Many-Sorted First-Order Model Theory lecture 2

Daniel Găină

Institute of Mathematics for Industry Kyushu University

Notations

Let Σ be a signature.

- The set of sentences over Σ is denoted by $Sen(\Sigma)$.
- The class of models over Σ is denoted by $|Mod(\Sigma)|$.
- The class of homomorphisms over Σ is denoted by $Mod(\Sigma)$.

Let $\Gamma \subseteq \mathtt{Sen}(\Sigma)$ and $\gamma \in \mathtt{Sen}(\Sigma)$.

• We write $\Gamma \models \gamma$ if $\mathcal{A} \models \Gamma$ implies $\mathcal{A} \models \gamma$ for all $\mathcal{A} \in |\mathsf{Mod}(\Sigma)|$. In this case, we say that γ is a semantic consequence of Γ .

Exercise 1

Let $\Sigma_{\mathtt{NAT+}}$ be the signature of natural numbers with addition and multiplication. Then

• $\forall x, y \cdot x + y = y + x \models \forall x \cdot x + 0 = 0 + x$.

Theories and presentations

Definition 2

- A presentation is a pair (Σ, Γ) , where Σ is a signature and Γ is a set of Σ -sentences.
- $\Gamma^{\bullet} := \{ \mathcal{A} \in |\mathtt{Mod}(\Sigma)| \mid \mathcal{A} \models_{\Sigma} \Gamma \}$ for all sets of sentences $\Gamma \subseteq \mathtt{Sen}(\Sigma)$;
- $\mathsf{M}^{\bullet} := \{ \gamma \in \mathtt{Sen}(\Sigma) \mid \mathcal{A} \models_{\Sigma} \gamma \text{ for each } \mathcal{A} \in \mathsf{M} \} \text{ for all classes of models } \mathsf{M} \subseteq |\mathtt{Mod}(\Sigma)|.$
- A presentation (Σ, Γ) such that $\Gamma = \Gamma^{\bullet \bullet}$ is called a *theory*.
- A class of models $M \subseteq |Mod(\Sigma)|$ such that $M^{\bullet \bullet} = M$ is called *elementary*.

Exercise 3

Let Σ be a signature, and $\Gamma \subseteq \operatorname{Sen}(\Sigma)$ a set of sentences.

- **①** The set of semantic consequences of Γ is a theory, that is, $\{\gamma \mid \Gamma \models \gamma\}$ is a theory.
- **Q** The class of all models satisfying Γ is elementary, that is, $|Mod(\Sigma, \Gamma)|$ is elementary.

Theories and presentations

Exercise 4

Let Σ be a signature.

- **1** ($\int \Gamma_i$) $= \bigcap \Gamma_i^{\bullet}$ for all families of sets of Σ -sentences $\{\Gamma_i\}_{i\in I}$.
- ② $([]M_i)^{\bullet} = \bigcap M_i^{\bullet}$ for all families of classes of Σ -models $\{M_i\}_{i \in I}$.

Exercise 5

The pair of functions (_) from Definition 2 forms a Galois connection, i.e. for all sets of Σ -sentences $\Gamma_1, \Gamma_2, \Gamma$ and all classes of Σ -models M_1, M_2, M , we have:

 $\Gamma^{\bullet} = \Gamma^{\bullet \bullet \bullet}$

 $M^{\bullet} = M^{\bullet \bullet \bullet}$

Signature morphisms

Definition 6 (Signature morphisms)

A signature morphism $\chi = (\chi^{st}, \chi^{op}, \chi^{rl}) \colon \Sigma \to \Sigma'$ consists of

- ullet a function between the set of sorts $\chi^{st}\colon S o S'$
- a family of functions between the sets of function symbols

$$\chi^{op} = \{\chi^{op} \colon F_{w \to s} \to F'_{\chi^{st}(w) \to \chi^{st}(s)}\}_{(w,s) \in S^* \times S},$$

$$\sigma: s_1 \ldots s_n \to s \mid \longrightarrow \chi^{op}(\sigma): \chi^{st}(s_1) \ldots \chi^{st}(s_n) \to \chi^{st}(s)$$

• a family of function between the sets of relation symbols

$$\chi^{rl} = \{\chi^{rl} \colon P_w \to P'_{\chi^{st}(w)}\}_{w \in S^*}$$

$$\pi: s_1 \ldots s_n \mid \longrightarrow \chi^{rl}(\pi): \chi^{st}(s_1) \ldots \chi^{st}(s_n)$$

When there is no danger of confusion we may drop the superscripts st, op or rl from the above notations.

4 D > 4 D > 4 E > 4 E > E 9040

empty

Example 7

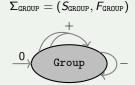
Signature extensions with variables $\Sigma \hookrightarrow \Sigma[X]$.

Example 8

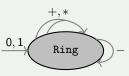
$$\Sigma_{ t Elt} = (S_{ t Elt}, F_{ t Elt})$$
 $\Sigma_{ t List} = (S_{ t List}, F_{ t List})$

Let $\chi: \Sigma_{\mathtt{ELT}} \hookrightarrow \Sigma_{\mathtt{LIST}}$ be an inclusion.

Example 9



$$\Sigma_{\text{RING}} = (S_{\text{RING}}, F_{\text{RING}})$$



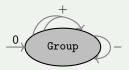
Let $\chi: \Sigma_{\tt GROUP} \to \Sigma_{\tt RING}$ be the signature morphism which renames the sort Group to Ring and it adds a new constant $(1:\to \tt Ring)$ and a new binary function symbol

- $_*_: \mathtt{Ring} \ \mathtt{Ring} \to \mathtt{Ring}:$
 - ullet Group \mapsto Ring,
 - $\bullet \ (0:\rightarrow \texttt{Group}) \mapsto (0 \mapsto \texttt{Ring})$
 - $\bullet \ (-_: {\tt Group} \to {\tt Group}) \mapsto (-_: {\tt Ring} \to {\tt Ring})$
 - ullet (_+ _ : Group Group o Group) \mapsto (_+ + _ : Ring Ring o Ring)

Example 10

$$\Sigma_{\texttt{RING}} = (\textit{S}_{\texttt{RING}}, \textit{F}_{\texttt{RING}})$$

$$\Sigma_{\text{GROUP}} = (S_{\text{GROUP}}, F_{\text{GROUP}})$$



Let $\chi: \Sigma_{\tt RING} \to \Sigma_{\tt GROUP}$ be the the surjective signature morphism which maps:

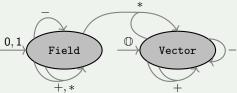
- Ring → Group,
- $(1 :\rightarrow Ring) \mapsto (0 \mapsto Group)$
- $\bullet \ (0:\to \mathtt{Ring}) \mapsto (0 \mapsto \mathtt{Group})$
- $\bullet \ (-_: \mathtt{Ring} \to \mathtt{Ring}) \mapsto (-_: \mathtt{Group} \to \mathtt{Group})$
- $\bullet \ (_+_: \mathtt{Ring} \ \mathtt{Ring} \to \mathtt{Ring}) \mapsto (_+_: \mathtt{Group} \ \mathtt{Group} \to \mathtt{Group})$
- $(-*-: Ring Ring \rightarrow Ring) \mapsto (-+-: Group Group \rightarrow Group)$

Example 11

$$\Sigma_{\text{GROUP}} = (S_{\text{GROUP}}, F_{\text{GROUP}})$$



 $\Sigma_{\text{VECTOR}} = (S_{\text{VECTOR}}, F_{\text{VECTOR}})$



Let $\chi: \Sigma_{\texttt{GROUP}} \to \Sigma_{\texttt{VECTOR}}$ be the injective signature morphism which maps:

- ullet Group \mapsto Vector,
- $\bullet \ (0:\to {\tt Group}) \mapsto (\mathbb{O} \mapsto {\tt Vector})$
- ullet $(-_: { t Group}
 ightarrow { t Group}) \mapsto (-_: { t Vector}
 ightarrow { t Vector})$
- $\bullet \ (_+_: {\tt Group} \ {\tt Group} \to {\tt Group}) \mapsto (_+_: {\tt Vector} \ {\tt Vector} \to {\tt Vector})$

Model reducts

Definition 12 (Model reducts)

Given a signature morphism $\chi \colon \Sigma \to \Sigma'$ as in Definition 6,

- **1** the reduct $\mathcal{A}' \upharpoonright_{\chi}$ of a Σ' -model \mathcal{A}' is a Σ -model defined as follows:
 - $\blacktriangleright \ (\mathcal{A}'\!\upharpoonright_{\!\chi})_s = \mathcal{A}'_{\chi(s)} \text{ for all sorts } s\in S,$

 - $\pi^{(\mathcal{A}' \upharpoonright \chi)} = \chi(\pi)^{\mathcal{A}'} \text{ for all } (\pi : w) \in P.$
- **1** the reduct $h' \upharpoonright_{\chi}$ of a Σ' -homomorphism h' is a Σ -homomorphism $h' \upharpoonright_{\chi} = \{h'_{\chi(s)}\}_{s \in S}$.
- If $\mathcal{A}' \upharpoonright_{\chi} = \mathcal{A}$ then (a) \mathcal{A}' is called a χ -expansion of \mathcal{A} , and (b) \mathcal{A} is called the χ -reduct of \mathcal{A}' .
- If $\chi:\Sigma\hookrightarrow\Sigma'$ is an inclusion and \mathcal{A}' is a Σ' -model, we may write $\mathcal{A}'\!\upharpoonright_\Sigma$ instead of $\mathcal{A}'\!\upharpoonright_\chi$.

Examples of model reducts

Example 13

- \bullet Let $\Sigma_{\text{NAT}+}$ be the signature of natural numbers with addition and multiplication.
- Let $\iota : \Sigma_{\text{NAT+}} \hookrightarrow \Sigma_{\text{NAT+}}[x,y]$ be an extension of $\Sigma_{\text{NAT+}}$ with two variables x and y.
- Let $\mathbb N$ be the $\Sigma_{\mathtt{NAT+}}$ -model of natural numbers interpreting all symbols in the usual way.
- Let $f: \{x,y\} \to |\mathbb{N}|$ be the evaluation defined by f(x) = 2 and f(y) = 5.

Then $\langle \mathbb{N}, f \rangle \upharpoonright_{\iota} = \mathbb{N}$.

Example 14

- Let $\Sigma_{ELT} \hookrightarrow \Sigma_{LIST}$ be the inclusion defined in Example 8.
- ullet Let ${\mathbb L}$ be the structure consisting of lists of natural numbers:
 - lacktriangledown $\mathbb{L}_{\mathtt{Elt}} = \omega$, the set of natural numbers, and
 - ▶ $\mathbb{L}_{\text{List}} = \{\text{empty} \bullet j_1 \bullet j_2 \bullet \cdots \bullet j_n \mid j_1, \ldots, j_n \in \omega \text{ and } n \in \omega\},$ the set of all lists of natural numbers.

Then $\mathbb{L}\upharpoonright_{\Sigma_{\mathrm{ELT}}}$ is the model that interprets the sort Elt as $\omega.$

Remark 15

Notice that the reduct changes the universe of $\mathbb L$ by discarding the set corresponding to the sort List.

D. Găină (IMI) Model Theory 11/27

Examples of model reducts

Example 16

- Let $\chi: \Sigma_{\tt GROUP} \to \Sigma_{\tt RING}$ be the injective signature morphism of Example 9.
- Let \mathbb{Z} be the Σ_{RING} -model of integers.

Then $\mathbb{Z} \upharpoonright_{\chi}$ is obtained from \mathbb{Z} by discarding the interpretation of the unit and the multiplication:

- $(\mathbb{Z} \upharpoonright_{\mathcal{X}})_{\mathsf{Group}} = \mathbb{Z}_{\mathsf{Ring}}$, the set of integers
- ullet $0^{\mathbb{Z}} \upharpoonright_{\chi} = 0^{\mathbb{Z}}$, since χ maps $(0 : \to \mathtt{Group})$ to $(0 : \to \mathtt{Ring})$
- $\bullet \ \ -^{(\mathbb{Z}\ \upharpoonright_{\chi})} = -^{\mathbb{Z}}, \ \mathsf{since} \ \chi \ \mathsf{maps} \ (\mathsf{-}_{\scriptscriptstyle{-}} : \mathtt{Group} \to \mathtt{Group}) \ \mathsf{to} \ (\mathsf{-}_{\scriptscriptstyle{-}} : \mathtt{Ring} \to \mathtt{Ring})$
- $\bullet \ +^{(\mathbb{Z} \ \upharpoonright_\chi)} = +^{\mathbb{Z}} \text{, since } \chi \text{ maps } (_+_: \texttt{Group Group} \to \texttt{Group}) \text{ to } (_+_: \texttt{Ring Ring} \to \texttt{Ring})$

Examples of model reducts

Example 17

- Let $\chi: \Sigma_{\mathtt{RING}} \to \Sigma_{\mathtt{GROUP}}$ be the surjective signature morphism of Example 10.
- Let \mathbb{Q} be the group of rationals defined over the signature Σ_{GROUP} .

Then $\mathbb{Q} \upharpoonright_{Y}$ is the model over Σ_{RING} which interprets

- both $0 :\rightarrow Ring$ and $1 :\rightarrow Ring$ as 0,
- lacktriangledown both $_+_: Ring Ring
 ightarrow Ring and <math>_*_: Ring Ring
 ightarrow Ring as the addition.$

$$\begin{array}{cccc} \langle \mathbb{Q} \upharpoonright_{\chi}, f \rangle & \cdots & \Sigma_{\mathrm{RING}}[x,y,z] \\ & & & & & \\ \mathbb{Q} \upharpoonright_{\chi} & \cdots & & \Sigma_{\mathrm{RING}} & \longrightarrow_{\chi} \Sigma_{\mathrm{GROUP}} & \cdots & \mathbb{Q} \end{array}$$

Remark 18

Notice that $\mathbb{Q} \upharpoonright_{\chi}$ is not a ring, since $\mathbb{Q} \upharpoonright_{\chi}$ doesn't satisfy the distributivity of multiplication over addition, that is, $\mathbb{Q} \upharpoonright_{\chi} \not\models \forall x, y, z \cdot x * (y+z) = (x*y) + (x*z)$. Define $f: \{x,y,z\} \to |\mathbb{Q} \upharpoonright_{\chi} | \text{ by } f(x) = f(y) = f(z) = 1$.

$$\begin{array}{ll} (x*(y+z))^{\langle \mathbb{Q}|\chi,f\rangle} &= x^{\langle \mathbb{Q}|\chi,f\rangle} *^{\langle \mathbb{Q}|\chi,f\rangle} (y^{\langle \mathbb{Q}|\chi,f\rangle} + y^{\langle \mathbb{Q}|\chi,f\rangle}) z^{\langle \mathbb{Q}|\chi,f\rangle}) \\ &= f(x) + \mathbb{Q} (f(y) + \mathbb{Q} f(z)) = 3 \neq 4 \\ &= (f(x) + \mathbb{Q} (f(y)) + \mathbb{Q} (f(x) + \mathbb{Q} f(z)) \\ &= (x^{\langle \mathbb{Q}|\chi,f\rangle} *^{\langle \mathbb{Q}|\chi,f\rangle} y^{\langle \mathbb{Q}|\chi,f\rangle}) + y^{\langle \mathbb{Q}|\chi,f\rangle} (x^{\langle \mathbb{Q}|\chi,f\rangle} *^{\langle \mathbb{Q}|\chi,f\rangle} z^{\langle \mathbb{Q}|\chi,f\rangle}) \\ &= ((x*y) + (x*z))^{\langle \mathbb{Q}|\chi,f\rangle} \end{aligned}$$

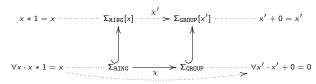
4 D > 4 D > 4 E > 4 E >

Sentence translations

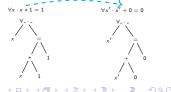
• How do we translate 1*0=0 along $\chi:\Sigma_{RING}\to\Sigma_{GROUP}$ defined in Example 10?



• Let $x = \langle v_0, \mathtt{Ring}, \Sigma_{\mathtt{RING}} \rangle$ be a variable for $\Sigma_{\mathtt{RING}}$. How do we translate $\forall x \cdot x * 1 = x$ along $\chi : \Sigma_{\mathtt{RING}} \to \Sigma_{\mathtt{GROUP}}$?



Re: We define $x' := \langle v_0, \operatorname{Group}, \Sigma_{\operatorname{GROUP}} \rangle$, the translation of x along χ . We define $\chi : \Sigma_{\operatorname{RING}}[x] \to \Sigma_{\operatorname{GROUP}}[x']$ the extension of χ that maps x to x'. Then $\chi(\forall x \cdot x * 1 = x) := \forall x' \cdot x' + 0 = x'$.



Sentence translations

Definition 19 (Term translations)

Any signature morphism $\chi\colon \Sigma \to \Sigma'$ determines a function $\chi^{tm}\colon \mathcal{T}_\Sigma \to \mathcal{T}_{\Sigma'}$ inductively defined:

- $\chi^{tm}(c) = \chi^{op}(c)$ for all constants $(c : \to s) \in F$.
- $\bullet \ \chi^{tm}(\sigma(t_1,\ldots,t_n)) = \chi(\sigma)(\chi^{tm}(t_1),\ldots,\chi^{tm}(t_n)), \text{ for all terms } \sigma(t_1,\ldots,t_n) \in \mathcal{T}_{\Sigma}.$

We may drop the superscript tm from the above notations when there is no danger of confusion.

Definition 20 (Sentence translations)

Any signature morphism $\chi \colon \Sigma \to \Sigma'$ determines a function $\operatorname{Sen}(\chi) \colon \operatorname{Sen}(\Sigma) \to \operatorname{Sen}(\Sigma)$ which replaces the symbols from Σ with the symbols from Σ' according to χ :

- $Sen(\chi)(t_1 = t_2) := (\chi^{tm}(t_1) = \chi^{tm}(t_2))$
- $\bullet \ \operatorname{Sen}(\chi)(\pi(t_1,\ldots,t_n)) \coloneqq \chi^{op}(\pi)(\chi^{tm}(t_1),\ldots,\chi^{tm}(t_n))$
- $Sen(\chi)(\neg \gamma) := \neg Sen(\chi)(\gamma)$
- $Sen(\chi)(\bigvee \Gamma) := \bigvee Sen(\chi)(\Gamma)$
- $\operatorname{Sen}(\chi)(\exists X \cdot \gamma) := \exists X' \cdot \operatorname{Sen}(\chi')(\gamma)$, where

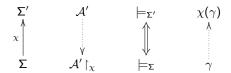
 - $\chi': \Sigma[X] \to \Sigma'[X']$ is the extension of χ which maps each $\langle v_i, s, \Sigma \rangle \in X$ to $\langle v_i, \chi(s), \Sigma' \rangle \in X'$.

We denote $\operatorname{Sen}(\chi)$ simply by χ when there is no danger of confusion.

←□ → ←□ → ← □ → ← □ → ← □

15 / 27

Satisfaction condition



Theorem 21 (Satisfaction is invariant w.r.t. change of notation)

For all signature morphisms $\chi\colon \Sigma\to \Sigma'$, all Σ' -models \mathcal{A}' , and all Σ -sentences γ , we have

$$\mathcal{A}' \models_{\Sigma'} \chi(\gamma) \text{ iff } \mathcal{A}' \upharpoonright_{\chi} \models_{\Sigma} \gamma$$

In order to prove Theorem 21, we need two preliminary results: Lemma 22 and Lemma 23.

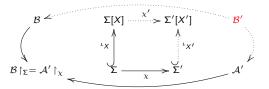
Lemma 22

For all signature morphisms $\chi\colon \Sigma\to \Sigma'$, all Σ' -models \mathcal{A}' , and all Σ -terms t, we have $\chi(t)^{\mathcal{A}'}=t^{(\mathcal{A}'\restriction_\chi)}$.

Proof.

We proceed by induction on the structure of terms:

- $\chi(c)^{\mathcal{A}'} \stackrel{\text{def}}{=} c^{(\mathcal{A}' \upharpoonright \chi)}$ for all constants $(c : \to s) \in F$
- $\chi(\sigma(t_1,\ldots,t_n))^{A'} = \chi(\sigma)(\chi(t_1),\ldots,\chi(t_n))^{A'} = \chi(\sigma)^{A'}(\chi(t_1)^{A'},\ldots,\chi(t_n)^{A'}) \stackrel{\text{lf}}{=} \sigma^{(A'\uparrow_\chi)}(t_1^{(A'\uparrow_\chi)},\ldots,t_n^{(A'\uparrow_\chi)}) = \sigma(t_1,\ldots,t_n)^{(A'\uparrow_\chi)}.$



Lemma 23

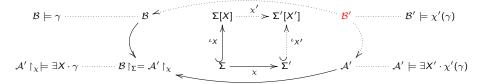
Assume a signature morphism $\chi \colon \Sigma \to \Sigma'$, a finite set of variables X for Σ , and a Σ' -model \mathcal{A}' , a $\Sigma[X]$ -model \mathcal{B} such that $\mathcal{A}' \upharpoonright_{\chi} = \mathcal{B} \upharpoonright_{\Sigma}$. Then there exists a unique $\Sigma'[X']$ -model \mathcal{B}' such that $\mathcal{B}' \upharpoonright_{\chi'} = \mathcal{B}$ and $\mathcal{B}' \upharpoonright_{\Sigma'} = \mathcal{A}'$, where (a) X' is the translation of X along χ , (b) $\chi' \colon \Sigma[X] \to \Sigma'[X']$ is the extension of χ mapping each variable $\langle v_i, s, \Sigma \rangle \in X$ to $\langle v_i, \chi(s), \Sigma' \rangle \in X'$, and (c) $v_{\chi'} \colon \Sigma' \hookrightarrow \Sigma'[X']$ is an inclusion.

Proof.

We define \mathcal{B}' as follows: (a) \mathcal{B}' interprets each symbol in Σ' as \mathcal{A}' , and (b) $\langle v_i, \chi(s), \Sigma' \rangle^{\mathcal{B}'} = \langle v_i, s, \Sigma \rangle^{\mathcal{B}}$ for all $\langle x, \chi(s), \Sigma' \rangle \in \mathcal{X}'$. It is straightforward to check that $\mathcal{B}' \upharpoonright_{\chi'} = \mathcal{B}$ and $\mathcal{B}' \upharpoonright_{\Sigma'} = \mathcal{A}'$. For the uniqueness part, assume a $\Sigma'[X']$ -model \mathcal{C} such that $\mathcal{C} \upharpoonright_{\Sigma'} = \mathcal{A}'$ and $\mathcal{C} \upharpoonright_{\chi'} = \mathcal{B}$.

- ② Since $C \upharpoonright_{\chi'} = \mathcal{B}$, we have $\langle v_i, \chi(s), \Sigma' \rangle^{\mathcal{C}} = \chi(\langle v_i, s, \Sigma \rangle)^{\mathcal{C}} = \langle v_i, s, \Sigma \rangle^{\mathcal{C} \upharpoonright_{\chi'}} = \langle v_i, s, \Sigma \rangle^{\mathcal{B}} = \langle v_i, s, \Sigma \rangle^{\mathcal{B}' \upharpoonright_{\chi'}} = \chi(\langle v_i, s, \Sigma \rangle)^{\mathcal{B}'} = \langle v_i, \chi(s), \Sigma' \rangle^{\mathcal{B}'}$, for all variables $\langle x, \chi(s), \Sigma' \rangle \in \mathcal{X}'$.

By (1) and (2), $\mathcal{B}' = \mathcal{C}$.



Proof of Theorem 21.

We proceed by induction on the structure of sentences:

- $\mathcal{A}' \models_{\Sigma'} \chi(t_1 = t_2)$ iff $\mathcal{A}' \models_{\Sigma'} \chi(t_1) = \chi(t_2)$ iff $\chi(t_1)^{\mathcal{A}'} = \chi(t_2)^{\mathcal{A}'}$ iff (by Lemma 22) $t_1^{(\mathcal{A}' \mid \chi)} = t_2^{(\mathcal{A}' \mid \chi)}$ iff $\mathcal{A}' \mid_{\chi} \models_{\Sigma} t_1 = t_2$. The case corresponding to $\pi(t_1, \ldots, t_n)$ is similar to the one above.
- $\mathcal{A}' \models_{\Sigma'} \chi(\neg \gamma)$ iff $\mathcal{A}' \models_{\Sigma'} \neg \chi(\gamma)$ iff $\mathcal{A}' \not\models_{\Sigma'} \chi(\gamma)$ iff $\mathcal{A}' \upharpoonright_{\chi} \not\models_{\Sigma} \gamma$ iff $\mathcal{A}' \upharpoonright_{\chi} \models_{\Sigma} \neg \gamma$. The case corresponding to $\bigvee \Gamma$ is similar to the one above.
- $\mathcal{A}' \models_{\Sigma'} \chi(\exists X \cdot \gamma)$ iff $\mathcal{A}' \models_{\Sigma'} \exists X' \cdot \chi'(\gamma)$ iff $\mathcal{B}' \models_{\Sigma'[X']} \chi'(\gamma)$ for some $\iota_{X'}$ -expansion \mathcal{B}' of \mathcal{A}' iff (by the induction hypothesis) $\mathcal{B}' \upharpoonright_{\chi'} \models_{\Sigma[X]} \gamma$ for some $\iota_{\chi'}$ -expansion \mathcal{B}' of \mathcal{A}' iff $\binom{\text{Lemma 23}}{}$

 $\mathcal{B} \models_{\chi'} \vdash_{\chi} \vdash_{\chi} \gamma$ for some ι_{χ} -expansion \mathcal{B} of $\mathcal{A}' \models_{\chi} \vdash_{\chi} \exists X \cdot \gamma$.

D. Găină (IMI) Model Theory 19/27

イロト (個)ト (重)ト (重)ト

First-order substitutions

Example 24

Let $\Sigma_{\text{NAT}+}$ be the signature of natural numbers with addition and multiplication.

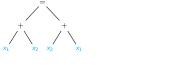
Let $X = \{x_1, x_2\}$ and $Y = \{y_1, y_2, y_3\}$ be two sets of variables for $\Sigma_{\text{NAT}+}$.

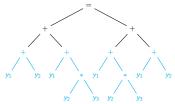
Let
$$\theta: X \to T_{\Sigma_{NAT+}}(Y)$$
 be a function defined by $\theta(x_1) = y_1 + y_2$ and $\theta(x_2) = y_1 + (y_2 * y_3)$.

- $\theta: X \to T_{\Sigma_{\mathtt{NAT}+}}(Y)$ determines a reduct functor $\upharpoonright_{\theta} : \mathtt{Mod}(\Sigma_{\mathtt{NAT}+}[Y]) \to \mathtt{Mod}(\Sigma_{\mathtt{NAT}+}[X])$:
 - Let $\langle \mathbb{N}, f \rangle$ be a model over $\Sigma_{\mathtt{NAT}+}[Y]$, where
 - ightharpoonup is the model of natural numbers over $\Sigma_{\mathtt{NAT}+}$ and
 - $f: Y \rightarrow |\mathbb{N}|$ is defined by $f(y_1) = 1$, $f(y_2) = 3$ and $f(y_3) = 4$.
 - The interpretation of x_i in to $(\mathbb{N}, f) \upharpoonright_{\theta}$ is defined as the interpretation of $\theta(x_i)$ into (\mathbb{N}, f) .
 - $x_1^{\langle \mathbb{N}, f \rangle \upharpoonright_{\theta}} = \theta(x_1)^{\langle \mathbb{N}, f \rangle} = (y_1 + y_2)^{\langle \mathbb{N}, f \rangle} = 1 + 3 = 4$ $x_2^{\langle \mathbb{N}, f \rangle \upharpoonright_{\theta}} = \theta(x_2)^{\langle \mathbb{N}, f \rangle} = (y_1 + (y_2 * y_3))^{\langle \mathbb{N}, f \rangle} = 1 + (3 * 4) = 13.$

 $\theta: X \to \mathit{T}_{\Sigma_{\mathrm{NAT}+}}(Y) \text{ determines a } \underline{\mathit{sentence translation}} \ \theta^{\mathrm{Sen}}: \mathrm{Sen}(\Sigma_{\mathrm{NAT}+}[X]) \to \mathrm{Sen}(\Sigma_{\mathrm{NAT}+}[Y]):$

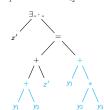






Let $z=\langle v_3, \mathtt{Nat}, \Sigma_{\mathtt{NAT}+}[X] \rangle$ be a variable for $\Sigma[X]$. Let $z':=\langle v_3, \mathtt{Nat}, \Sigma_{\mathtt{NAT}+}[Y] \rangle$ be the translation of z along θ .

$$\exists z \cdot x_1 + z = x_2$$
 $\exists z' \cdot (y_1 + y_2) + z' = y_1 + (y_2 * y_3)$



First-order substitutions

Definition 25 (Substitution)

Let Σ be a signature and X,Y two sets of variables for Σ . A Σ -substitution between $\Sigma[X]$ and $\Sigma[Y]$ is a function $\theta:X\to T_\Sigma(Y)$.

A substitution $\theta: X \to T_{\Sigma}(Y)$ determine:

- lacktriangle a sentence translation $heta^{ exttt{Sen}}: exttt{Sen}(\Sigma[X]) o exttt{Sen}(\Sigma[Y])$ which is
 - ightharpoonup the identity on the symbols in Σ , and
 - ▶ maps every variable $x \in X$ to $\theta(x) \in T_{\Sigma}(Y)$.
- $ext{2}$ a model reduct $vert_{ heta}\colon | ext{Mod}(\Sigma[Y])| o | ext{Mod}(\Sigma[X])|$ defined by
 - $(\mathcal{B} \upharpoonright_{\theta})_s = \mathcal{B}_s$ for all sorts $s \in S$,
 - $\sigma^{(\mathcal{B} \upharpoonright \theta)} = \sigma^{\mathcal{B}}$ for all function symbols $\sigma \in F$,
 - $\pi^{(\mathcal{B} \upharpoonright_{\theta})} = \pi^{\mathcal{B}}$ for all relation symbols $\sigma \in F$,
 - $x^{(\mathcal{B}\upharpoonright_{\theta})} = \theta(x)^{\mathcal{B}} \text{ for all } x \in X.$

 $\text{ for all models } \mathcal{B} \in |\mathtt{Mod}(\Sigma[Y])|.$

We drop the superscript Sen from θ^{Sen} when there is no danger of confusion.

Theorem 26 (Satisfaction condition for substitutions)

Let $\theta: X \to T_{\Sigma}(Y)$ be a substitution. Then for all $\Sigma[Y]$ -models $\mathcal B$ and all $\Sigma[X]$ -sentences γ ,

$$\mathcal{B}\models_{\Sigma[Y]}\theta^{\mathtt{Sen}}(\gamma) \text{ iff } \mathcal{B}\upharpoonright_{\theta}\models_{\Sigma[X]}\gamma.$$

Similarly to the case of satisfaction condition for signature morphisms, we need two lemmas in order to prove Theorem 26.

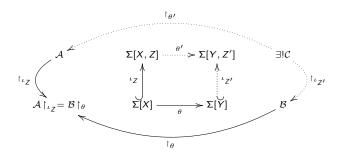
Lemma 27

For all substitutions $\theta\colon X o T_\Sigma(Y)$, all $\Sigma[X]$ -terms t and all $\Sigma[Y]$ -models $\mathcal B$, we have $t^{\mathcal B\dagger}{}_\theta=\theta(t)^{\mathcal B}$.

Proof.

We proceed by induction on the structure of terms:

- $x^{\mathcal{B} \upharpoonright_{\theta}} = \theta(x)^{\mathcal{B}}$ for all variables $x \in X$;
- $\bullet \ \ \sigma(t_1,\ldots,t_n)^{\mathcal{B} \restriction \theta} = \sigma^{\mathcal{B} \restriction \theta} \left(t_1^{\mathcal{B} \restriction \theta},\ldots,t_n^{\mathcal{B} \restriction \theta}\right) \stackrel{\text{\tiny IH}}{=} \sigma^{\mathcal{B}} (\theta(t_1)^{\mathcal{B}},\ldots,\theta(t_n)^{\mathcal{B}}) = \theta(\sigma(t_1,\ldots,t_n))^{\mathcal{B}}.$

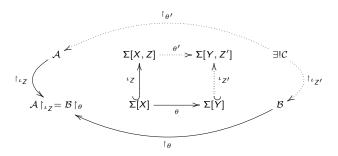


Lemma 28

Let $\theta: X \to T_{\Sigma}(Y)$ be a Σ -substitution and Z a set of variables for $\Sigma[X]$. For all $\Sigma[X, Z]$ -models $\mathcal A$ and all $\Sigma[Y]$ -models $\mathcal B$ such that $\mathcal A \upharpoonright_{\iota_Z} = \mathcal B \upharpoonright_{\theta}$ there exists a unique $\Sigma[Y, Z']$ -model $\mathcal C$ such that $\mathcal C \upharpoonright_{\theta'} = \mathcal A$ and $\mathcal C \upharpoonright_{\iota_{Z'}} = \mathcal B$, where

- $\iota_Z : \Sigma[X] \hookrightarrow \Sigma[X, Z]$ is an inclusion,
- $Z' = \{\langle v_i, s, \Sigma[Y] \rangle \mid \langle v_i, s, \Sigma[X] \rangle \in Z\}$ is the translation of Z along θ ,
- $\iota_{Z'}: \Sigma[Y] \hookrightarrow \Sigma[Y, Z']$ is an inclusion,
- $\bullet \ \theta': X \cup Z \to \mathit{T}_{\Sigma}(Y \cup Z') \text{ is defined by }$
- $\bullet \ \theta'(\langle v_i, s, \Sigma \rangle) = \theta(\langle v_i, s, \Sigma \rangle) \text{ for all } \langle v_i, s, \Sigma \rangle \in X,$
- $\bullet \ \theta(\langle z,s,\Sigma[X]\rangle)=\langle z,s,\Sigma[Y]\rangle \ \text{for all} \ \langle z,s,\Sigma[X]\rangle \in \mathcal{Z}.$

《四》《圖》《圖》《圖》



Proof of Lemma 28.

We define C as follows:

- **1** \mathcal{C} interprets all symbols in $\Sigma[Y]$ as \mathcal{B} ;
- ② C interprets Z as A, that is $\langle v_i, s, \Sigma[Y] \rangle^C = \langle v_i, s, \Sigma[X] \rangle^A$ for all $\langle v_i, s, \Sigma[Y] \rangle \in Z'$.
- By (1), $\mathcal{C} \upharpoonright_{\iota_{\mathbf{Z}'}} = \mathcal{B}$. Since θ' extends θ , by (2), $\mathcal{C} \upharpoonright_{\theta'} = \mathcal{A}$.

For the uniqueness part, assume another $\Sigma[Y,Z]$ -model $\mathcal D$ such that $\mathcal D \upharpoonright_{\theta'} = \mathcal A$ and $\mathcal D \upharpoonright_{\iota_{Z'}} = \mathcal B$.

- $\textbf{ Since } \mathcal{D} \upharpoonright_{\Sigma[Y]} = \mathcal{B} = \mathcal{C} \upharpoonright_{\Sigma[Y]}, \text{ that is, } \mathcal{D} \text{ interprets all symbols in } \Sigma[Y] \text{ as } \mathcal{B}, \text{ and in particular, as the model } \mathcal{C};$
- $\textbf{@} \ \, \text{for all} \ \, \langle v_i, s, \Sigma[Y] \rangle \in Z', \, \text{since} \ \, \mathcal{D} \upharpoonright_{\theta'} = \mathcal{A}, \, \text{we have} \ \, \langle v_i, s, \Sigma[Y] \rangle^{\mathcal{D}} = \theta' (\langle v_i, s, \Sigma[X] \rangle)^{\mathcal{D}} = \langle v_i, s, \Sigma[X] \rangle^{\mathcal{C}}.$

By (1) and (2), we get $\mathcal{C} = \mathcal{D}$.

Reachable models

Definition 29 (Reachable models)

Let Σ be a signature and $\mathcal A$ be a Σ -model. $\mathcal A$ is *reachable* iff each element of $|\mathcal A|$ is the denotation of some term, i.e. the unique homomorphism $h: \mathcal T_\Sigma \to \mathcal A$ is surjective.

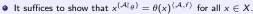
Theorem 30

Let Σ be a signature, and X a set of variables for Σ . Then $\mathcal A$ is a reachable model iff for all sets of variables X for Σ , each expansion $\mathcal B$ of $\mathcal A$ to the signature $\Sigma[X]$ (i.e. a valuation $f:X\to |\mathcal A|$) generates a substitution $\theta:X\to T_\Sigma$ such that $\mathcal A\!\upharpoonright_\theta=\mathcal B$.

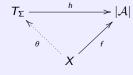
Proof of Theorem 30.

"⇒'

Let $f\colon X \to |\mathcal{A}|$ be a valuation. Since $h\colon T_\Sigma \to \mathcal{A}$ is surjective, there exists $\theta\colon X \to T_\Sigma$ such that $\theta; h = f$. We show that $\mathcal{A}\!\upharpoonright_{\theta} = \langle \mathcal{A}, f \rangle = \mathcal{B}$:



•
$$x^{(A \upharpoonright \theta)} = \theta(x)^A = h(\theta(x)) = f(x) = x^{\langle A, f \rangle}$$
 for all $x \in X$.



"⇐"

We show that each element in $|\mathcal{A}|$ is the denotation of some term. Let $s \in S$ and $a \in \mathcal{A}_s$. Let $x = \langle v_0, s, \Sigma \rangle$ and \mathcal{B} the ι_x -expansion of \mathcal{A} interpreting x as a, that is $x^{\mathcal{B}} = a$. By our assumptions, there exists a substitution $\theta \colon \{x\} \to T_{\Sigma}$ such that $\mathcal{A} \upharpoonright_{\theta} = \mathcal{B}$. Hence, $\theta(x)^{\mathcal{A}} = x^{\mathcal{A} \upharpoonright_{\theta}} = x^{\mathcal{B}} = a$.

