Many-Sorted First-Order Model Theory lecture 3

Daniel Găină

Institute of Mathematics for Industry Kyushu University

Congruences

Exercise 1

 $h(t^{\mathcal{A}}) = t^{\mathcal{B}}$ for all signatures Σ , all Σ -homomorphisms $h: \mathcal{A} \to \mathcal{B}$ and all Σ -terms t.

Definition 2 (Congruence)

Let Σ be a signature and \mathcal{A} be a Σ -model. A congruence $\equiv \{ \equiv_s \}_{s \in S}$ on \mathcal{A} is

- **1** an equivalence on $|\mathcal{A}|$, i.e. an S-sorted relation $\equiv_s \subseteq \mathcal{A}_s \times \mathcal{A}_s$ for all $s \in S$ satisfying the following properties:
 - (Reflexivity) $\frac{}{a \equiv_s a}$ for all $s \in S$ and $a \in A_s$
 - (Symmetry) $\frac{a_1 \equiv_s a_2}{a_2 \equiv a_1}$ for all $s \in S$ and $a_1, a_2 \in A_s$
 - $\qquad \qquad \textbf{(\textit{Transitivity})} \ \, \frac{a_1 \equiv_s a_2}{a_1 \equiv_s a_3} \equiv_s a_3 } \ \, \text{for all } s \in S \ \, \text{and} \ \, a_1, a_2, a_3 \in \mathcal{A}_s$
- \bigcirc compatible with the function symbols in Σ :
 - $(Congruence) \frac{a_1 \equiv_{s_1} a'_1 \dots a_n \equiv_{s_n} a'_n}{\sigma^{\mathcal{A}}(a_1, \dots, a_n) \equiv_{s} \sigma^{\mathcal{A}}(a'_1, \dots, a'_n)}$ for all $(\sigma: s_1 \dots s_n \to s) \in F$ and $a_i, a_i' \in A_{s_i}$ for all $i \in \{1, \dots, n\}$.
- We will drop the subscript s from \equiv_s whenever it is clear from the context.
- We write $(a_1, \ldots, a_n) \equiv (a'_1, \ldots, a'_n)$ when $a_1 \equiv a'_1$ and \ldots and $a_n \equiv a'_n$.

D. Găină (IMI)

Examples of congruences

Example 3

$$\Sigma_{\text{NAT}} = (S_{\text{NAT}}, F_{\text{NAT}})$$

Let $\mathbb N$ be the $\Sigma_{\mathtt{NAT}}$ -model of natural numbers which interprets all symbols in $\Sigma_{\mathtt{NAT}}$ in the usual way. We define the congruence \equiv on $\mathbb N$ as follows:

$$n_1 \equiv n_2$$
 if $(n_1 \mod 2) = (n_2 \mod 2)$ for all $n_1, n_2 \in \mathbb{N}$.

Lemma 4

The relation \equiv defined in Example 3 is a congruence.

Proof.

- Reflexivity: $n \equiv n$ iff $n \mod 2 = n \mod 2$
- Symmetry: $n_1 \equiv n_2$ iff $(n_1 \mod 2) = (n_2 \mod 2)$ iff $(n_2 \mod 2) = (n_1 \mod 2)$ iff $n_2 \equiv n_1$
- Transitivity: If $n_1 \equiv n_2$ and $n_2 \equiv n_3$ then $(n_1 \mod 2) = (n_2 \mod 2)$ and $(n_2 \mod 2) = (n_3 \mod 2)$, which implies $(n_1 \mod 2) = (n_3 \mod 2)$. Hence, $n_1 \equiv n_3$.
- Compatibility with F_{NAT}:
 - $ightharpoonup 0^{\mathbb{N}} \equiv 0^{\mathbb{N}} \text{ iff } 0 \text{ mod } 2 = 0 \text{ mod } 2 \text{ iff } 0 = 0.$
 - ▶ If $n_1 \equiv n_2$ then $(n_1 \mod 2) = (n_2 \mod 2)$ iff $(n_1 + 1) \mod 2 = (n_2 + 1) \mod 2$ iff $s^{\mathbb{N}} n_1 \mod 2 = s^{\mathbb{N}} n_2 \mod 2$ iff $s^{\mathbb{N}} n_1 \equiv s^{\mathbb{N}} n_2$.

Examples of congruences

Example 5

$$\Sigma_{\text{INT}} = (S_{\text{INT}}, F_{\text{INT}})$$

$$0$$

$$0$$
Int

Let $\Gamma \coloneqq \{ \text{s p } t = t \mid t \in \mathcal{T}_{(\Sigma_{\text{INT}})} \} \cup \{ \text{p s } t = t \mid t \in \mathcal{T}_{(\Sigma_{\text{INT}})} \}.$ We define the congruence \equiv_{Γ} on $\mathcal{T}_{(\Sigma_{\text{INT}})}$ as follows:

$$t_1 \equiv_{\Gamma} t_2 \text{ if } \Gamma \models t_1 = t_2 \text{ for all } t_1, t_2 \in \mathcal{T}_{(\Sigma_{\mathtt{INT}})}$$

Lemma 6

The relation \equiv_{Γ} defined in Example 5 is a congruence.

Proof.

- Reflexivity: $t \equiv_{\Gamma} t$ iff $\Gamma \models t = t$ iff $A \models t = t$ for all $A \in \Gamma^{\bullet}$ iff $t^{A} = t^{A}$ for all $A \in \Gamma^{\bullet}$.
- Symmetry: $t_1 \equiv_{\Gamma} t_2$ iff $\Gamma \models t_1 = t_2$ iff $\mathcal{A} \models t_1 = t_2$ for all $\mathcal{A} \in \Gamma^{\bullet}$ iff $t_1^{\mathcal{A}} = t_2^{\mathcal{A}}$ for all $\mathcal{A} \in \Gamma^{\bullet}$ iff $t_2^{\mathcal{A}} = t_1^{\mathcal{A}}$ for all $\mathcal{A} \in \Gamma^{\bullet}$ iff $\mathcal{A} \models t_2 = t_1$ for all $\mathcal{A} \in \Gamma^{\bullet}$ iff $\Gamma \models t_2 = t_1$ iff $t_2 \equiv_{\Gamma} t_1$.

D. Găină (IMI) Model Theory 4/29

Proof of Lemma 6.

• Transitivity: Assuming $t_1 \equiv_{\Gamma} t_2$ and $t_2 \equiv_{\Gamma} t_3$, we show $t_1 \equiv_{\Gamma} t_3$:

```
\Gamma \models t_1 = t_2 \text{ and } \Gamma \models t_2 = t_3
                                                                                                                                                        by definition
2 \mathcal{A} \models t_1 = t_2 for all \mathcal{A} \in \Gamma^{\bullet}
                                                                                                                                                        since \Gamma \models t_1 = t_2
3 t_1^{\mathcal{A}} = t_2^{\mathcal{A}} for all \mathcal{A} \in \Gamma^{\bullet}
                                                                                                                                                        by definition
4 \mathcal{B} \models t_2 = t_3 \text{ for all } \mathcal{B} \in \Gamma^{\bullet}
5 t_2^{\mathcal{B}} = t_3^{\mathcal{B}} \text{ for all } \mathcal{B} \in \Gamma^{\bullet}
                                                                                                                                                        since \Gamma \models t_2 = t_3
                                                                                                                                                        since \Gamma \models t_2 = t_3
\begin{array}{ll} 5 & t_1^{\mathcal{A}} = t_2^{\mathcal{A}} \text{ and } t_2^{\mathcal{A}} = t_3^{\mathcal{A}} \text{ for all } \mathcal{A} \in \Gamma^{\bullet} \\ 7 & t_1^{\mathcal{A}} = t_3^{\mathcal{A}} \text{ for all } \mathcal{A} \in \Gamma^{\bullet} \end{array} \qquad \begin{array}{ll} \text{from 3 and 5} \\ \text{since the equ} \end{array}
```

since the equality is transitive

8 $\Gamma \models t_1 = t_3$ by definition t1 ≡r t3 by definition

• Compatibility with F_{INT} : Assuming that $t_1 \equiv_{\Gamma} t_2$ we show that s $t_1 \equiv_{\Gamma} s$ t_2 :

```
1 \Gamma \models t_1 = t_2
                                                                                                                  since t_1 \equiv_{\Gamma} t_2
2 \mathcal{A} \models t_1 = t_2 for all \mathcal{A} \in \Gamma^{\bullet} since \Gamma \models t_1 = t_2
 \begin{array}{ll} 3 & t_1^{\mathcal{A}} = t_2^{\mathcal{A}} \text{ for all } \mathcal{A} \in \Gamma^{\bullet} \\ 4 & \mathbf{s}^{\mathcal{A}} t_1^{\mathcal{A}} = \mathbf{s}^{\mathcal{A}} t_2^{\mathcal{A}} \text{ for all } \mathcal{A} \in \Gamma^{\bullet} \end{array} \qquad \text{by definition} \\  \begin{array}{ll} \text{since } s^{\mathcal{A}} : \mathcal{A}_{\mathrm{Int}} \to \mathcal{A}_{\mathrm{Int}} \text{ is a function} \end{array} 
5 (s t_1)^{\mathcal{A}} = (s t_2)^{\mathcal{A}} for all \mathcal{A} \in \Gamma^{\bullet} by definition
     \Gamma \models s t_1 = s t_2
                                                                                                                    by definition
             s t_1 \equiv_{\Gamma} s t_2
                                                                                                                     by definition
```

Similarly, one can show that p $t_1 \equiv_{\Gamma} p \ t_2$ assuming $t_1 \equiv_{\Gamma} t_2$.

Exercise 7

Let Γ be the set of sentences defined in Example 5. Prove that $T_{(\Sigma_{\text{TMT}})}/_{\equiv_{\Gamma}} \cong \mathbb{Z}$.

D. Găină (IMI) 5 / 29

Congruence generated by equations

Theorem 8

Let Γ be a set of equations over Σ .

The relation $\equiv_{\Gamma} := \{(t_1, t_2) \mid \Gamma \models t_1 = t_2\}$ is a congruence on T_{Σ} .

Proof.

By noting that the arguments used in the proof of Lemma 6 can be used for any signature and any set of equations, not only for Σ_{INT} and Γ defined in Example 5.

Kernel

Example 9

Let Σ be a signature and $h: \mathcal{A} \to \mathcal{B}$ a Σ -homomorphism. We define the congruence $\ker(h) = \{\ker(h)_s\}_{s \in S}$ on \mathcal{A} as follows: $a \ker(h) b \text{ if } h(a) = h(b)$ for all sorts $s \in S$ and all elements $a, b \in \mathcal{A}_s$.

Lemma 10

The kernel of h, ker(h), defined in Example 9 is a congruence on A.

Proof.

- Reflexivity: Obviously, h(a) = h(a), which implies $(a, a) \in \ker(h)$.
- Symmetry: We assume $(a, b) \in \ker(h)$ and we show that $(b, a) \in \ker(h)$. We have: $a \ker(h)$ b iff h(a) = h(b) iff h(b) = h(a) iff b $\ker(h)$ a iff $(b, a) \in \ker(h)$.
- Transitivity: We assume $(a, b) \ker(h)$ and $(b, c) \in \ker(h)$, and we show that $(a, c) \in \ker(h)$. Since $(a, b) \in \ker(h)$ and $(b, c) \in \ker(h)$, we have h(a) = h(b) and h(b) = h(c). We obtain h(a) = h(c). Hence, $(a, c) \in \ker(h)$.
- Compatibility with F: Let $(\sigma : w \to s) \in F$.

We assume that $(a, b) \in \ker(h)_w$ and we prove that $(\sigma^{\mathcal{A}}(a), \sigma^{\mathcal{A}}(b)) \in \ker(h)_s$. Since $(a, b) \in \ker(h)_w$, we have $h_w(a) = h_w(b)$.

It follows that $h_s(\sigma^{\mathcal{A}}(a)) = \sigma^{\mathcal{B}}(h_w(a)) = \sigma^{\mathcal{B}}(h_w(b)) = h_s(\sigma^{\mathcal{A}}(b))$. Hence, $(\sigma^{\mathcal{A}}(a), \sigma^{\mathcal{A}}(b)) \in \ker(h)_s$.

D. Găină (IMI)

Quotient

Notation 11

Let \equiv be a congruence on a Σ -model \mathcal{A} . Let $s \in S$ and $a \in \mathcal{A}_s$. The class of a is $[a] \coloneqq \{a' \in \mathcal{A}_s \mid a \equiv a'\}$ sometimes denoted also by $a/_{\equiv}$.

Fact 12

Note that $[a] \subseteq A_s$ for all $s \in S$ and $a \in A_s$.

This means that \equiv determines a partition of the universe $|\mathcal{A}|$.

Example 13

Consider the congruence defined in Example 3. Then:

- $\bullet \ [0] = \{0, 2, 4, 6, \dots\}$
- $[1] = \{1, 3, 5, 7, \dots\}$

Example 14

Consider the congruence defined in Example 5. Then:

- $[0] = \{0, p s 0, s p 0, p s p s 0, ...\}$
- $[p \ 0] = \{p \ 0, p \ s \ p \ 0, s \ p \ p \ 0, p \ s \ p \ s \ 0 \dots \}$

:

Notation 15

If $a=(a_1,\ldots,a_n)\in\mathcal{A}_{s_1}\times\cdots\times\mathcal{A}_{s_n}$ then we let [a] denote the tuple $([a_1],\ldots,[a_n])$.

Definition 16 (Quotient structures)

Let \equiv be a congruence on a Σ -model \mathcal{A} .

The *quotient structure of* \mathcal{A} *modulo* \equiv is the Σ -structure [\mathcal{A}] (also denoted $\mathcal{A}/_{\equiv}$) defined below:

- $[A]_s = \{[a] \mid a \in A_s\}$ for all sorts $s \in S$,
- for all function symbols $(\sigma: w \to s) \in F$, the function $\sigma^{[\mathcal{A}]} : [\mathcal{A}]_w \to [\mathcal{A}]_s$ is defined by $\sigma^{[\mathcal{A}]}([a]) = [\sigma^{\mathcal{A}}(a)]$ for all $a \in \mathcal{A}_w$;
- for all relation symbols $(\pi: w) \in P$, the relation $\pi^{[A]}$ is defined by $\pi^{[A]} = \{[a] \mid a \in \pi^A\}$.

Lemma 17

[A] is well-defined.

Proof.

We show that $\sigma^{[\mathcal{A}]}: [\mathcal{A}]_w \to [\mathcal{A}]_s$ is a function: if [a] = [b] then $a \equiv b$, which implies $\sigma^{\mathcal{A}}(a) \equiv \sigma^{\mathcal{A}}(b)$, and we get $\sigma^{[\mathcal{A}]}([a]) = [\sigma^{\mathcal{A}}(a)] = [\sigma^{\mathcal{A}}(b)] = \sigma^{[\mathcal{A}]}([b])$.

D. Găină (IMI) Model Theory 9 / 29

Basic set of sentences

Definition 18 (Basic set of sentences)

A set of Σ -sentences Γ is *basic* if there exists a Σ -model \mathcal{A}_{Γ} such that for all Σ -models \mathcal{A} ,

 $\mathcal{A} \models \Gamma$ iff there exists a homomorphism $\mathcal{A}_{\Gamma} \to \mathcal{A}$.

We say that \mathcal{A}_{Γ} is a *basic model* of Γ . If in addition the homomorphism $\mathcal{A}_{\Gamma} \to \mathcal{A}$ is unique then the set Γ is called *epi-basic*.

Theorem 19

Any set of atomic sentences Γ is epi-basic basic.

Proof.

Let $\equiv_{\Gamma} := \{(t_1, t_2) \mid \Gamma \models t_1 = t_2\}$ be the congruence on T_{Σ} .

The basic model A_{Γ} is obtained from $T_{\Sigma}/_{\equiv_{\Gamma}}$ by interpreting each $(\pi: w) \in P$ as follows:

$$\pi^{(\mathcal{A}_{\Gamma})} := \{ [t] \mid \Gamma \models \pi(t) \}$$

We show that $\mathcal{A} \models \Gamma$ iff there exists a unique homomorphism $\mathcal{A}_{\Gamma} \to \mathcal{A}$.

- 4 ロ ト 4 部 ト 4 章 ト 4 章 ト - 章 - 夕久()

Proof of Theorem 19.

 \Rightarrow Assuming that $\mathcal{A} \models \Gamma$ we show that there exists a unique $h : \mathcal{A}_{\Gamma} \to \mathcal{A}$.

We define $h: A_{\Gamma} \to A$ by $h([t]) = t^{A}$ for all terms $t \in T_{\Sigma}$.

- We show that h is well-defined
 - Assuming that $[t_1] = [t_2]$ we show that $h([t_1]) = h([t_2])$:

 - 1 $h([t_1]) = t_1^A$ by definition 2 $h([t_2]) = t_2^A$ by definition 3 $\Gamma \models t_1 = t_2$ since $t_1 \equiv_{\Gamma} t_2$ 4 $A \models t_1 = t_2$ since $A \models_{\Gamma}$ and $\Gamma \models_{\Gamma} t_1 = t_2$ 5 $t_1^A = t_2^A$ since $A \models_{\Gamma} t_1 = t_2$ 6 $h([t_1]) = h([t_2])$ by the definition of h
 - $h(\sigma^{\mathcal{A}_{\Gamma}}([t])) = h([\sigma(t)]) = \sigma(t)^{\mathcal{A}} = \sigma^{\mathcal{A}}(t^{\mathcal{A}}) = \sigma^{\mathcal{A}}(h([t])).$
 - Assuming that $[t] \in \pi^{(A_{\Gamma})}$ we show that $h([t]) \in \pi^{A}$:

 - $\begin{array}{ll} 1 & \Gamma \models \pi(t) \\ 2 & \mathcal{A} \models \pi(t) \\ 3 & t^{\mathcal{A}} \in \pi^{\mathcal{A}} \end{array} \qquad \begin{array}{ll} \text{by the definition of } \mathcal{A}_{\Gamma} \\ \text{since } \Gamma \models \pi(t) \text{ and } \mathcal{A} \models \Gamma \\ \text{by the definition of } \models \end{array}$

 - 4 $h([t]) \in \pi^A$ by the definition of h
- We show that h is unique. Let $g: A_{\Gamma} \to A$ be another homomorphism.

Then $g([t]) = g(t^{A_{\Gamma}}) = t^{A} = h(t^{A_{\Gamma}}) = h([t])$ for all terms $t \in T_{\Sigma}$. Hence, h = g.

11 / 29

Proof of Theorem 19.

 \leftarrow Assuming a homomorphism $h: \mathcal{A}_{\Gamma} \to \mathcal{A}$ we prove $\mathcal{A} \models \Gamma$.

- **1** Assuming that $t_1 = t_2 \in \Gamma$ we show $A \models t_1 = t_2$:

 - $\begin{array}{lll} 1 & t_1 \equiv_\Gamma t_2 & \text{since } \Gamma \models t_1 = t_2 \\ 2 & h([t_1]) = h([t_2]) & \text{since } [t_1] = [t_2] \\ 3 & t_1^{\mathcal{A}} = t_2^{\mathcal{A}} & \text{since } h([t_i]) = t_i^{\mathcal{A}} \\ 4 & \mathcal{A} \models t_1 = t_2 & \text{by the definition of } \models \end{array}$
- ② Assuming that $\pi(t) \in \Gamma$ we show $A \models \pi(t)$:
 - $[t] \in \pi^{(\mathcal{A}_{\Gamma})}$ since $\Gamma \models \pi(t)$
 - 2 $h([t]) \in \pi^{\mathcal{A}}$ since h is a homomorphism 3 $t^{\mathcal{A}} \in \pi^{\mathcal{A}}$ since $h([t]) = t^{\mathcal{A}}$ 4 $\mathcal{A} \models \pi(t)$ by the definition of \models

Exercise 20

Show that the basic models of epi-basic sentences are unique up to an isomorphism, that is, if Γ is epi-basic and \mathcal{A}_{Γ} and \mathcal{B}_{Γ} are basic models of Γ then $\mathcal{A}_{\Gamma} \cong \mathcal{B}_{\Gamma}$.

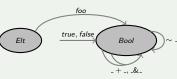
イロト イ団ト イミト イミト 一恵

Convention

- For the sake of simplicity, we will identify a variable only by its name and sort provided that there is no danger of confusion.
- Using this convention, each inclusion $\iota \colon \Sigma \hookrightarrow \Sigma'$ is canonically extended to an inclusion of sentences $\iota \colon Sen(\Sigma) \hookrightarrow Sen(\Sigma')$, which corresponds to the approach of classical model theory.
- This convention simplifies the presentation greatly.
- A situation when we cannot apply this convention arises when translating a Σ -sentence $\forall X \cdot \gamma$ along the inclusion $\iota_X : \Sigma \hookrightarrow \Sigma[X]$.

Classical first-order reasoning

Example 21



Let Γ be a set of sentences over Σ_{B00L} which consists of:

- $lue{1} \sim ext{true} = ext{false} ext{ and } \sim ext{false} = ext{true},$
- ② $\forall y \cdot y + \sim y = true \text{ and } \forall y \cdot y + y = y$,

By the ordinary rules of first-order deduction we get:

true
$$\stackrel{(2)}{=} foo(x) + \sim foo(x)$$

$$\stackrel{(4)}{=} foo(x) + foo(x)$$

$$\stackrel{(2)}{=} foo(x)$$

$$\stackrel{(3)}{=} foo(x) & foo(x)$$

$$\stackrel{(4)}{=} foo(x) & \sim foo(x)$$

$$\stackrel{(3)}{=} false$$

$$(1)$$

As a result of this deduction, one would expect that true = false holds in all algebras satisfying Γ defined in Example 21. But this is not the case.

Classical first-order reasoning

Example 22

Let Σ_{BOOL} and Γ be the signature and the set of sentences defined in Example 21. Let \mathcal{A} be $T_{(\Sigma_{\text{ROOL}})}/\equiv_{\Gamma}$:

- $A_{Elt} = \emptyset$ and $A_{Bool} = \{true, false\},\$
- ullet \sim is interpreted as the negation, & as the conjunction and + as the disjunction, and
- $foo^{\mathcal{A}}$ is the empty function.
- $\mathcal{A} \models_{(\Sigma_{BOOL})} \forall x \cdot \sim foo(x) = foo(x)$, since there is no function from $\{x\}$ to $\mathcal{A}_{E|t} = \emptyset$.
- It follows that $\mathcal{A} \models_{(\Sigma_{RDDL})} \Gamma$ but $\mathcal{A} \not\models_{(\Sigma_{RDDL})} true = false$.
- This means that the usual first-order rules of deduction are not sound in the many-sorted case.
- This already shows that passing from unsorted to the many-sorted case is not straightforward as one would expect.

Entailment relations

Table: Entailment properties

Definition 23 (Entailment relation)

An entailment relation is a family of binary relations between sets of sentences indexed by signatures, that is, $\vdash := \{\vdash_{\Sigma}\}_{\Sigma \in |\text{Sig}|}$ and $\vdash_{\Sigma} \subseteq \mathcal{P}(\text{Sen}(\Sigma)) \times \mathcal{P}(\text{Sen}(\Sigma))$ for all $\Sigma \in |\text{Sig}|$, closed under the properties described in the table above.

Lemma 24

The satisfaction relation \models is an entailment relation.

Proof.

Obviously \models is monotonic, it is closed under unions and it is transitive. The closure of \models under signature morphisms is a direct consequence of the satisfaction condition.

Entailment relations

Definition 25 (Soundness)

An entailment relation \vdash is **sound** if $\vdash \subseteq \models$.

Definition 26 (Completeness)

An entailment relation \vdash is *complete* if $\models \subseteq \vdash$.

Definition 27 (Compactness)

An entailment relation \vdash is *compact* if for each entailment $\Gamma \vdash_{\Sigma} E$ and each finite set $E_f \subseteq E$ there exists a finite signature $\Sigma_f \subseteq \Sigma$ and a finite set $\Gamma_f \subseteq \Gamma$ such that $\Gamma_f \vdash_{\Sigma_f} E_f$.

In Definition 27, both Γ_f and E_f are sets of sentences over the signature Σ_f .

D. Găină (IMI)

Largest compact entailment relation

Lemma 28

For any entailment relation \vdash there exists the largest compact entailment (sub)relation \vdash ^c \subset \vdash :

• $\Gamma \vdash_{\Gamma}^{c} E$ if for any finite $E_f \subset E$ there exist $\Sigma_f \subset \Sigma$ finite and $\Gamma_f \subset \Gamma$ finite such that $\Gamma_f \vdash_{\Sigma_f} E_f$.

Proof.

Firstly, we show that \vdash^c satisfies the entailment properties defined on page 16.

• Monotonicity: Assume $\Gamma \subseteq \Gamma'$. Let $\Gamma_f \subseteq \Gamma$ be a finite set.

```
\Gamma_f \subset \operatorname{Sen}(\Sigma_f) for some finite signature \Sigma_f \subset \Sigma since \Gamma_f is finite

\begin{array}{ccc}
2 & \Gamma_f & \vdash_{\Sigma_f} \Gamma_f \\
3 & \Gamma' & \vdash_{\Sigma}^c \Gamma
\end{array}

                                                                                                                                           by (Monotonicity)
                                                                                                                                           since \Gamma_f \subset \Gamma \subset \Gamma'
```

• Transitivity: Assume that $\Gamma \vdash^{c}_{\Gamma} \Gamma'$ and $\Gamma' \vdash^{c}_{\Gamma} \Gamma''$.

```
let \Gamma''_{\mathfrak{f}} \subset \Gamma'' be a finite subset
```

$$2 \qquad \Gamma'_f \vdash_{\Gamma_0}^f \Gamma'_f \text{ for some finite signature } \Sigma_0 \subseteq \Sigma \text{ and finite set } \Gamma'_f \subseteq \Gamma' \\ 3 \qquad \Gamma_f \vdash_{\Sigma_1} \Gamma'_f \text{ for some finite signature } \Sigma_1 \subseteq \Sigma \text{ and finite set } \Gamma_f \subseteq \Gamma \\ \end{cases}$$

$$\begin{array}{ll}
\Sigma_f := \Sigma_0 \cup \Sigma_1 \text{ is finite} \\
\Sigma_f \vdash \Sigma_f \Gamma_f''
\end{array}$$

5
$$\Gamma'_f \vdash_{\Sigma_f} \Gamma''_f$$

$$\begin{array}{ccc}
6 & \Gamma_f \vdash_{\Sigma_f} \Gamma_f' \\
8 & \Gamma_f \vdash_{\Sigma_f} \Gamma_f'' \\
9 & \Gamma \vdash_{\Sigma} \Gamma''
\end{array}$$

8
$$\Gamma_f \vdash_{\Sigma_c} \Gamma_f'$$

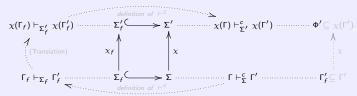
since
$$\Gamma' \vdash_{\Sigma}^{c} \Gamma''$$

since $\Gamma \vdash_{\Sigma}^{c} \Gamma'$
since Σ_0 and Σ_1 are finite
from 2, by (Translation)
from 3, by (Translation)

Proof of Lemma 28.

- Union: Assume that $\Gamma \vdash^{c}_{\Sigma} \varphi$ for all $\varphi \in \Phi$. Let $\Phi_{f} \subseteq \Phi$ be a finite subset.
 - for each $\varphi \in \Phi_f$ there exist $\Sigma_{\varphi} \subset \Sigma$ fine and since $\Gamma \vdash^{\mathsf{c}}_{\mathsf{c}} \varphi$ for all $\varphi \in \Phi_f$ $\Gamma_f \subseteq \Gamma$ finite such that $\Gamma_{\varphi} \vdash_{\Sigma_{\varphi}} \varphi$
 - $\Sigma_f \coloneqq \bigcup_{\varphi \in \Phi_f} \Sigma_{\varphi}$ is finite
 - 3 $\Gamma_{\varphi} \vdash_{\Sigma_f} \varphi$ for all $\varphi \in \Phi_f$
 - 4 $\Gamma_f := \bigcup_{\varphi \in \Phi_f} \Gamma_{\varphi}$ is finite
 - 5 $\Gamma_f \vdash_{\Sigma_f} \varphi$ for all $\varphi \in \Phi_f$
 - $\begin{array}{ccc}
 6 & \Gamma_f \vdash_{\Sigma_f} \Phi_f \\
 7 & \Gamma \vdash_{\Sigma}^c \Phi
 \end{array}$

- since Φ_f is finite and Σ_{φ} is finite for all $\varphi \in \Phi_f$
- from 1, by (Translation)
- since Φ_f is finite and Γ_{φ} is finite for all $\varphi \in \Phi_f$ from 3 and 4, by (Monotonicity) and (Transitivity)
- by (Union)
- since $\Phi_f \subseteq \Phi$ is an arbitrary finite subset of Φ
- *Translation:* Assume $\Gamma \vdash^{c}_{\Sigma} \Gamma'$ and $\chi : \Sigma \to \Sigma'$. Let $\Phi' \subseteq \chi(\Gamma')$ be a finite subset.



- $\chi(\Gamma'_f) = \Phi'$ for some $\Gamma'_f \subseteq \Gamma'$ finite
- $\begin{array}{ll} 2 & \Gamma_f \vdash_{\Sigma_f} \Gamma_f' \text{ for some } \Sigma_f \subseteq \Sigma \text{ finite and } \Gamma_f \subseteq \Gamma \text{ finite} \\ 3 & \chi(\Gamma_f) \vdash_{\Sigma_f'} \chi(\Gamma_f') \end{array} \qquad \text{by the definition of } \vdash^c \\ \text{by (Translation), since}$
- $\chi(\Gamma) \vdash^{c}_{\Sigma'} \chi(\Gamma')$

- since Φ' is finite

 - by (Translation), since ⊢ is an entailment relation
 - by the definition of \vdash^c

Secondly, by its definition, \vdash^c is the largest compact entailment relation included in \vdash .

Basic first-order proof rules

For the rest of the lecture, we restrict the sentences to

- (ground) equations t = t', and
- ② (ground) relations $\pi(t_1,\ldots,t_n)$.

$$(R) \frac{\Gamma \vdash_{\Sigma} t = t'}{\Gamma \vdash_{\Sigma} t = t'} \qquad (T) \frac{\Gamma \vdash_{\Sigma} t = t' \qquad \Gamma \vdash_{\Sigma} t' = t''}{\Gamma \vdash_{\Sigma} t = t''}$$

$$(\mathsf{F})\frac{\Gamma \vdash_{\Sigma} t_1 = t_1' \dots \Gamma \vdash_{\Sigma} t_n = t_n'}{\Gamma \vdash_{\Sigma} \sigma(t_1, \dots, t_n) = \sigma(t_1', \dots, t_n')} \qquad (\mathsf{P})\frac{\Gamma \vdash_{\Sigma} \pi(t_1, \dots, t_n) \quad \Gamma \vdash_{\Sigma} t_1 = t_1' \dots \Gamma \vdash_{\Sigma} t_n = t_n'}{\Gamma \vdash_{\Sigma} \pi(t_1', \dots, t_n')}$$

Table: Basic first-order proof rules

Definition 29 (Basic entailment relation)

The basic entailment relation \vdash^b is the least binary relation on sets of sentences closed under

- 1 all entailment properties described on page 16 except (Translation), and
- 2 the basic proof rules described above.

Basic first-order entailment relation

Remark 30

According to Definition $29 \vdash^b = \bigcup_{i \in \omega} \vdash^i$, where the chain of relations $\vdash^0, \vdash^1, \ldots$ is defined inductively:

(Monotonicity)
$$\frac{\Gamma \subseteq \Gamma'}{\Gamma' \vdash^0_\Sigma \Gamma}$$

(Transitivity)
$$\frac{\Gamma \vdash_{\Sigma}^{i} \Gamma' \qquad \Gamma' \vdash_{\Sigma}^{i} \Gamma''}{\Gamma \vdash_{\Sigma}^{i+1} \Gamma''}$$

$$\text{(Union)}\ \frac{\Gamma \vdash_{\Sigma}^{i} \varphi\ \textit{for all}\ \varphi \in \Phi}{\Gamma \vdash_{\Sigma}^{i+1} \Phi}$$

$$(\mathsf{R})\ \overline{\Gamma\vdash^0_\Sigma\ t=t}$$

(S)
$$\frac{\Gamma \vdash_{\Sigma}^{i} t = t'}{\Gamma \vdash_{\Sigma}^{i+1} t' = t}$$

$$(\mathsf{T}) \ \frac{\Gamma \vdash_{\Sigma}^{i} t = t'}{\Gamma \vdash_{\Sigma}^{i+1} t = t''} \frac{\Gamma \vdash_{\Sigma}^{i} t' = t''}{\Gamma \vdash_{\Sigma}^{i+1} t = t''}$$

(F)
$$\frac{\Gamma \vdash_{\Sigma}' t_1 = t_1' \dots \Gamma \vdash_{\Sigma}' t_n = t_n'}{\Gamma \vdash_{\Sigma}^{i+1} \sigma(t_1, \dots, t_n) = \sigma(t_1', \dots, t_n')}$$

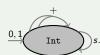
$$(\mathsf{F}) \ \frac{\Gamma \vdash_{\Sigma}^{i} t_{1} = t_{1}' \ldots \Gamma \vdash_{\Sigma}^{i} t_{n} = t_{n}'}{\Gamma \vdash_{\Sigma}^{i+1} \sigma(t_{1}, \ldots, t_{n}) = \sigma(t_{1}', \ldots, t_{n}')} \qquad (\mathsf{P}) \ \frac{\Gamma \vdash_{\Sigma}^{i} \pi(t_{1}, \ldots, t_{n}) \quad \Gamma \vdash_{\Sigma}^{i} t_{1} = t_{1}' \ldots \Gamma \vdash_{\Sigma}^{i} t_{n} = t_{n}'}{\Gamma \vdash_{\Sigma}^{i+1} \pi(t_{1}', \ldots, t_{n}')}$$

Basic first-order reasoning

Example 31

$$\Sigma = (S, F)$$

Let Γ be the set of Σ -sentences which consists of:



•
$$s \ 0 = 1$$

•
$$s \ 0 = 1$$
 • $s \ 0 + s \ 0 = 0$

$$\bullet$$
 s s $0 = 0$

•
$$s s 0 = 0$$
 • $0 + s 0 = s(0 + 0)$

$$0+0=0$$

•
$$0+0=0$$
 • $s \ 0+0=s(0+0)$

The following is a proof of the fact $\Gamma \vdash^b 1 + 1 = 0$, where Γ is defined in Example 31.

$$(\mathsf{F}) \, \frac{\Gamma \vdash^0 1 = s \, 0 \qquad \Gamma \vdash^0 1 = s \, 0}{(\mathsf{T}) \, \frac{\Gamma \vdash^1 1 + 1 = s \, 0 + s \, 0}{\Gamma \vdash^2 1 + 1 = 0}} \qquad \Gamma \vdash^0 s \, 0 + s \, 0 = 0$$

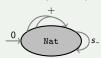
Exercise 32

Prove that $\Gamma \vdash^b (1+1) + 1 = 1$, where Γ is defined in Example 31.

Basic first-order reasoning

Example 33

$$\Sigma_{\mathtt{NAT}} = (S_{\mathtt{NAT}}, F_{\mathtt{NAT}})$$



Let Γ_{NAT} be the set of Σ_{NAT} -sentences which consists of:

- ullet 0 + t=t for all $t\in T_{\Sigma_{\text{NAT}}}$, and
- $s \ t_1 + t_2 = s(t_1 + t_2)$ for all $t_1, t_2 \in T_{\Sigma_{MAT}}$.

$$(T) \ \frac{\Gamma_{\text{NAT}} \vdash^0 s \ s \ 0 + s \ 0 = s(s \ 0 + s \ 0)}{(T) \ \frac{\Gamma_{\text{NAT}} \vdash^2 s \ s \ 0 + s \ 0 = s \ s(0 + s \ 0)}{\Gamma_{\text{NAT}} \vdash^1 s(s \ 0 + s \ 0) = s \ s(0 + s \ 0)} } \\ (F) \ \frac{\Gamma_{\text{NAT}} \vdash^1 s(s \ 0 + s \ 0) = s \ s \ 0}{\Gamma_{\text{NAT}} \vdash^1 s(s \ 0 + s \ 0)} \\ (F) \ \frac{\Gamma_{\text{NAT}} \vdash^1 s(s \ s \ 0 + s \ 0 = s \ s \ 0}{\Gamma_{\text{NAT}} \vdash^1 s(s \ s \ 0) = s \ s \ 0}}{\Gamma_{\text{NAT}} \vdash^1 s(s \ 0 + s \ 0) = s \ s \ s \ 0}$$

Basic entailment relation is well-defined

Lemma 34 (Basic entailment relation is well-defined)

The basic entailment relation $\vdash^b = \bigcup_{i \in \omega} \vdash^i$ is well-defined.

Proof.

- - If $\Gamma \vdash_{\Sigma}^{i} \Gamma$ then by (Transitivity), $\Gamma \vdash_{\Sigma}^{i+1} \Gamma$. Hence, $\Gamma \vdash_{\Sigma}^{i} \Gamma$ for all $i \in \omega$.
 - If $\Gamma \vdash_{\Sigma}^{i} \Gamma'$ then since $\Gamma' \vdash_{\Sigma}^{i} \Gamma'$, by (Transitivity), $\Gamma \vdash_{\Sigma}^{i+1} \Gamma'$.
 - Hence, $\vdash^i \subset \vdash^{i+1}$ for all $i \in \omega$.

It is straightforward to show that \vdash^b is closed under the basic proof rules and all the entailment properties except (Translation). In order to show that \vdash^b is closed under (Translation) it suffices to show that $\chi(\vdash^i_{\Sigma}) \subseteq \vdash^i_{\Sigma'}$ for all $i \in \omega$:

- ▶ Monotonicity: Assume that $\Gamma \subseteq \Gamma' \subseteq \operatorname{Sen}(\Sigma)$, which means $\Gamma \vdash_{\Sigma}^{0} \Gamma'$. Then $\chi(\Gamma) \subseteq \chi(\Gamma')$, which means $\chi(\Gamma) \vdash_{\Sigma'}^{0} \chi(\Gamma')$.
- R: For all $\Gamma \subseteq \operatorname{Sen}(\Sigma)$ and all $t \in T_{\Sigma}$, we have $\Gamma \vdash_{\Sigma}^{0} t = t$. Let $\chi^{tm} : T_{\Sigma} \to T_{\Sigma'} \upharpoonright_{\chi}$ be the unique homomorphism.
 - We have $\chi(\Gamma) \vdash_{\Sigma'}^{0} \chi^{tm}(t) = \chi^{tm}(t)$, which means $\chi(\Gamma) \vdash_{\Sigma'}^{0} \chi(t=t)$.

D. Găină (IMI)

Proof of Lemma 34.

- ► Transitivity: Assume $\Gamma \vdash_{\Sigma}^{i} \Gamma'$ and $\Gamma' \vdash_{\Sigma}^{i} \Gamma''$, which by (Transitivity) means $\Gamma \vdash_{\Sigma}^{i+1} \Gamma''$. By the induction hypothesis, we have $\chi(\Gamma) \vdash_{\Sigma'}^{i} \chi(\Gamma')$ and $\chi(\Gamma') \vdash_{\Sigma'}^{i} \chi(\Gamma'')$. By (Transitivity), $\chi(\Gamma) \vdash_{\Gamma'}^{i+1} \chi(\Gamma'')$.
- F: Assume $\Gamma \vdash_{\Sigma}^{i} t_1 = t_1' \dots \Gamma \vdash_{\Sigma}^{i} t_1 = t_1'$, which implies $\Gamma \vdash_{\Sigma}^{i-1} \sigma(t_1, \dots, t_n) = \sigma(t_1', \dots, t_n')$. By induction hypothesis, $\chi(\Gamma) \vdash_{\Sigma}^{i} \chi^{tm}(t_1) = \chi^{tm}(t_1') \dots \chi(\Gamma) \vdash_{\Sigma}^{i} \chi^{tm}(t_n) = \chi^{tm}(t_n')$. By (Γ) , $\chi(\Gamma) \vdash_{\Sigma'}^{i+1} \chi(\sigma)(\chi^{tm}(t_1), \dots, \chi^{tm}(t_n)) = \chi(\sigma)(\chi^{tm}(t_1'), \dots, \chi^{tm}(t_n'))$. Hence, $\chi(\Gamma) \vdash_{\Sigma'}^{i+1} \chi(\sigma(t_1, \dots, t_n) = \sigma(t_1', \dots, t_n'))$.

The remaining cases can be proved similarly.

- lacktriangle is the least entailment relation closed under the basic proof rules
 - Let \vdash' be another entailment relation closed under the basic proof rules. One can straightforwardly prove that $\vdash^i \subseteq \vdash'$ for all $i \in \omega$. It follows that $\vdash^b \subseteq \vdash'$.

Basic soundness

Theorem 35 (Basic soundness)

The basic entailment relation \vdash^b is sound.

Proof.

We show that \models is closed under all basic proof rules defined on page 20.

- R: Obviously, $\Gamma \models_{\Sigma} t = t$.
- S: If $\Gamma \models_{\Sigma} t_1 = t_2$ then $\Gamma \models_{\Sigma} t_2 = t_1$.
- T: If $\Gamma \models_{\Sigma} t_1 = t_2$ and $\Gamma \models_{\Sigma} t_2 = t_3$ then $\Gamma \models_{\Sigma} t_1 = t_3$.
- F: If $\Gamma \models_{\Sigma} t_1 = u_1 \dots \Gamma \models_{\Sigma} t_n = u_n$ then $\Gamma \models_{\Sigma} \sigma(t_1, \dots, t_n) = \sigma(u_1, \dots, u_n)$:
 - assume $A \models \Gamma$
 - $A \models t_i = u_i$
 - 3 $\sigma^{A}(t_{1}^{A}, \dots, t_{n}^{A}) = \sigma^{A}(u_{1}^{A}, \dots, u_{n}^{A})$ since $t_{i}^{A} = t_{i}^{A}$ 4 $\sigma^{A}(t_{1}^{A}, \dots, t_{n}^{A}) = \sigma^{A}(u_{1}, \dots, u_{n}^{A})$ by definition

 - 5 $\Gamma \models \sigma(t_1,\ldots,t_n) = \sigma(u_1,\ldots,u_n)$
- P: Similar to the case above.

- since $A \models \Gamma$ and $\Gamma \models t_i = u_i$
- since $t_i^{\mathcal{A}} = u_i^{\mathcal{A}}$ for all $i \in \{1, \ldots, n\}$
- since A was arbitrarily chosen

Since \vdash^b is the least entailment relation closed under the basic proof rules, $\vdash^b\subseteq\models$.

Basic compactness

Theorem 36 (Basic compactness)

The basic entailment relation \vdash^b is compact.

Proof.

Let \vdash^c be the largest compact entailment relation included in \vdash^b .

It is straightforward to show that \vdash^c is closed under all basic proof rules:

For example, consider the case corresponding to (T), and assume that $\Gamma \vdash^c_\Sigma t_1 = t_2$ and $\Gamma \vdash^c_\Sigma t_2 = t_3$. By definition, $\Gamma_0 \vdash^b_{\Sigma_0} t_1 = t_2$ and $\Gamma_1 \vdash^b_{\Sigma_1} t_2 = t_3$, for some finite $\Sigma_i \subseteq \Sigma$ and some finite $\Gamma_i \subseteq \Gamma$, where $i \in \{0,1\}$. Let $\Sigma_f = \Sigma_0 \cup \Sigma_1$ and $\Gamma_f = \Gamma_0 \cup \Gamma_1$. By (Translation) and (Monotonicity), we get $\Gamma_f \vdash^b_{\Sigma_f} t_1 = t_2$ and

 $\Gamma_f \vdash_{\Sigma_f}^b t_2 = t_3$. By (T), $\Gamma_f \vdash_{\Sigma_f}^b t_1 = t_3$. Hence, $\Gamma \vdash_{\Sigma}^c t_1 = t_3$.

Since \vdash^b is the least entailment relation closed under the basic proof rules, $\vdash^b\subseteq\vdash^c$. By definition, $\vdash^c\subset\vdash^b$.

It follows that $\vdash^c = \vdash^b$.

Hence, \vdash^b is compact.

Basic completeness

Lemma 37

For all signatures Σ and all sets Γ of atomic sentences over Σ , the relation $\equiv_{\Gamma} := \{(t,t') \mid \Gamma \vdash^b t = t'\}$ is a congruence on T_{Σ} .

Proof.

Straightforward, by the basic proof rules (R), (S), (T) and (F).

Lemma 38

Let Γ be a set of atomic sentences over a signature Σ and let \equiv_{Γ} be the congruence defined in Lemma 37. Let \mathcal{A}_{Γ} be the model obtained from $T_{\Sigma}/_{\equiv_{\Gamma}}$ by interpreting each $(\pi:w)\in P$ as $\{[t]\mid \Gamma\vdash^b\pi(t)\}$. Then $\mathcal{A}_{\Gamma}\models\Gamma$.

Proof.

Notice that $\pi^{A_{\Gamma}}$ is well-defined:

if
$$\Gamma \vdash^b \pi(t)$$
 and $[t] = [t']$ then $\Gamma \vdash^b t = t'$, and by (P), $\Gamma \vdash^b \pi(t')$.

We show that
$$A_{\Gamma} \models \Gamma$$
:

Basic completeness

Theorem 39 (Basic completeness)

For any set of atomic sentences Γ over a signature Σ , the following are equivalent:

(a)
$$\Gamma \models \rho$$
, (b) $A_{\Gamma} \models \rho$ and (c) $\Gamma \vdash^b \rho$,

for all atomic sentences ρ over Σ , where A_{Γ} is the model defined in Lemma 38.

Proof.

$$(a) \Rightarrow (b)$$
 Since $A_{\Gamma} \models \Gamma$ and $\Gamma \models \rho$, we get $A_{\Gamma} \models \rho$.

$$(b) \Leftrightarrow (c)$$

②
$$\Gamma \vdash^b \pi(t)$$
 iff $[t] \in \pi^{\mathcal{A}_{\Gamma}}$ iff $\mathcal{A}_{\Gamma} \models \pi(t)$.

 $(c) \Rightarrow (a)$ By soundness, $\Gamma \vdash^b \rho$ implies $\Gamma \models \rho$.

