⊢|w⟩⊗|β00⟩ [
⋃

i,j∈{0,1} aij ]p by (UnionE) and
(UnionI)

2 Φ ⊢|w⟩⊗|β00⟩ [aij ]p for all i, j ∈ {0, 1} by the definition of aij

3 Φ ⊢|w⟩⊗|β00⟩ [u0 ;u1 ; qij ;σj ; δi]p for all i, j ∈ {0, 1} by (FTE) and (FTI)

4 Φ ⊢kij p, where kij is the following term
δi(σj(qij(u1(u0(|w⟩ ⊗ |β00⟩))))), for all i, j ∈ {0, 1}

by (EQ), since
kij = |ij⟩ ⊗ |w⟩ ∈ EW

5 Φ ⊢|ij⟩⊗|w⟩ p for all i, j ∈ {0, 1} which was proved above

Hence, Φ ⊢|w⟩⊗|β00⟩ [
⋃

i,j∈{0,1} aij ]p holds. We reiterate the comment made for

(EQ) in Section 3.2: in order to establish the validity of δi(σj(qij(u1(u0(|w⟩ ⊗
|β00⟩))))) = |ij⟩ ⊗ |w⟩ one needs an efficient tool to compute the application of
unitary transformations and projective measurements.

5 Conclusions

The hybrid-dynamic quantum logic studied in this contribution is obtained by
enriching hybrid-dynamic propositional logic using a two-layered approach to
the design and analysis of quantum systems: (a) a local view concerning the
structural properties of the states which are vectors of a Hilbert space, and
(b) a global view, which corresponds to a specialized language for capturing the
dynamics of quantum systems. In this way, quantum systems can be modeled as
Kripke structures whose frames are Hilbert spaces together with a set of unitary
transformations and projective measurements. We use Robinson diagrams to
define the frames which allows formal methods practitioners to focus on the
dynamics of quantum systems assuming that the vectors and the operations on
them are already defined. Similarly, quantum programs are built by relying on
libraries that provide data types such as scalars and vectors.

We have developed a layered approach towards a Birkhoff completeness re-
sult: first, the basic layer, which deals with entailments where both the premises
and the conclusion are basic sentences; second, a mixed layer, which deals with
entailments where the premises are quantum clauses, but the conclusion is a
basic sentence; and third, a quantum clause layer, which deals with entailments
where both the premises and the conclusion are quantum clauses.

The set of states is not the set of one-dimensional closed subspaces of a
Hilbert space. Also, the set of states is not constrained to the set of pure
states. The responsibility of correct modeling is passed to the specifier. These
ideas led to a proof of initiality which was reported in [15], the contribution
where hybrid-dynamic quantum logic was originally defined and the founda-
tion of the present work. We are not aware of any other Birkhoff completeness
result for quantum logics. Recent studies show that classical computing can
aid unreliable quantum processors to solve large problems reliably. In the fu-
ture, we are planning to equip our hybrid-dynamic quantum logic with features
that support the description of classical programs with quantum subroutines.
With the development of quantum hardware devices, it becomes increasingly
important to develop high-quality and trustworthy quantum software. This is
possible only by applying formal methods based on solid logical foundations.
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[17] Găină, D., Forcing and calculi for hybrid logics, J. ACM 67 (2020), pp. 25:1–25:55.
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A Proofs for results presented in Section 2

Proof. [Lemma 2.1: All homomorphisms of Hilbert spaces are injective]
Let h : (W,M) → (V,N) be a homomorphism of quantum models. For all
vectors w ∈Wv, the following are equivalent:

1 h(w) = 0V by inner product definition

2 ⟨h(w) | h(w)⟩V = 0 since h is a first-order homomorphism

3 h(⟨w | w⟩W ) = 0 h is the identity on complex numbers

4 ⟨w | w⟩W = 0 by the definition of the inner product

5 w = 0W

Then for all vectors w1, w2 ∈ Wv, we have h(w1) = h(w2) iff h(w1) −V

h(w2) = 0V iff h(w1 −W w2) = 0V iff w1 −W w2 = 0W iff w1 = w2. Hence, h is
injective. 2

Proof. [Theorem 2.5: Local satisfaction condition]
The proof of the local satisfaction condition is by well-founded (Noetherian)
induction on the triple (n1, n2, n3), where

(i) n1 is the number of occurrences of the operator ∗ in γ,

(ii) n2 is the number of occurrences of the operators ; and ∪ in γ, and

(iii) n3 is the number of occurrences of the sentence operators in γ.

We focus only on a few cases, since the rest of them can be discharged using
the same arguments from the proof of the satisfaction condition in hybridized
institutions [11, Theorem 3.2]. We denote by (W,M) the reduct of (W ′,M ′)
across χ.

[ p ∈ Prop ] The following are equivalent:

1 (W ′,M ′) |=w χ(p) by semantics

2 χ(p) ∈M ′
w by the definition of Mw

3 p ∈ {p ∈ Prop | χ(p) ∈M ′
w} = Mw by semantics

4 (W,M) |=w p

[ ∼ γ ] By induction hypothesis, we have (W ′,M ′) |=w χ(γ) iff (W,M) |=w γ
for all vectors w ∈W ′v. Then:

1 χ(γ)(W
′,M′) = γ(W,M) by semantics

2 (χ(γ)(W
′,M′))⊥ = (γ(W,M))⊥ as W ′↾Σh = W↾Σh

3 (W ′,M ′) |=w∼ χ(γ) iff (W,M) |=w∼ γ for all w ∈W ′
v by semantics

[ [f ]γ ] In this case, f ∈ U ∪Q. The following are equivalent:

1 (W ′,M ′) |=w [χ(f)]χ(γ) by semantics

2 (W ′,M ′) |=v χ(γ), where v = χ(f)W
′
(w) by induction hypothesis

3 (W ′,M ′)↾χ |=v γ since v = f (W ′↾χ)(w)

4 (W ′,M ′)↾χ |=w [f ]γ

[ [a1 ; a2]γ ]
The number of ∗ in [a1][a2]γ is equal to the number of ∗ in [a1 ; a2]γ.
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The number of ; in [a1][a2]γ is strictly less than the number of ; in [a1;a2]γ.
The number of ∪ in [a1][a2]γ is equal to the number of ∪ in [a1 ; a2]γ.
By induction hypothesis, we have:

(W ′,M ′) |=w [χ(a1)][χ(a2)]χ(γ) iff (W ′,M ′)↾χ |=w [a1][a2]γ.

The following are equivalent:

1 (W ′,M ′) |=w [χ(a1) ; χ(a2)]χ(γ) by semantics

2 (W ′,M ′) |=w [χ(a1)][χ(a2)]χ(γ) by induction hypothesis

3 (W ′,M ′)↾χ |=w [a1][a2]γ by semantics

4 (W ′,M ′)↾χ |=w [a1 ; a2]γ

[ [a1 ∪ a2]γ ]
The number of ∗ in [a1]γ is less or equal to the number of ∗ in [a1 ∪ a2]γ.
The number of ; in [a1]γ is less or equal than the number of ; in [a1∪a2]γ.
The number of ∪ in [a1]γ is strictly less than the number of ∪ in [a1∪a2]γ.
By induction hypothesis, we have:

(W ′,M ′) |=w [χ(a1)]χ(γ) iff (W ′,M ′)↾χ |=w [a1]γ.

Similarly, induction hypothesis holds for [a2]γ too.
The following are equivalent:

1 (W ′,M ′) |=w [χ(a1) ∪ χ(a2)]χ(γ) by semantics

2 (W ′,M ′) |=w [χ(a1)]χ(γ) and (W ′,M ′) |=w [χ(a2)]χ(γ) by induction
hypothesis

3 (W ′,M ′)↾χ |=w [a1]γ and (W ′,M ′)↾χ |=w [a2]γ by semantics

4 (W ′,M ′)↾χ |=w [a1 ∪ a2]γ

[ [a∗]γ ] The number of ∗ in [an]γ is strictly less than the number of ∗ in [a∗]γ,
for all natural numbers n ∈ N. By induction hypothesis, we have:

(W ′,M ′) |=w [χ(a)n]χ(γ) iff (W ′,M ′)↾χ |=w [an]γ for all n ∈ N.
The following are equivalent:

1 (W ′,M ′) |=w [χ(a)∗]χ(γ) by semantics

2 (W ′,M ′) |=w [χ(a)n]χ(γ) for all n ∈ N by induction hypothesis

3 (W ′,M ′)↾χ |=w [an]γ for all n ∈ N by semantics

4 (W ′,M ′)↾χ |=w [a∗]γ

2

B Proofs for results presented in Section 3

Proof. [Proposition 3.4: Basic compactness]
Let ⊢ be the least entailment system closed under the proof rules defined in
Fig. 3 – 4. Let ⊩ be the compact entailment system defined by Γ ⊩k γ if Γf ⊢k γ
for some finite subset Γf ⊆ Γ. It suffices to show that ⊩ is an entailment system
(i.e., it is closed under (Monotonicity), (Unions) and (Translation)) closed
under the proof rules defined in Fig. 3 – 4. We focus on a few cases that may
imply difficulties:
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[ (Translation) ] Assume that Γ ⊩k
∆W

γ. Let χ : ∆W → ∆′W′ be a signature
morphism. By the definition of ⊩, Γf ⊢∆W γ for some finite Γf ⊆ Γ. Since
⊢ is closed under (Translation), χ(Γf ) ⊢∆′W′ χ(γ). Since χ(Γf ) is finite,

by the definition of ⊩, we obtain χ(Γ) ⊩∆′W′
χ(γ).

[ (ConjI) ] Assume that Γ ⊩k γ1 and Γ ⊩k γ2. By the definition of ⊩, we
have Γ′ ⊢k γ1 and Γ′′ ⊢k γ2 for some finite subsets Γ′ ⊆ Γ and Γ′′ ⊆ Γ.
Let Γf = Γ′ ∪ Γ′′. By (Unions), Γf ⊢k γ1 and Γf ⊢k γ2. By (ConjI),
Γf ⊢k γ1∧γ2. Since Γf is finite, by the definition of ⊩, we get Γ ⊩k γ1∧γ2.

[ (UnionI) ] Assume that Γ ⊩k [a1]γ and Γ ⊩k [a2]γ. By the definition of ⊩,
we have Γ′ ⊢k [a1]γ and Γ′′ ⊢k [a2]γ for some finite subsets Γ′ ⊆ Γ and
Γ′′ ⊆ Γ. Let Γf = Γ′ ∪ Γ′′. By (Unions), Γf ⊢k [a1]γ and Γf ⊢k [a2]γ. By
(UnionI), Γf ⊢k [a1 ∪ a2]γ. Since Γf is finite, by the definition of ⊩, we get
Γ ⊩k [a1 ∪ a2]γ.

2

Proof. [Theorem 3.5: Basic completeness]
The first statement is proved by well-founded (Noetherian) induction on the
triple (n1, n2, n3), where

(i) n1 is the number of occurrences of the operator ∗ in φ,

(ii) n2 is the number of occurrences of the operators ; and ∪ in φ, and

(iii) n3 is the number of occurrences of the sentence operators in φ.

[ p ∈ Prop ] The following are equivalent:

1 Γ ⊢k p by semantics

2 p ∈MΓ
w, where w = k(WΓ) by semantics

3 (WΓ,MΓ) |=w p

[ @j φ ] The following are equivalent:

1 Γ ⊢k @j φ by (RetI) and (RetE)

2 Γ ⊢j φ by induction hypothesis

3 (WΓ,MΓ) |=v φ, where v = j(W
Γ) by semantics

4 (WΓ,MΓ) |=w @j φ, where w = k(WΓ)

[ φ1 ∧ φ2 ] The following are equivalent:

1 Γ ⊢k φ1 ∧ φ2 by (ConjI) and (ConjE)

2 Γ ⊢k φ1 and Γ ⊢k φ2 by induction hypothesis

3 (WΓ,MΓ) |=w φ1 and (WΓ,MΓ) |=w φ2,

where w = k(WΓ)

by semantics

4 (WΓ,MΓ) |=w φ1 ∧ φ2

[ [f ]φ ] In this case f ∈ U ∪Q. The following are equivalent:

1 Γ ⊢k [f ]φ by (FTE) and (FTI)

2 Γ ⊢f(k) φ by induction hypothesis
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3 (WΓ,MΓ) |=v φ,

where w = k(WΓ) and v = f (WΓ)(w)

by semantics

4 (WΓ,MΓ) |=w [f ]φ

[ [a1 ; a2]φ ]
The number of ∗ in [a1][a2]φ is equal to the number of ∗ in [a1 ; a2]φ.
The number of ; in [a1][a2]φ is strictly less than the number of ; in [a1;a2]φ.
The number of ∪ in [a1][a2]φ is is equal to the number of ∪ in [a1 ; a2]φ.
By the induction hypothesis, for all vector terms k, we have:

Γ ⊢k [a1][a2]φ iff (WΓ,MΓ) |=w [a1][a2]φ, where w = k(W
Γ).

The following are equivalent:

1 Γ ⊢k [a1 ; a2]φ by (CompI) and CompE)

2 Γ ⊢k [a1][a2]φ by induction hypothesis

3 (WΓ,MΓ) |=w [a1][a2]φ,

where w = k(WΓ)

by semantics

4 (WΓ,MΓ) |=w [a1 ; a2]φ

[ [a1 ∪ a2]φ ]
The number of ∗ in [a1]φ is less or equal then the number of ∗ in [a1∪a2]φ.
The number of ; in [a1]φ is less or equal than the number of ; in [a1∪a2]φ.
The number of ∪ in [a1]φ is strictly less than the number of ∪ in [a1∪a2]φ.
By the induction hypothesis, for all vector terms k, we have:

Γ ⊢k [a1]φ iff (WΓ,MΓ) |=w [a1]φ, where w = k(W
Γ).

Similarly, the induction hypothesis holds for [a2]φ as well.
The following are equivalent:

1 Γ ⊢k [a1 ∪ a2]φ by (UnionI) and (UnionE)

2 Γ ⊢k [a1]φ and Γ ⊢k [a2]φ by induction hypothesis

3 (WΓ,MΓ) |=w [a1]φ and

(WΓ,MΓ) |=w [a2]φ, where w = k(WΓ)

by semantics

4 (WΓ,MΓ) |=w [a1 ∪ a2]φ

[ [a∗]φ ] The number of ∗ in [an]φ is strictly less than the number of ∗ in [a∗]φ,
for all natural numbers n ∈ N. By the induction hypothesis, for all natural
numbers n ∈ N and all vector terms k, we have:

Γ ⊢k [an]φ iff (WΓ,MΓ) |=w [an]φ, where w = k(W
Γ).

The following are equivalent:

1 Γ ⊢k [a∗]φ by (StarI) and (StarE)

2 Γ ⊢k [an]φ for all n ∈ N by induction hypothesis

3 (WΓ,MΓ) |=w [an]φ for all n ∈ N,
where w = k(WΓ)

by semantics

4 (WΓ,MΓ) |=w [a∗]φ

[ ↓z ·φ ] The following are equivalent:
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1 Γ ⊢k ↓z ·φ by (StoreI) and (StoreE)

2 Γ ⊢k φ[z ← k] by induction hypothesis

3 (WΓ,MΓ) |=w φ[z ← k]

where w = k(WΓ)

by semantics

4 (WΓ,MΓ) |=w ↓z ·φ

For the second statement, since all sentences in Φ are basic, by the first state-
ment, we have (WΦ,MΦ) |= Φ.

• Since ⊢k⊆|=k, we have that Φ ⊢k φ implies Φ |=k φ.

• since (WΦ,MΦ) |= Φ, we have that Φ |=k φ implies (WΦ,MΦ) |=k(WΦ)

φ.

By the first statement, Φ ⊢k φ iff (WΦ,MΦ) |=k(WΦ)

φ iff Φ |=k φ. 2

Proof. [Theorem 3.8: Initiality]
Since the second statement is a direct consequence of the first, we prove only the
first statement by well-founded (Noetherian) induction on (n1, n2, n3), where

(i) n1 is the number of occurrences of the operator ∗ in γ,

(ii) n2 is the number of occurrences of the operators ; and ∪ in γ, and

(iii) n3 is the number of occurrences of the sentence operators in γ.

We focus only on implication since the remaining cases can be discharged using
arguments from the proof of Theorem 3.5.

[ φ⇒ γ ] Assume that Γ ⊢k φ ⇒ γ, where φ is basic and γ is a quantum
clause.

1 assume that (WΓ,MΓ) |=k(WΓ)

φ

2 Γ ⊢k φ by Theorem 3.5, since φ is basic

3 Γ ⊢k γ by (MP ), as Γ ⊢k φ ⇒ γ and Γ ⊢k φ

4 (WΓ,MΓ) |=k(WΓ)

γ by induction hypothesis

It follows that (WΓ,MΓ) |=k(WΓ)

φ⇒ γ.

[ ρ1 ; ρ2 ] Assume that Γ ⊢k ρ1 ; ρ2, where ρ1 is a closed basic sentence and
ρ2 is a closed quantum clause.

1 assume (WΓ,MΓ) |=k(WΓ)

ρ1

2 Γ ⊢k ρ1 by Theorem 3.5, since ρ1 is basic

3 Γ ⊢k ρ2 by (MPt), as Γ ⊢k ρ1 ; ρ2 and Γ ⊢k ρ1

4 (WΓ,MΓ) |=w ρ2 by induction hypothesis

It follows that (WΓ,MΓ) |=w ρ1 ; ρ2.
2

Proof. [Theorem 3.9: Birkhoff completeness]
We prove the forward implication (completeness) by well-founded (Noetherian)
induction on (n1, n2, n3), where

(i) n1 is the number of occurrences of the operator ∗ in γ,
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(ii) n2 is the number of occurrences of the operators ; and ∪ in γ, and

(iii) n3 is the number of occurrences of the sentence operators in γ.

We focus only on implication, since the remaining cases can be discharged using
arguments from the proof of Theorem 3.5.

[ φ⇒ γ ] Γ |=k φ⇒ γ, where φ is a basic sentence and γ is a quantum clause,
iff Γ ∪ {@k φ} |=k γ iff (by induction hypothesis) Γ ∪ {@k φ} ⊢k γ. By
(Imp), Γ ⊢k φ⇒ γ.

[ ρ1 ; ρ2 ] Γ |=k ρ1 ; ρ2, where ρ1 is closed basic sentence and ρ2 is a closed
quantum clause, iff Γ ∪ {@k ρ1} |=k ρ2 iff (by induction hypothesis) Γ ∪
{@k ρ1} ⊢k ρ2. By (Impc), Γ ⊢k ρ1 ; ρ2.

2
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