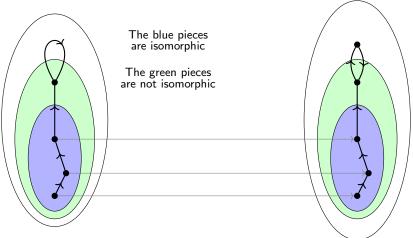
Many-Sorted First-Order Model Theory lecture 6

Tomasz Kowalski

Department of Logic Jagiellonian University Kraków, Poland

Comparing models piece by piece

 Σ has only one unary function. Two $\Sigma\text{-models }\mathcal{A}$ and $\mathcal{B}.$



Shorthand notation for Definition 1. Let $\Sigma = (S, F, P)$ be a signature.

- $U = \{U_s\}_{s \in S'}$ and $V = \{V_s\}_{s \in S'}$ are S'-sorted sets, for some $S' \subseteq S$.
- $p = \{p_s : U_s \to V_s\}_{s \in S'}$ is an S'-sorted map.
- For π : s_1, \ldots, s_k , such that $\{s_1, \ldots, s_k\} \cap S' = \{s_{i_1}, \ldots, s_{i_m}\}$, the notation $\pi^{\mathcal{A}}|_U$ means $\pi^{\mathcal{A}} \cap U_{s_h} \times \cdots \times U_{s_{i_m}}$, and similarly for $\pi^{\mathcal{B}}|_V$.
- For $\sigma: s_1, \ldots, s_k \to s$, if $(u_1, \ldots, u_k) \in U_{s_1} \times \cdots \times U_{s_k}$ and $\sigma^{\mathcal{A}}(u_1, \ldots, u_k) \in U_s$, then $\sigma^{\mathcal{B}}(p(u_1), \ldots, p(u_k)) \in V$ and $p(\sigma^{\mathcal{A}}(u_1, \ldots, u_k)) = \sigma^{\mathcal{B}}(p(u_1), \ldots, p(u_k))$.

Definition 1

Let $\Sigma = (S, F, P)$ be a signature and let \mathcal{A} and \mathcal{B} be Σ -models. Let $U \subseteq |\mathcal{A}|$ and $V \subseteq |\mathcal{B}|$. A map $p \colon U \to V$ is a *partial isomorphism* if the following conditions hold:

- **1** p is bijective, with dom(p) = U and ran(p) = V.
- **②** For any $u_1, \ldots, u_k \in U$, if $\sigma^{\mathcal{A}}(u_1, \ldots, u_k) \in U$, then $\sigma^{\mathcal{B}}(p(u_1), \ldots, p(u_k)) \in V$ and $p(\sigma^{\mathcal{A}}(u_1, \ldots, u_k)) = \sigma^{\mathcal{B}}(p(u_1), \ldots, p(u_k))$.

Lemma 2

Let A and B be Σ -structures, and let C be the set of all constants in Σ . The following are equivalent:

- $oldsymbol{0}$ \mathcal{A} and \mathcal{B} satisfy the same unnested atomic sentences.
- **1** The natural map $p: C^{\mathcal{A}} \to C^{\mathcal{B}}$, given by $c^{\mathcal{A}} \mapsto c^{\mathcal{B}}$ for each $c \in C$ is a partial isomorphism.

Proof.

In diagrammatic sketch. RHS justifies (1) \Rightarrow (2), LHS justifies (2) \Rightarrow (1). For relations:

Proof.

RHS justifies $(1) \Rightarrow (2)$, LHS justifies $(2) \Rightarrow (1)$. For functions:

Exercise

Fill out the details of the proof. Not difficult, but long.

Proof.

RHS justifies $(1) \Rightarrow (2)$, LHS justifies $(2) \Rightarrow (1)$. For functions:

Exercise 1

Fill out the details of the proof. Not difficult, but long.

Ehrenfeucht-Fraïssé Games

Comparing models by games

A method conceptually due to Fraı̈ssé (1950), and formulated in game theoretic terms by Ehrenfeucht (1961).

Two player game of perfect information

∀ ∃
Spoiler Duplicator
Abelard Heloïse
∀belard ∃loise

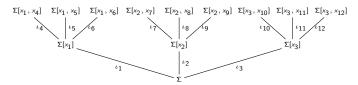
Abelard and Heloïse as depicted in the 14th centure manuscript Roman de la Rose.

Let Σ be a signature and A, B be Σ -models. The game is played as follows.

- \forall belard chooses an expansion of one structure to a signature $\Sigma[x]$ for some variable x (of some sort s).
- ∃loise responds by picking an expansion of *the other* structure.
- ullet The moves are repeated k times, for some finite k chosen in advance.
- After the last move, we have $\Sigma[x_x,\ldots,x_k]$ -expansions A_k and B_k .
- If they satisfy the same unnested atomic sentences, ∃loise wins this play of the game. Otherwise ∀belard wins.
- ∃loise wins the *game* if she can win every play regardless of ∀belard's moves. That is, if she has a *winning strategy*.

Since every move involves picking a sort, the entire game can be described as progressing up a tree whose nodes are signatures and branching corresponds to the set of sorts. We will call such trees *gameboard trees*.

Gameboard trees



Definition 3 (Gameboard trees)

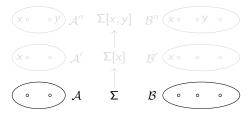
A gameboard tree tr of height k is inductively defined as follows:

- k=0 Any signature Σ is a gameboard tree with the root Σ and height 0.
 - $k \Rightarrow k+1$ For any signature Σ with the set of sorts of cardinality at least λ , if
 - $\{\iota_i \colon \Sigma \hookrightarrow \Sigma[x_i]\}_{i < \lambda}$ is a family of signature inclusions, such that for any $i \neq j$, the variables x_i and x_i are of different sorts, and
 - $\{tr_i\}_{i<\lambda}$ is a family of gameboard trees such that
 - **1** the root of tr_i is $\Sigma[x_i]$ for all $i < \lambda$, and
 - 1 the height of tr_i is k for each $i < \lambda$,

then $\Sigma \{ \stackrel{\iota_i}{\hookrightarrow} \operatorname{tr}_i \}_{i < \lambda}$ is a gameboard tree with root Σ and height k+1.

Gameboard trees are *perfect*, that is, such that every node has λ descendants, and each leaf node is at the same height. But the set of sorts can be larger than the branching!

- Signature $\Sigma = (\{any\}, \emptyset)$: one sort, no function or relation symbols.
- Gameboard: 2 moves (one sort so no branching).
- \mathcal{A} and \mathcal{B} : two models over Σ .
- Play: \forall belard chooses \mathcal{A}' over $\Sigma[x]$, \exists loise responds by \mathcal{B}' ; \forall belard chooses \mathcal{B}'' over $\Sigma[x,y]$, \exists loise responds by \mathcal{A}''

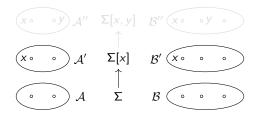


Unnested atomic sentences over $\Sigma[x,y]$ are $x=x,\,y=y,\,x=y$ and y=x, and we have

•
$$\mathcal{A}'' \models x = x, y = y \text{ (and } \mathcal{A}'' \not\models x = y, y = x)$$

•
$$\mathcal{B}'' \models x = x, y = y \text{ (and } \mathcal{B}'' \not\models x = y, y = x)$$

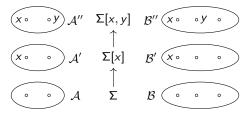
- Signature $\Sigma = (\{any\}, \emptyset)$: one sort, no function or relation symbols.
- Gameboard: 2 moves (one sort so no branching).
- \mathcal{A} and \mathcal{B} : two models over Σ .
- Play: \forall belard chooses \mathcal{A}' over $\Sigma[x]$, \exists loise responds by \mathcal{B}' ;



Innested atomic sentences over $\Sigma[x,y]$ are x=x, y=y, x=y and y=x, and we have

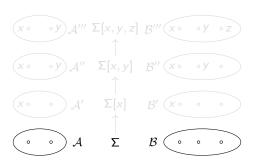
- $\mathcal{A}'' \models x = x, y = y \text{ (and } \mathcal{A}'' \not\models x = y, y = x)$
- $\mathcal{B}'' \models x = x, y = y \text{ (and } \mathcal{B}'' \not\models x = y, y = x)$

- Signature $\Sigma = (\{any\}, \emptyset)$: one sort, no function or relation symbols.
- Gameboard: 2 moves (one sort so no branching).
- \mathcal{A} and \mathcal{B} : two models over Σ .
- Play: \forall belard chooses \mathcal{A}' over $\Sigma[x]$, \exists loise responds by \mathcal{B}' ; \forall belard chooses \mathcal{B}'' over $\Sigma[x,y]$, \exists loise responds by \mathcal{A}'' .



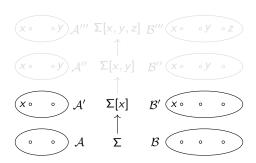
Unnested atomic sentences over $\Sigma[x,y]$ are x=x, y=y, x=y and y=x, and we have

- $\mathcal{A}'' \models x = x, y = y \text{ (and } \mathcal{A}'' \not\models x = y, y = x)$
- $\mathcal{B}'' \models x = x, y = y \text{ (and } \mathcal{B}'' \not\models x = y, y = x)$



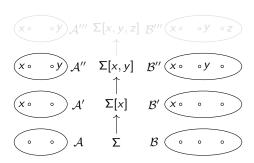
 \forall belard's third move is \mathcal{B}''' . Now \exists loise has no response. Every expansion \mathcal{A}''' of \mathcal{A}'' will satisfy x=z or y=z. So \exists loise loses.

- ∃loise can win every play of the game over a tree (chain, in fact) of height 2. So she wins the game over such trees.
- But she has no winning strategy over any tree of height > 2.



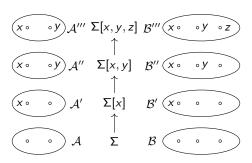
 \forall belard's third move is \mathcal{B}''' . Now \exists loise has no response. Every expansion \mathcal{A}''' of \mathcal{A}'' will satisfy x=z or y=z. So \exists loise loses.

- ∃loise can win every play of the game over a tree (chain, in fact) of height 2. So she wins the game over such trees.
- But she has no winning strategy over any tree of height > 2.



 \forall belard's third move is \mathcal{B}''' . Now \exists loise has no response. Every expansion \mathcal{A}''' of \mathcal{A}'' will satisfy x=z or y=z. So \exists loise loses.

- ∃loise can win every play of the game over a tree (chain, in fact) of height 2. So she wins the game over such trees.
- But she has no winning strategy over any tree of height > 2.



 \forall belard's third move is \mathcal{B}''' . Now \exists loise has no response. Every expansion \mathcal{A}''' of \mathcal{A}'' will satisfy x=z or y=z. So \exists loise loses.

- ∃loise can win every play of the game over a tree (chain, in fact) of height 2. So she wins the game over such trees.
- But she has no winning strategy over any tree of height > 2.

Introduction

Definition 4

Atomic or negated atomic sentences are often call literals.

Definition 5

Models $\mathcal A$ and $\mathcal B$ over a signature Σ are called elementarily equivalent if $\mathcal A$ and $\mathcal B$ satisfy precisely the same Σ -sentences. We write $\mathcal A\equiv \mathcal B$ for elementary equivalence.

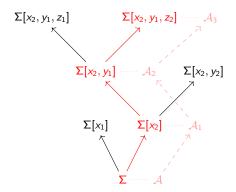
What we are after

Main goal

To show that \exists loise has a winning strategy in all games $EF_{tr}(A, B)$ iff $A \equiv B$.

- To do that, we will need to describe games by means of special sentences called game sentences.
- Game sentences describe how the game can proceed from the root to the leaves.
- Every model considered during any play of the game satisfies precisely one of these sentences.
- And the sentence says precisely what expansions the model can have.
- If $\mathcal A$ and $\mathcal B$ have matching expansions all along, then \exists loise can match every \forall belard's move.
- So \exists loise has a winning strategy in $EF_{tr}(\mathcal{A}, \mathcal{B})$ if and only if \mathcal{A} and \mathcal{B} satisfy the same (unique) game sentence.
- And every sentence turns out to be equivalent to a disjunction of game sentences.

What we are after

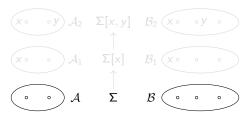


Given a tr such as above, we want a finite set of sentences Θ_{tr} such that

- all moves of a Σ -model $\mathcal A$ from the root to any leaf of tr (e.g. $\mathcal A \to \mathcal A_1 \to \mathcal A_2 \to \mathcal A_3$) is described precisely by exactly one sentence $\gamma_{(\mathcal A, \operatorname{tr})}$ in $\Theta_{\operatorname{tr}}$, that is, $\mathcal A \models \gamma_{(\mathcal A, \operatorname{tr})}$ and $\mathcal A \not\models \Theta_{\operatorname{tr}} \setminus \{\gamma_{(\mathcal A, \operatorname{tr})}\}$).
- ullet if ${\mathcal B}$ can match all the moves of ${\mathcal A}$ from root to leaves then ${\mathcal B}$ satisfies the same sentence $\gamma_{({\mathcal A},\operatorname{tr})}\in\Theta_{\operatorname{tr}}.$

Recall this example

- Signature $\Sigma = (\{any\}, \emptyset)$: one sort, no function or relation symbols.
- Gameboard: 2 moves (one sort so no branching, as it is redundant to consider branching in case of single sorted signatures).
- \mathcal{A} and \mathcal{B} : two models over Σ .
- Play: ∀belard chooses A₁ over Σ[x], ∃loise responds by B₁;
 ∀belard chooses B₂ over Σ[x, y], ∃loise responds by A

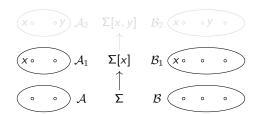


Unnested atomic sentences over $\Sigma[x,y]$ are x=x, y=y, x=y and y=x, and we have

- $A_2 \models x = x \land y = y \land x \neq y \land y \neq x$
- $\mathcal{B}_2 \models x = x \land y = y \land x \neq y \land y \neq x$

Recall this example

- Signature $\Sigma = (\{any\}, \emptyset)$: one sort, no function or relation symbols.
- Gameboard: 2 moves (one sort so no branching, as it is redundant to consider branching in case of single sorted signatures).
- \mathcal{A} and \mathcal{B} : two models over Σ .
- Play: \forall belard chooses \mathcal{A}_1 over $\Sigma[x]$, \exists loise responds by \mathcal{B}_1 ;

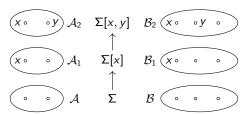


Unnested atomic sentences over $\Sigma[x,y]$ are x=x, y=y, x=y and y=x, and we have

- $A_2 \models x = x \land y = y \land x \neq y \land y \neq x$
- $\mathcal{B}_2 \models x = x \land y = y \land x \neq y \land y \neq x$

Recall this example

- Signature $\Sigma = (\{any\}, \emptyset)$: one sort, no function or relation symbols.
- Gameboard: 2 moves (one sort so no branching, as it is redundant to consider branching in case of single sorted signatures).
- \mathcal{A} and \mathcal{B} : two models over Σ .
- Play: \forall belard chooses \mathcal{A}_1 over $\Sigma[x]$, \exists loise responds by \mathcal{B}_1 ; \forall belard chooses \mathcal{B}_2 over $\Sigma[x,y]$, \exists loise responds by \mathcal{A}_2 .



Unnested atomic sentences over $\Sigma[x, y]$ are x = x, y = y, x = y and y = x, and we have

- $A_2 \models x = x \land y = y \land x \neq y \land y \neq x$
- $\mathcal{B}_2 \models x = x \land y = y \land x \neq y \land y \neq x$

Game sentence (no rounds)

Consider the signature $\Sigma[x, y]$, which can be regarded as a tree of height 0.

- We have $Sen_b(\Sigma[x, y]) = \{x = x, y = y, x = y, y = x\}.$
- Consider conjunctions of literals over $Sen_b(\Sigma[x,y])$ in which all the members occur.
 - $ightharpoonup \varphi_1 := x = x \land y = y \land x = y \land y = x$
 - $ho \varphi_2 := x = x \land y = y \land x \neq y \land y \neq x$
- These are the game sentences associated with the tree Σ[x, y] of height 0.
 We denote this set by Θ_{Σ[x,v]}.
- There are 16 (2⁴) such sentences, 14 of them unsatisfiable.
- The two satisfiable ones are φ_1 and φ_2 defined above.
- ullet By definition of satisfaction, every $\Sigma[x,y]$ -model satisfies precisely one of them.
- Each model satisfies precisely one game sentence and \exists loise wins if A_2 and B_2 satisfy exactly the same game sentence.

Game sentences (one round)

Now consider the play along $\Sigma[x] \hookrightarrow \Sigma[x, y]$.

Assume that A_1 has at least two elements.

 \forall belard has a choice: interpret y by the same element as x, or by a different element.

- (At least) These possible choices are described by $\exists y \cdot x = y \land \exists y \cdot x \neq y$.
- **(At most)** Moreover, these are all the choices available to him. This is described by $\forall y \cdot x = y \lor x \neq y$.

Since $x = y \mid \varphi_1$ and $x \neq y \mid \varphi_2$, the following $\Sigma[x]$ -sentence

$$\gamma_1 \coloneqq \underbrace{\exists y \cdot \varphi_1 \wedge \exists y \cdot \varphi_2}_{\text{at least}} \ \wedge \ \underbrace{\forall y \cdot (\varphi_1 \vee \varphi_2)}_{\text{at most}}$$

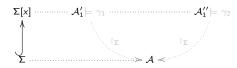
describes all possible \(\psi \) belard's choices.

Assume that A₁ has only one element. Then A_1 has only one expansion A_2 to $\Sigma[x,y]$ such that $A_2 \models \varphi_1$ but $A_2 \not\models \varphi_2$. In this case, $A_1 \models \exists y \cdot \varphi_1 \land \forall y \cdot \varphi_1$.

$$\gamma_2 := \exists v \cdot \varphi_1 \land \forall v \cdot \varphi$$

Game sentences (two rounds)

The game sentences for the tree $\Sigma[x] \hookrightarrow \Sigma[x,y]$ are γ_1,γ_2 . We construct the game sentences for the tree $\Sigma \hookrightarrow \Sigma[x] \hookrightarrow \Sigma[x,y]$.



- lacktriangle Assume that \mathcal{A} has at least two elements.
 - Then any expansion \mathcal{A}'_1 of \mathcal{A} to $\Sigma[x]$ satisfies γ_1 .

The unique game sentence that characterizes the moves along $\Sigma \hookrightarrow \Sigma[x] \hookrightarrow \Sigma[x,y]$ is

$$\exists x \cdot \gamma_1 \land \forall x \cdot \gamma_1$$

- \bigcirc Assume that \mathcal{A} has one element.
 - Then any expansion \mathcal{A}_1'' of \mathcal{A} to $\Sigma[x]$ satisfies γ_2 .

The unique game sentence that characterizes the moves along $\Sigma \hookrightarrow \Sigma[x] \hookrightarrow \Sigma[x,y]$ is

$$\exists x \cdot \gamma_2 \land \forall x \cdot \gamma_2$$

- lacksquare Assume that \mathcal{A} has no elements.
 - There is no expansion of A to $\Sigma[x]$.

The unique game sentence which indicates there are no moves to make is

$$(\land \emptyset) \land \forall x \cdot \lor \emptyset = \top \land \forall x \cdot \bot$$

Gameboard trees again

It will be convenient to have arbitrary gameboard trees (not necessarily perfect).

Definition 6 (Gameboard trees)

A gameboard tree tr of height k is inductively defined as follows:

- k = 0 Any signature Σ is a gameboard tree with the root Σ and height 0.
- $k \Rightarrow k+1$ For any signature Σ , and any finite n, if

 - $\{tr_i\}_{i < n}$ is a family of gameboard trees such that $root(tr_i) = \Sigma[x_i]$ for all i < n, and

then $\Sigma \{ \stackrel{\iota_i}{\hookrightarrow} \operatorname{tr}_i \}_{i < n}$ is a gameboard tree with root Σ and height k + 1.

It should be clear that the generalization is only a matter of convenience:

- Having a winning strategy over all trees obviously implies having a winning strategy over all
 perfect trees.
- But having a winning strategy over all perfect trees also implies having a winning strategy over all trees, since every tree is a subtree of a perfect one.

Game sentences defined

Definition 7 (Game sentences)

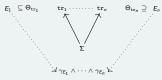
For all gameboard trees \mathtt{tr} with finite root signature, the (finite) set of sentences $\Theta_{\mathtt{tr}}$ is defined as follows:

• height(tr) = 0. In this case, tr consists of a single root node, labelled by Σ , and

$$\Theta_{ ext{tr}} = ig\{ igwedge_{e \in \mathsf{Sen}_b(\Sigma)} \mathrm{e}^{f(e)} \mid f \colon \mathsf{Sen}_b(\Sigma)
ightarrow \{0,1\} ig\},$$

where e^1 stands for e and e^0 stands for $\neg e$ for all $e \in \mathsf{Sen}_b(\Sigma)$.

• height(tr) > 0. Let tr = $\Sigma\{\stackrel{\iota_1}{\hookrightarrow} \operatorname{tr}_1, \ldots, \stackrel{\iota_n}{\hookrightarrow} \operatorname{tr}_n\}$ be a tree and assume that the finite set of sentences Θ_{tr_i} has been defined for all $i \in \{1, \ldots, n\}$.



$$\begin{array}{l} \Theta_{\mathrm{tr}} = \{ \gamma_{E_1} \wedge \ldots \wedge \gamma_{E_n} \mid E_1 \subseteq \Theta_{\mathrm{tr}_1}, \ldots, E_n \subseteq \Theta_{\mathrm{tr}_n} \}, \\ \text{where } \gamma_{E_i} = (\bigwedge_{\varphi \in E_i} \exists x_i \cdot \varphi) \wedge \forall x_i \cdot \bigvee E_i \text{ for all } i \in \{1, \ldots, n\}. \end{array}$$

Each γ_{E_i} describe models whose expansions determine the subset of game sentences $E_i \subseteq \Theta_{\mathtt{tx}_i}$ as follows:

- ullet at least part ullet for all sentences $arphi \in {\it E}_i$ there is an expansion satisfying arphi, and
- at most part for all expansions there is a sentence $\varphi \in E_i$ satisfied by that expansion.

Fraïsse-Hintikka Theorem (part 1)

For each gameboard tree tr with finite root Σ and for each Σ -model A, there exists a unique sentence $\rho \in \Theta_{\operatorname{tr}}$ such that $A \models \rho$.

We proceed by induction on height(tr).

$$height(tr) = 0$$
 It is immediate by definition of satisfaction.

$$\mathtt{height}(\mathtt{tr}) > 0$$

- Let $\operatorname{tr} = \Sigma \{ \stackrel{\iota_1}{\hookrightarrow} \operatorname{tr}_1, \dots, \stackrel{\iota_n}{\hookrightarrow} \operatorname{tr}_n \}$ and let $\mathcal A$ be a Σ -model.
- By inductive hypothesis for each $\Sigma[x_i]$ -expansion A_i of A there is a unique $\gamma_{(A_i, \mathbf{tr}_i)} \in \Theta_{\mathbf{tr}_i}$ with $A_i \models \gamma_{(A_i, \mathbf{tr}_i)}$.
- Let $\Gamma_{(\mathcal{A}, \operatorname{tr}, i)} = \{ \gamma_{(\mathcal{A}_i, \operatorname{tr}_i)} : \mathcal{A}_i \text{ a } \Sigma[x_i] \text{-expansion of } \mathcal{A} \}.$

• Let
$$\gamma_{(\mathcal{A}, \operatorname{tr})} = \bigwedge_{i=1}^{n} \left(\left(\bigwedge_{\varphi \in \Gamma_{(\mathcal{A}, \operatorname{tr}, i)}} \exists x_i \cdot \varphi \right) \wedge \ \forall x_i \cdot \bigvee \Gamma_{(\mathcal{A}, \operatorname{tr}, i)} \right)$$

- Then, $A \models \gamma_{(A, \text{tr})}$ by definitions.
- Now we need to show that $\gamma_{(A,tr)}$ is unique.

- Suppose $A \models \gamma_{E_1} \land \cdots \land \gamma_{E_n}$ for some $E_i \subseteq \Theta_{tr_i}$ $(i = 1, \dots, n)$.
- We show that $E_i = \Gamma_{(A, \text{tr}, i)}$ for each i.
- By definition, $\gamma_{E_i} = (\bigwedge_{\varphi \in E_i} \exists x_i \cdot \varphi) \land \ \forall x_i \cdot \bigvee E_i$.
- The first conjunct implies $E_i \subseteq \Gamma_{(A, \operatorname{tr}, i)}$.
 - ▶ For if $\varphi \in E_i$ then some expansion A_i has $A_i \models \varphi$.
 - ▶ By inductive hypothesis $\varphi = \gamma_{(A_i, \mathbf{tr}_i)}$ (because $\varphi \in \Theta_{\mathbf{tr}_i}$ and so it is unique for A_i).
 - ▶ So $\varphi \in \Gamma_{(\mathcal{A}, \operatorname{tr}, i)}$.
- The second conjunct implies $\Gamma_{(\mathcal{A}, \operatorname{tr}, i)} \subseteq E_i$.
 - ▶ For if $\gamma_{(A_i, \operatorname{tr}_i)} \in \Gamma_{(A, \operatorname{tr}, i)} \setminus E_i$, then the expansion A_i is not covered in E_i .
 - ▶ So $\mathcal{A} \not\models \forall x_i \cdot \bigvee E_i$, contradicting $\mathcal{A} \models \gamma_{E_i}$.
- So $E_i = \Gamma_{(\mathcal{A}, \operatorname{tr}, i)}$.

Fraïsse-Hintikka Theorem (part 2)

For all gameboard trees ${\tt tr}$ with finite root Σ and all Σ -models ${\cal A},\,{\cal B},\,$ the following are equivalent:

- \bullet $\mathcal{A} \approx_{\mathsf{tr}} \mathcal{B}$.
- ② There exists a unique $\rho \in \Theta_{tr}$ such that $A \models \rho$ and $B \models \rho$.

We proceed by induction on height(tr).

height(tr) = 0 By the definition of game sentences.

 $\overline{\text{height(tr)} > 0} \text{ Let tr} = \Sigma \{ \stackrel{\iota_1}{\hookrightarrow} \operatorname{tr}_1, \dots, \stackrel{\iota_n}{\hookrightarrow} \operatorname{tr}_n \} \text{ and let } \mathcal{A} \text{ and } \mathcal{B} \text{ be } \Sigma\text{-models.}$

We show $(1) \Rightarrow (2)$:

- Assume $A \approx_{tr} B$. We will show $\gamma_{(A,tr)} = \gamma_{(B,tr)}$.
- Equivalently, $\Gamma_{(\mathcal{A}, \operatorname{tr}, i)} = \Gamma_{(\mathcal{B}, \operatorname{tr}, i)}$ for all $i \in \{1, \dots, n\}$. We show $\Gamma_{(\mathcal{A}, \operatorname{tr}, i)} \subseteq \Gamma_{(\mathcal{B}, \operatorname{tr}, i)}$:
 - 1 let $\varphi \in \Gamma_{(\mathcal{A}, \operatorname{tr}, i)}$
 - 2 $\mathcal{A}_i \models \varphi$ for some χ_i -expansion \mathcal{A}_i of \mathcal{A}
 - 3 $A_i \approx_{tr} B_i$ for some χ_i -expansion of B
 - 4 $\mathcal{A}_i \models \rho$ and $\mathcal{B}_i \models \rho$ for some unique $\rho \in \Theta_{\mathrm{tr}_i}$
 - $\rho = \varphi$
 - $\varphi \in \Gamma_{(\mathcal{B}, \operatorname{tr}, i)}$

by the definition of $\Gamma_{(\mathcal{A}, \operatorname{tr}, i)}$ since $\mathcal{A} \approx_{\operatorname{tr}} \mathcal{B}$

by the induction hypothesis

by the first part of the proof since $\mathcal{B}_i \models \varphi$ and

 \mathcal{B}_i is an expansion of \mathcal{B} to $\Sigma[x_i]$

We show that $(2) \Rightarrow (1)$:

- Assume $\mathcal{A} \models \rho$ and $\mathcal{B} \models \rho$ for a unique $\rho \in \Theta_{\mathrm{tr}}$.
- Then $\rho = \bigwedge_{i=1}^n \gamma_{E_i}$ for some $E_i \subseteq \Theta_{\mathtt{tr}_i}$, where $\gamma_{E_i} = (\bigwedge_{\varphi \in E_i} \exists x_i \cdot \varphi) \land \ \forall x_i \cdot \bigvee E_i$.
- Let A_i be a $\Sigma[x_i]$ -expansion of A.
- Then $A_i \models e$ for some $e \in E_i$.
- Since $\mathcal{B} \models \gamma_{E_i}$ we have $\mathcal{B} \models \bigwedge_{\varphi \in E_i} \exists x_i \cdot \varphi$.
- In particular, $\mathcal{B} \models \exists x_i \cdot e$.
- So $\mathcal{B}_i \models e$ for some expansion \mathcal{B}_i of \mathcal{B} .
- By inductive hypothesis, $A \approx_{\mathsf{tr}_i} \mathcal{B}$.
- Similarly, for every expansion \mathcal{B}_i there is an expansion \mathcal{A}_i such that $\mathcal{A}_i \approx_{\mathsf{tr}_i} \mathcal{B}_i$.
- So. A ≈_{tr} B.

Fraïsse-Hintikka Theorem (part 3)

For every unnested sentence ρ over a finite signature Σ there exists a gameboard tree tr and a set $\Gamma_{\rho} \subseteq \Theta_{\operatorname{tr}}$ such that $\rho \models \bigvee \Gamma_{\rho}$.

We proceed by induction on the structure of ρ .

$$\rho\in\mathsf{Sen}_{\mathit{b}}(\Sigma)$$

- Let Γ_{ρ} be the set of all sentences in Θ_{Σ} in which ρ occurs only positively (i.e., without negation).
- Then $\rho \models \bigvee \Gamma_{\rho}$.

 $\neg \rho$

- let $\Gamma_{\neg \rho} = \Theta_{tr} \setminus \Gamma_{\rho}$.
- By the inductive hypothesis and Part 1 we get the result.

$\rho_1 \wedge \rho_2$

- By the inductive hypothesis, for i=1,2 we have tr_i and $\Gamma_{\rho_i}\subseteq\Theta_{\operatorname{tr}_i}$ such that $\rho_i\models\vee\Gamma_{\rho_i}$. Note that tr_1 and tr_2 both have root Σ .
- Identifying the root nodes of tr₁ and tr₂ we obtain a tree tr.
- We put $\Gamma_{\rho_1 \wedge \rho_2} = \{ \gamma_1 \wedge \gamma_2 \mid \gamma_1 \in \Gamma_{\rho_1}, \ \gamma_2 \in \Gamma_{\rho_2} \}.$
- Note that each $\gamma_1 \wedge \gamma_2 \in \Theta_{\mathrm{tr}}$.
- Then $\rho_1 \wedge \rho_2 \models \bigvee \Gamma_{\rho_1 \wedge \rho_2}$.

$\exists x \cdot \rho$

- By inductive hypothesis we have tr_1 and $\Gamma_\rho \subseteq \Theta_{\operatorname{tr}_1}$ such that $\rho \models \bigvee \Gamma_\rho$.
- Add a new root Σ and an expansion $\Sigma \hookrightarrow \Sigma[x]$ to get a new tree tr.
- The following are equivalent:

$$\mathcal{A} \models \exists x \cdot \rho \text{ iff}$$

 $\mathcal{A} \models \exists x \cdot \vee \Gamma_{\rho} \text{ iff}$
 $\mathcal{A}_1 \models \vee \Gamma_{\rho} \text{ for some expansion } \mathcal{A}_1 \text{ of } \mathcal{A} \text{ to } \Sigma[x] \text{ iff}$
 $\Gamma(A + r, 1) \cap \Gamma_{\rho} \neq \emptyset.$

- Define $\Gamma_{(\exists x \cdot \rho)} := \{ \gamma_E \mid E \subseteq \Theta_{\text{tr}_1} \text{ and } E \cap \Gamma_\rho \neq \emptyset \}.$
- The following are equivalent:

$$\begin{array}{l} \mathcal{A} \models \exists x \cdot \vee \Gamma_{\rho} \text{ iff} \\ \Gamma_{(\mathcal{A}, \operatorname{tr}, 1)} \cap \Gamma_{\rho} \neq \emptyset \text{ iff (by the definition of } \Gamma_{(\exists x \cdot \rho)}) \\ \mathcal{A} \models \vee \Gamma_{(\exists x \cdot \rho)}. \end{array}$$

• Hence, $\exists x \cdot \rho \models \forall \Gamma_{(\exists x \cdot \rho)}$.

Corollary 8

Let A and B be models over some signature Σ . The following are equivalent:

- $\mathbf{0} \ \mathcal{A} \equiv \mathcal{B}.$
- ② \exists loise has a winning strategy for all games $EF_{tr}(A \upharpoonright_{\Sigma_f}, \mathcal{B} \upharpoonright_{\Sigma_f})$ for all finite subsignatures $\Sigma_f \subseteq \Sigma$ and all gameboard trees tr with root Σ_f .
- **3** $A \upharpoonright_{\Sigma_f} \approx_{\operatorname{tr}} B \upharpoonright_{\Sigma_f}$ for all finite subsignatures $\Sigma_f \subseteq \Sigma$ and all gameboard trees tr with root Σ_f .

Equivalence of (2) and (3) was shown in Lecture 5 (Lemma 18).

$$(1) \Rightarrow (2)$$

- Let $\Sigma_f \subseteq \Sigma$ be a finite signature and let tr be a gameboard tree.
- $\mathcal{A} \equiv \mathcal{B}$ implies $\mathcal{A} \upharpoonright_{\Sigma_f} \equiv \mathcal{B} \upharpoonright_{\Sigma_f}$.
- By Fraïssé-Hintikka Theorem part 1, we have $\gamma_{(\mathcal{A}, \mathrm{tr})} = \gamma_{(\mathcal{B}, \mathrm{tr})}$, as these sentences are unique and satisfied by both \mathcal{A} and \mathcal{B} .
- By part 2, $\mathcal{A} \upharpoonright_{\Sigma_f} \approx_{\operatorname{tr}} \mathcal{B} \upharpoonright_{\Sigma_f}$.
- So \exists loise has a winning strategy for $EF_{tr}(A \upharpoonright_{\Sigma_f}, \mathcal{B} \upharpoonright_{\Sigma_f})$.

 $(2) \Rightarrow (1)$

- Assume ∃loise has a winning strategy for all games EF_{tr}(A ↾_{Σ_f}, B ↾_{Σ_f}) for all finite signatures Σ_f ⊆ Σ and all gameboard trees tr with root Σ_f.
- Let $\mathcal{A} \models \rho$ for some Σ -sentence ρ .
- Then ρ is a Σ_f -sentence for some finite signature $\Sigma_f \subseteq \Sigma$. By the satisfaction condition, $\mathcal{A} \upharpoonright_{\Sigma_f} \models \rho$.
- By Fraïssé-Hintikka Theorem part 3, there is a set $\Gamma_{\rho} \subseteq \Theta_{tr}$ such that $\rho \models \bigvee \Gamma_{\rho}$.
- Then $A \upharpoonright_{\Sigma_f} \models \bigvee \Gamma_{\rho}$.
- Since $\mathcal{A} \upharpoonright_{\Sigma_f} \approx_{\operatorname{tr}} \mathcal{B} \upharpoonright_{\Sigma_f}$, by parts 1 and 2, $\mathcal{A} \upharpoonright_{\Sigma_f}$ and $\mathcal{B} \upharpoonright_{\Sigma_f}$ satisfy precisely the same game sentence in Γ_ρ .
- So $\mathcal{B} \upharpoonright_{\Sigma_f} \models \bigvee \Gamma_{\rho}$.
- By the satisfaction condition, $\mathcal{B} \models \rho$.
- ullet By symmetry, it follows that $\mathcal{A}\equiv\mathcal{B}.$

