Many-Sorted First-Order Model Theory

Lecture 6

2nd July, 2020
Easy halves: unions of chains

Theorem 1 (Chang-Łoś-Suszko: easy direction)

Let \((A_i)_{i<\gamma}\) be a family of structures that form a chain under embedding. That is, the index set \(\gamma\) is an ordinal and \(i \leq j\) implies \(A_i \leq A_j\). Put \(A = \bigcup_{i<\gamma} A_i\). Let \(\varphi(\bar{x})\) be a \(\Pi_2\) formula, and \(a_0\) a tuple from \(A_0\). If \(A_i \models \varphi(a_0)\) for every \(i < \gamma\), then \(A \models \varphi(a_0)\).

Proof.

- Write \(\varphi\) explicitly, as \(\forall y \cdot \exists z \cdot \psi(x, y, z)\).
- Take any tuple \(\bar{b}\) from \(A\). Since \(\bar{b}\) is finite it belongs to some \(A_i\).
- Since \(A_i \models \varphi(a_0)\) by assumption, we have \(A_i \models \exists z \cdot \psi(a_0, b, z)\).
- This is an existential formula with parameters from \(A_i\), and \(A_i \leq A\).
- By the easy half of the Łoś-Tarski Theorem (on substructures), we have \(A \models \exists z \cdot \psi(a_0, b, z)\).
- As \(\bar{b}\) was arbitrary, we have \(A \models \forall y \cdot \exists z \cdot \psi(a_0, y, z)\), as claimed. \(\square\)
Theorem 1 (Chang-Łoś-Suszko: easy direction)

Let \((A_i)_{i<\gamma}\) be a family of structures that form a chain under embedding. That is, the index set \(\gamma\) is an ordinal and \(i \leq j\) implies \(A_i \leq A_j\). Put \(A = \bigcup_{i<\gamma} A_i\). Let \(\varphi(\bar{x})\) be a \(\Pi_2\) formula, and \(\bar{a}_0\) a tuple from \(A_0\). If \(A_i \models \varphi(\bar{a}_0)\) for every \(i < \gamma\), then \(A \models \varphi(\bar{a}_0)\).

Proof.

- Write \(\varphi\) explicitly, as \(\forall \bar{y} \cdot \exists \bar{z} \cdot \psi(\bar{x}, \bar{y}, \bar{z})\).
- Take any tuple \(\bar{b}\) from \(A\). Since \(\bar{b}\) is finite it belongs to some \(A_i\).
- Since \(A_i \models \varphi(\bar{a}_0)\) by assumption, we have \(A_i \models \exists \bar{z} \cdot \psi(\bar{a}_0, \bar{b}, \bar{z})\).
- This is an existential formula with parameters from \(A_i\), and \(A_i \leq A\).
- By the easy half of the Łoś-Tarski Theorem (on substructures), we have \(A \models \exists \bar{z} \cdot \psi(\bar{a}_0, \bar{b}, \bar{z})\).
- As \(\bar{b}\) was arbitrary, we have \(A \models \forall \bar{y} \cdot \exists \bar{z} \cdot \psi(\bar{a}_0, \bar{y}, \bar{z})\), as claimed. \(\square\)
Unions of chains: algebraically closed fields

Example 2

Fix a prime p, and consider the chain

$$GF(p) \leq GF(p^2) \leq \cdots \leq GF(p^i) \leq \cdots$$

and let F be its union. For any n consider the sentence

$\varphi_n = \forall y \cdot \exists x \cdot y_n x^n + \ldots y_1 x + y_0 = 0$. Note that φ_n is a Π_2 sentence.

- We have $GF(p^i) \models \varphi_n$ for $i \geq n$.
- Moreover, $F = \bigcup_{j \geq i} GF(p^j)$ for any $i \in \mathbb{N}$.
- It follows that $F \models \varphi_n$ for every n.
- Thus, F is an algebraically closed field of characteristic p.

Exercise 1

Let F be as above. Fill the gaps in the proof that F is an algebraically closed field of characteristic p.
Unions of chains: algebraically closed fields

Example 2

Fix a prime p, and consider the chain

$$GF(p) \leq GF(p^2) \leq \cdots \leq GF(p^i) \leq \cdots$$

and let F be its union. For any n consider the sentence

$$\varphi_n = \forall y \cdot \exists x \cdot y_n x^n + \ldots y_1 x + y_0 = 0.$$ Note that φ_n is a Π_2 sentence.

- We have $GF(p^i) \models \varphi_n$ for $i \geq n$.
- Moreover, $F = \bigcup_{j \geq i} GF(p^j)$ for any $i \in \mathbb{N}$.
- It follows that $F \models \varphi_n$ for every n.
- Thus, F is an algebraically closed field of characteristic p.

Exercise 1

Let F be as above. Fill the gaps in the proof that F is an algebraically closed field of characteristic p.
Exercises

Exercise 2

Let φ be the sentence $\exists x, y \cdot \forall z \cdot \neg (x < z) \lor \neg (z < y)$ in the language of a binary relation \prec. Let ψ be the conjunction of φ with universal sentences stating that \prec is a strict linear order. Construct a chain of models $(\mathcal{C}_n)_{n \in \mathbb{N}}$ such that $\mathcal{C}_n \models \psi$ but $\bigcup_{n \in \mathbb{N}} \mathcal{C}_n \not\models \psi$. Conclude that Σ_2 sentences are not preserved under unions of chains.

Exercise 3

Prove that positive formulas are preserved under onto homomorphisms.

Exercise 4 (Somewhat hard, but instructive)

Let $\{ \mathcal{A}_i : i < \gamma \}$ be a chain of similar structures, and let $\mathcal{A} = \bigcup_{i < \gamma} \mathcal{A}_i$. Prove that $\mathcal{A} \in \text{HSP}\{ \mathcal{A}_i : i < \gamma \}$.

Hint. Consider “eventually constant” sequences $(u_i : i < \gamma)$, i.e., such if $i > i_0$ (for some i_0), then $u_i = a_{i_0}$, where $a_{i_0} \in |\mathcal{A}_{i_0}|$. Next, consider the relation \sim on these sequences, defined by $(u_i : i < \gamma) \sim (w_i : i < \gamma)$ if for all $i > j_0$ (for some j_0) we have $u_i = w_i$.
Exercises

Exercise 2

Let φ be the sentence $\exists x, y \cdot \forall z \cdot \neg (x < z) \vee \neg (z < y)$ in the language of a binary relation \prec. Let ψ be the conjunction of φ with universal sentences stating that \prec is a strict linear order. Construct a chain of models $(C_n)_{n \in \mathbb{N}}$ such that $C_n \models \psi$ but $\bigcup_{n \in \mathbb{N}} C_n \not\models \psi$. Conclude that Σ_2 sentences are not preserved under unions of chains.

Exercise 3

Prove that positive formulas are preserved under onto homomorphisms.

Exercise 4 (Somewhat hard, but instructive)

Let $\{A_i : i < \gamma\}$ be a chain of similar structures, and let $A = \bigcup_{i < \gamma} A_i$. Prove that $A \in \text{HSP}\{A_i : i < \gamma\}$.

Hint. Consider “eventually constant” sequences $(u_i : i < \gamma)$, i.e., such if $i > i_0$ (for some i_0), then $u_i = a_{i_0}$, where $a_{i_0} \in |A_{i_0}|$. Next, consider the relation \sim on these sequences, defined by $(u_i : i < \gamma) \sim (w_i : i < \gamma)$ if for all $i > j_0$ (for some j_0) we have $u_i = w_i$.

Exercises

Exercise 2

Let \(\varphi \) be the sentence \(\exists x, y \cdot \forall z \cdot \neg (x < z) \lor \neg (z < y) \) in the language of a binary relation \(<\). Let \(\psi \) be the conjunction of \(\varphi \) with universal sentences stating that \(<\) is a strict linear order. Construct a chain of models \((C_n)_{n \in \mathbb{N}} \) such that \(C_n \models \psi \) but \(\bigcup_{n \in \mathbb{N}} C_n \not\models \psi \). Conclude that \(\Sigma_2 \) sentences are not preserved under unions of chains.

Exercise 3

Prove that positive formulas are preserved under onto homomorphisms.

Exercise 4 (Somewhat hard, but instructive)

Let \(\{A_i : i < \gamma\} \) be a chain of similar structures, and let \(A = \bigcup_{i < \gamma} A_i \). Prove that \(A \in \text{HSP}\{A_i : i < \gamma\} \).

Hint. Consider “eventually constant” sequences \((u_i : i < \gamma) \), i.e., such if \(i > i_0 \) (for some \(i_0 \)), then \(u_i = a_{i_0} \), where \(a_{i_0} \in |A_{i_0}| \). Next, consider the relation \(\sim \) on these sequences, defined by \((u_i : i < \gamma) \sim (w_i : i < \gamma) \) if for all \(i > j_0 \) (for some \(j_0 \)) we have \(u_i = w_i \).
Preservation under substructures

Theorem 3 (Łoś-Tarski)

Let \(T \) be a theory. If \(T \) is preserved under substructures, then \(T \) is equivalent to a set of \(\Pi_1 \) formulas.

Proof.

- Wlog, \(T \) is consistent. Let \(T_\forall \) be \(\{ \varphi \in \Pi_1 : T \models \varphi \} \).
- Let \(K = \{ A : A \leq B \text{ for some } B \in \text{Mod}(T) \} \).
 So \(K \) is the class of submodels of models of \(T \).
- As \(T \) is preserved by substructures, we have \(\text{Mod}(T) = K \subseteq \text{Mod}(T_\forall) \).
 We will show that \(\text{Mod}(T_\forall) \subseteq K \).
- Take \(A \models T_\forall \). Claim A: \(\text{diag}(A) \cup T \) is consistent.
 - Take a finite \(D_0 \subseteq \text{diag}(A) \) and a finite \(T_0 \subseteq T \).
 Put \(\delta(\bar{a}) = \wedge D_0 \), where \(\bar{a} \) are all diagram constants occurring in \(D_0 \).
 If \(D_0 \cup T_0 \) is inconsistent, then \(T_0 \models \neg \delta(\bar{a}) \).
 Note that \(T_0 \) does not mention \(\bar{a} \) at all. So \(T_0 \) entails \(\neg \delta(\bar{a}) \) for arbitrary \(\bar{a} \).
 - So, \(T_0 \models \forall \bar{x} \cdot \neg \delta(\bar{x}) \), and as \(\delta \) is quantifier free, we have \(\forall \bar{x} \cdot \neg \delta(\bar{x}) \in T_\forall \).
 - Thus, in particular, \(A \models \neg \delta(\bar{a}) \).
 - But \(\delta(\bar{a}) \in \text{diag}(A) \), so \(A \models \delta(\bar{a}) \). Contradiction.
- This proves Claim A.
Preservation under substructures

Theorem 3 (Łoś-Tarski)

Let T be a theory. If T is preserved under substructures, then T is equivalent to a set of Π_1 formulas.

Proof.

- Wlog, T is consistent. Let T_\forall be $\{\varphi \in \Pi_1 : T \models \varphi\}$.
- Let $K = \{\mathcal{A} : \mathcal{A} \leq \mathcal{B} \text{ for some } \mathcal{B} \in \text{Mod}(T)\}$.
 So K is the class of submodels of models of T.
- As T is preserved by substructures, we have $\text{Mod}(T) = K \subseteq \text{Mod}(T_\forall)$.
 We will show that $\text{Mod}(T_\forall) \subseteq K$.
- Take $\mathcal{A} \models T_\forall$. **Claim A:** $\text{diag}(\mathcal{A}) \cup T$ is consistent.
 - Take a finite $D_0 \subseteq \text{diag}(\mathcal{A})$ and a finite $T_0 \subseteq T$.
 - Put $\delta(\bar{a}) = \bigwedge D_0$, where \bar{a} are all diagram constants occurring in D_0.
 - If $D_0 \cup T_0$ is inconsistent, then $T_0 \models \neg \delta(\bar{a})$.
 Note that T_0 does not mention \bar{a} at all. So T_0 entails $\neg \delta(\bar{a})$ for arbitrary \bar{a}.
 - So, $T_0 \models \forall \bar{x} \cdot \neg \delta(\bar{x})$, and as δ is quantifier free, we have $\forall \bar{x} \cdot \neg \delta(\bar{x}) \in T_\forall$.
 - Thus, in particular, $\mathcal{A} \models \neg \delta(\bar{a})$.
 - But $\delta(\bar{a}) \in \text{diag}(\mathcal{A})$, so $\mathcal{A} \models \delta(\bar{a})$. Contradiction.
- This proves Claim A.

□
Preservation under substructures

Proof continued.

- By Claim A $\text{diag}(\mathcal{A}) \cup T$ has a model, say, \mathcal{M}.
- Since $\mathcal{M} \models \text{diag}(\mathcal{A})$, by the diagram lemma $\mathcal{A} \leq \mathcal{M}$.
- So, $\mathcal{A} \in \mathcal{K}$ as claimed, finishing the proof.

The “arbitrary constant” trick is a formal version of a common practice of proving a general statement by picking some arbitrary elements.

Exercise 5 (Very easy, but instructive)

Formally, the arbitrary constant trick is the following statement.

- Let Σ be a signature, and C a set of new constants. Let S be a set of $\Sigma[C]$-sentences in which no constant from c occurs, or, which amounts to the same thing, a set of Σ-sentences in the signature $\Sigma[C]$. Let $\varphi(\bar{c})$ be a $\Sigma[C]$-sentence, with \bar{c} a sequence of constants from C. Then, $S \models \varphi(\bar{c})$ implies $S \models \forall \bar{x} \cdot \varphi(\bar{x})$.

Prove it without recourse to completeness, soundness, or proof rules.
Proof continued.

By Claim A \(\text{diag}(\mathcal{A}) \cup T \) has a model, say, \(\mathcal{M} \).

Since \(\mathcal{M} \models \text{diag}(\mathcal{A}) \), by the diagram lemma \(\mathcal{A} \leq \mathcal{M} \).

So, \(\mathcal{A} \in \mathcal{K} \) as claimed, finishing the proof.

The “arbitrary constant” trick is a formal version of a common practice of proving a general statement by picking some arbitrary elements.

Exercise 5 (Very easy, but instructive)

Formally, the arbitrary constant trick is the following statement.

Let \(\Sigma \) be a signature, and \(C \) a set of new constants. Let \(S \) be a set of \(\Sigma[C] \)-sentences in which no constant from \(c \) occurs, or, which amounts to the same thing, a set of \(\Sigma \)-sentences in the signature \(\Sigma[C] \). Let \(\varphi(\bar{c}) \) be a \(\Sigma[C] \)-sentence, with \(\bar{c} \) a sequence of constants from \(C \). Then, \(S \models \varphi(\bar{c}) \) implies \(S \models \forall x \cdot \varphi(x) \).

Prove it without recourse to completeness, soundness, or proof rules.
Preservation under substructures

Proof continued.

- By Claim A \(\text{diag}(A) \cup T \) has a model, say, \(M \).
- Since \(M \models \text{diag}(A) \), by the diagram lemma \(A \leq M \).
- So, \(A \in K \) as claimed, finishing the proof.

The “arbitrary constant” trick is a formal version of a common practice of proving a general statement by picking some arbitrary elements.

Exercise 5 (Very easy, but instructive)

Formally, the arbitrary constant trick is the following statement.

- Let \(\Sigma \) be a signature, and \(C \) a set of new constants. Let \(S \) be a set of \(\Sigma[C] \)-sentences in which no constant from \(c \) occurs, or, which amounts to the same thing, a set of \(\Sigma \)-sentences in the signature \(\Sigma[C] \). Let \(\varphi(\bar{c}) \) be a \(\Sigma[C] \)-sentence, with \(\bar{c} \) a sequence of constants from \(C \). Then, \(S \models \varphi(\bar{c}) \) implies \(S \models \forall \bar{x} \cdot \varphi(\bar{x}) \).

Prove it without recourse to completeness, soundness, or proof rules.
Arbitrary constant trick in our formal setting

The diagram on the left preserves Σ (i.e. $i : \Sigma[c] \to \Sigma[x]$ is the identity on Σ) and i maps c to x.

1. In our formal setting a variable is a triple, so we have $x = (t, s, \Sigma)$. If one ignores the third component (which is what we do here, to keep things as classical as we can), then both $\text{Sen}(\iota_c) : \text{Sen}(\Sigma) \to \text{Sen}(\Sigma[c])$ and $\text{Sen}(\iota_x) : \text{Sen}(\Sigma) \to \text{Sen}(\Sigma[x])$ are inclusions.

2. Since we work under the assumption that the carrier sets of the models are non-empty sets, all injective signature morphisms are conservative; in particular, inclusions are conservative;

By the two remarks above, it is safe to ignore the signature Σ, and write, simply, (a) $T \cup \{S[x]\}$ instead of $\iota_c(T) \cup \{S[x]\}$, and (b) $T \cup \{S[x]\} \vdash \bot$ instead of $T \cup \{S[x]\} \vdash \Sigma[x] \bot$.

Now, if $T \cup \{S[c]\}$ is inconsistent, then since $i(T \cup \{S[c]\}) = T \cup \{S[x]\}$, by (Translation), $T \cup \{S[x]\}$ is inconsistent as well; since $T \cup S[x] \vdash \bot$, by (NegI), $T \vdash \neg S[x]$; by the rule of generalization, we get $T \vdash \forall x \cdot \neg S[x]$; by soundness, $T \models \forall x \cdot \neg S[x]$.
Elementary substructures, elementary embeddings, and elementary equivalence
Definition 4

Let \(A \) and \(B \) be \(\Sigma \)-structures. Let \(f : A \rightarrow B \) be a homomorphism.

\(A \) is an **elementary substructure** of \(B \), (written \(A \preceq B \)) if \(A \preceq B \) and, for every formula \(\varphi(\overline{x}) \) and every tuple \(\overline{a} \) from \(|A| \), we have \(A \models \varphi(\overline{a}) \) iff \(B \models \varphi(\overline{a}) \).

\(f : A \rightarrow B \) is an **elementary embedding** (written \(f : A \preceq e B \)) if \(f \) is an embedding (written \(f : A \hookrightarrow B \)) and for every formula \(\varphi(\overline{x}) \) and every tuple \(\overline{a} \) from \(|A| \), we have \(A \models \varphi(\overline{a}) \) iff \(B \models \varphi(f(\overline{a})) \).

If there exists an elementary embedding of \(A \) into \(B \), we write \(A \preceq B \).

Example 5

Let \(A \) and \(B \) be infinite pure identity structures. Then

\(A \preceq B \) and \(B \preceq A \) imply \(A \cong B \) holds trivially (in fact, \(A = B \)).

\(A \preceq B \) and \(B \preceq A \) imply \(A \cong B \) is Schröder-Bernstein Theorem.
Elementary substructures and embeddings

Definition 4

Let \(\mathcal{A} \) and \(\mathcal{B} \) be \(\Sigma \)-structures. Let \(f : \mathcal{A} \to \mathcal{B} \) be a homomorphism.

- \(\mathcal{A} \) is an elementary substructure of \(\mathcal{B} \), (written \(\mathcal{A} \preceq \mathcal{B} \)) if \(\mathcal{A} \subseteq \mathcal{B} \) and, for every formula \(\varphi(\overline{x}) \) and every tuple \(\overline{a} \) from \(|\mathcal{A}| \), we have \(\mathcal{A} \models \varphi(\overline{a}) \text{ iff } \mathcal{B} \models \varphi(\overline{a}) \).

- \(f : \mathcal{A} \to \mathcal{B} \) is an elementary embedding (written \(f : \mathcal{A} \overset{e}{\rightarrow} \mathcal{B} \)) if \(f \) is an embedding (written \(f : \mathcal{A} \rightarrow \mathcal{B} \)) and for every formula \(\varphi(\overline{x}) \) and every tuple \(\overline{a} \) from \(|\mathcal{A}| \), we have \(\mathcal{A} \models \varphi(\overline{a}) \text{ iff } \mathcal{B} \models \varphi(f(\overline{a})) \).

- If there exists an elementary embedding of \(\mathcal{A} \) into \(\mathcal{B} \), we write \(\mathcal{A} \preceq \mathcal{B} \).

Example 5

Let \(\mathcal{A} \) and \(\mathcal{B} \) be infinite pure identity structures. Then

- “\(\mathcal{A} \preceq \mathcal{B} \) and \(\mathcal{B} \preceq \mathcal{A} \) imply \(\mathcal{A} \simeq \mathcal{B} \)” holds trivially (in fact, \(\mathcal{A} = \mathcal{B} \)).

- “\(\mathcal{A} \preceq \mathcal{B} \) and \(\mathcal{B} \preceq \mathcal{A} \) imply \(\mathcal{A} \simeq \mathcal{B} \)” is Schröder-Bernstein Theorem.
Lemma 6 (Tarski-Vaught test)

Let $\mathcal{A} \leq \mathcal{B}$ be similar structures. If for every formula $\varphi(x, \bar{a})$ with parameters \bar{a} from \mathcal{A}, we have that $\mathcal{B} \models \exists x \cdot \varphi(x, \bar{a})$ implies $\mathcal{A} \models \exists x \cdot \varphi(x, \bar{a})$, then $\mathcal{A} \leq \mathcal{B}$ holds.

Proof.

- Let $\varphi(\bar{y})$ be a formula, and \bar{a} be a tuple from $|\mathcal{A}|$. We will show that (\star) $\mathcal{B} \models \varphi(\bar{a})$ iff $\mathcal{A} \models \varphi(\bar{a})$.
- Induction on the length of quantifier prefix in φ.
- Base: If φ is quantifier free, then (\star) holds by definition of satisfaction.
- Step for \forall: If φ is $\forall x \cdot \psi(x, \bar{y})$, then $\mathcal{B} \models \forall x \cdot \psi(x, \bar{a})$ implies $\mathcal{A} \models \forall x \cdot \psi(x, \bar{a})$, as $\mathcal{A} \leq \mathcal{B}$.
- For converse, if $\mathcal{B} \not\models \forall x \cdot \psi(x, \bar{a})$, then $\mathcal{B} \models \neg \psi(b, \bar{a})$ for some $b \in |\mathcal{B}|$, and thus $\mathcal{B} \models \exists x \cdot \neg \psi(x, \bar{a})$. By assumption, we conclude $\mathcal{A} \models \exists x \cdot \neg \psi(x, \bar{a})$.
- Therefore $\mathcal{A} \models \neg \psi(c, \bar{a})$ for some $c \in |\mathcal{A}|$, and so $\mathcal{A} \not\models \forall x \cdot \psi(x, \bar{a})$.
- Step for \exists: If φ is $\exists x \cdot \psi(x, \bar{y})$, then $\mathcal{A} \models \exists x \cdot \psi(x, \bar{y})$ implies $\mathcal{B} \models \exists x \cdot \psi(x, \bar{y})$, as $\mathcal{A} \leq \mathcal{B}$.
- The converse is precisely the assumption. □
Tarski-Vaught test

Lemma 6 (Tarski-Vaught test)

Let $\mathcal{A} \leq \mathcal{B}$ be similar structures. If for every formula $\varphi(x, \bar{a})$ with parameters \bar{a} from \mathcal{A}, we have that $\mathcal{B} \models \exists x \cdot \varphi(x, \bar{a})$ implies $\mathcal{A} \models \exists x \cdot \varphi(x, \bar{a})$, then $\mathcal{A} \preceq \mathcal{B}$ holds.

Proof.

- Let $\varphi(y)$ be a formula, and \bar{a} be a tuple from $|\mathcal{A}|$. We will show that (\star) $\mathcal{B} \models \varphi(\bar{a})$ iff $\mathcal{A} \models \varphi(\bar{a})$.
- Induction on the length of quantifier prefix in φ.
- **Base:** If φ is quantifier free, then (\star) holds by definition of satisfaction.
- **Step for \forall:** If φ is $\forall x \cdot \psi(x, y)$, then $\mathcal{B} \models \forall x \cdot \psi(x, \bar{a})$ implies $\mathcal{A} \models \forall x \cdot \psi(x, \bar{a})$, as $\mathcal{A} \leq \mathcal{B}$.
- For converse, if $\mathcal{B} \not\models \forall x \cdot \psi(x, \bar{a})$, then $\mathcal{B} \models \neg \psi(b, \bar{a})$ for some $b \in |\mathcal{B}|$, and thus $\mathcal{B} \models \exists x \cdot \neg \psi(x, \bar{a})$. By assumption, we conclude $\mathcal{A} \models \exists x \cdot \neg \psi(x, \bar{a})$.
- Therefore $\mathcal{A} \models \neg \psi(c, \bar{a})$ for some $c \in |\mathcal{A}|$, and so $\mathcal{A} \not\models \forall x \cdot \psi(x, \bar{a})$.
- **Step for \exists:** If φ is $\exists x \cdot \psi(x, y)$, then $\mathcal{A} \models \exists x \cdot \psi(x, y)$ implies $\mathcal{B} \models \exists x \cdot \psi(x, y)$, as $\mathcal{A} \leq \mathcal{B}$.
- The converse is precisely the assumption.
Unions of elementary chains

Lemma 7

Let \(\{ \mathcal{A}_i : i < \gamma \} \) be a family of similar structures such that \(\mathcal{A}_i \preceq \mathcal{A}_j \) for \(i \leq j \). Let \(\mathcal{C} = \bigcup_{i < \gamma} \mathcal{A}_i \). Then, \(\mathcal{A}_i \preceq \mathcal{C} \) holds for any \(i < \gamma \).

Proof.

- We use Tarski-Vaught test.
- Take a formula \(\varphi(x, \bar{a}) \), where \(\bar{a} \) is a tuple from \(\mathcal{A}_i \).
- Assume \(\mathcal{C} \models \exists x \cdot \varphi(x, \bar{a}) \).
- Then, \(\mathcal{C} \models \varphi(c, \bar{a}) \) for some \(c \in |\mathcal{C}| \). By definition of \(\mathcal{C} \) we have that \(c \in |\mathcal{A}_j| \).
- If \(j \leq i \), then \(c \in |\mathcal{A}_i| \) and so \(\mathcal{A}_i \models \exists x \cdot \varphi(x, \bar{a}) \).
- Assume \(i < j \). Then \(\mathcal{A}_i \preceq \mathcal{A}_j \) and \(\mathcal{A}_j \models \exists x \cdot \varphi(x, \bar{a}) \). Thus, \(\mathcal{A}_i \models \exists x \cdot \varphi(x, \bar{a}) \) as well. \(\square \)

Exercise 6

- Prove that \(\preceq \) is an ordering relation on classes of similar structures.
- Give counterexamples showing that \(\mathcal{A} \preceq \mathcal{B} \preceq \mathcal{C} \) and \(\mathcal{A} \preceq \mathcal{C} \) implies neither \(\mathcal{A} \preceq \mathcal{B} \) nor \(\mathcal{B} \preceq \mathcal{C} \).
Unions of elementary chains

Lemma 7

Let \(\{ \mathcal{A}_i : i < \gamma \} \) be a family of similar structures such that \(\mathcal{A}_i \preceq \mathcal{A}_j \) for \(i \leq j \). Let \(\mathcal{C} = \bigcup_{i < \gamma} \mathcal{A}_i \). Then, \(\mathcal{A}_i \preceq \mathcal{C} \) holds for any \(i < \gamma \).

Proof.

- We use Tarski-Vaught test.
- Take a formula \(\varphi(x, \bar{a}) \), where \(\bar{a} \) is a tuple from \(\mathcal{A}_i \).
- Assume \(\mathcal{C} \models \exists x \cdot \varphi(x, \bar{a}) \).
- Then, \(\mathcal{C} \models \varphi(c, \bar{a}) \) for some \(c \in |\mathcal{C}| \). By definition of \(\mathcal{C} \) we have that \(c \in |\mathcal{A}_j| \).
- If \(j \leq i \), then \(c \in |\mathcal{A}_i| \) and so \(\mathcal{A}_i \models \exists x \cdot \varphi(x, \bar{a}) \).
- Assume \(i < j \). Then \(\mathcal{A}_i \preceq \mathcal{A}_j \) and \(\mathcal{A}_j \models \exists x \cdot \varphi(x, \bar{a}) \). Thus, \(\mathcal{A}_i \models \exists x \cdot \varphi(x, \bar{a}) \) as well. \(\square \)

Exercise 6

- Prove that \(\preceq \) is an ordering relation on classes of similar structures.
- Give counterexamples showing that \(\mathcal{A} \preceq \mathcal{B} \preceq \mathcal{C} \) and \(\mathcal{A} \preceq \mathcal{C} \) implies neither \(\mathcal{A} \preceq \mathcal{B} \) nor \(\mathcal{B} \preceq \mathcal{C} \).
Unions of elementary chains

Lemma 7

Let \(\{ A_i : i < \gamma \} \) be a family of similar structures such that \(A_i \preceq A_j \) for \(i \leq j \). Let \(C = \bigcup_{i < \gamma} A_i \). Then, \(A_i \preceq C \) holds for any \(i < \gamma \).

Proof.

- We use Tarski-Vaught test.
- Take a formula \(\varphi(x, \bar{a}) \), where \(\bar{a} \) is a tuple from \(A_i \).
- Assume \(C \models \exists x \cdot \varphi(x, \bar{a}) \).
- Then, \(C \models \varphi(c, \bar{a}) \) for some \(c \in |C| \). By definition of \(C \) we have that \(c \in |A_j| \).
- If \(j \leq i \), then \(c \in |A_i| \) and so \(A_i \models \exists x \cdot \varphi(x, \bar{a}) \).
- Assume \(i < j \). Then \(A_i \preceq A_j \) and \(A_j \models \exists x \cdot \varphi(x, \bar{a}) \). Thus, \(A_i \models \exists x \cdot \varphi(x, \bar{a}) \) as well. \(\square \)

Exercise 6

- Prove that \(\preceq \) is an ordering relation on classes of similar structures.
- Give counterexamples showing that \(A \preceq B \preceq C \) and \(A \preceq C \) implies neither \(A \preceq B \) nor \(B \preceq C \).
Elementary equivalence and isomorphism

Definition 8

Let \mathcal{A} and \mathcal{B} be Σ-structures. \mathcal{A} and \mathcal{B} are **elementarily equivalent** (written $\mathcal{A} \equiv \mathcal{B}$) if for every Σ-sentence φ we have $\mathcal{A} \models \varphi$ iff $\mathcal{B} \models \varphi$.

Lemma 9

Let \mathcal{A} and \mathcal{B} be similar structures. Then, $\mathcal{A} \simeq \mathcal{B}$ implies $\mathcal{A} \preceq \mathcal{B}$ and $\mathcal{A} \preceq \mathcal{B}$ implies $\mathcal{A} \equiv \mathcal{B}$. The converses do not hold.

Exercise 7

Let \mathcal{A} and \mathcal{B} be infinite pure identity structures. Suppose $|\mathcal{A}|$ is a proper subset of $|\mathcal{B}|$, of strictly smaller cardinality.

- **Prove that** $\mathcal{A} \preceq \mathcal{B}$ (apply Tarski-Vaught test), but $\mathcal{A} \not\simeq \mathcal{B}$. **Conclude that** $\mathcal{B} \equiv \mathcal{A}$, but $\mathcal{B} \not\preceq \mathcal{A}$.

- **Show that** \mathcal{A} and \mathcal{B} cannot be finite. Develop it into a proof of the fact that for finite structures elementary equivalence and isomorphism coincide.
Elementary equivalence and isomorphism

Definition 8
Let \mathcal{A} and \mathcal{B} be Σ-structures. \mathcal{A} and \mathcal{B} are elementarily equivalent (written $\mathcal{A} \equiv \mathcal{B}$) if for every Σ-sentence φ we have $\mathcal{A} \models \varphi$ iff $\mathcal{B} \models \varphi$.

Lemma 9
Let \mathcal{A} and \mathcal{B} be similar structures. Then, $\mathcal{A} \cong \mathcal{B}$ implies $\mathcal{A} \preceq \mathcal{B}$ and $\mathcal{A} \preceq \mathcal{B}$ implies $\mathcal{A} \equiv \mathcal{B}$. The converses do not hold.

Exercise 7
Let \mathcal{A} and \mathcal{B} be infinite pure identity structures. Suppose $|\mathcal{A}|$ is a proper subset of $|\mathcal{B}|$, of strictly smaller cardinality.

- Prove that $\mathcal{A} \preceq \mathcal{B}$ (apply Tarski-Vaught test), but $\mathcal{A} \not\cong \mathcal{B}$. Conclude that $\mathcal{B} \equiv \mathcal{A}$, but $\mathcal{B} \not\preceq \mathcal{A}$.
- Show that \mathcal{A} and \mathcal{B} cannot be finite. Develop it into a proof of the fact that for finite structures elementary equivalence and isomorphism coincide.
Elementary equivalence and isomorphism

Definition 8

Let \mathcal{A} and \mathcal{B} be Σ-structures. \mathcal{A} and \mathcal{B} are **elementarily equivalent** (written $\mathcal{A} \equiv \mathcal{B}$) if for every Σ-sentence φ we have $\mathcal{A} \models \varphi$ iff $\mathcal{B} \models \varphi$.

Lemma 9

Let \mathcal{A} and \mathcal{B} be similar structures. Then, $\mathcal{A} \cong \mathcal{B}$ implies $\mathcal{A} \preceq \mathcal{B}$ and $\mathcal{A} \preceq \mathcal{B}$ implies $\mathcal{A} \equiv \mathcal{B}$. The converses do not hold.

Exercise 7

Let \mathcal{A} and \mathcal{B} be infinite pure identity structures. Suppose $|\mathcal{A}|$ is a proper subset of $|\mathcal{B}|$, of strictly smaller cardinality.

- **Prove that** $\mathcal{A} \preceq \mathcal{B}$ (**apply Tarski-Vaught test**), but $\mathcal{A} \not\cong \mathcal{B}$. **Conclude that** $\mathcal{B} \equiv \mathcal{A}$, but $\mathcal{B} \not\preceq \mathcal{A}$.

- **Show that** \mathcal{A} and \mathcal{B} cannot be finite. **Develop it into a proof of the fact that** for finite structures elementary equivalence and isomorphism **coincide**.
Preservation under unions of chains

Theorem 10 (Chang-Łoś-Suszko)

Let T be a theory. If T is preserved under unions of chains, then T is equivalent to a set of Π_2 formulas.

Proof.

- Let $T_{\forall \exists}$ be $\{\varphi \in \Pi_2 : T \models \varphi\}$. Thus, every model of T is a model of $T_{\forall \exists}$.

 We will show that every model of $T_{\forall \exists}$ is a model of T.

- Let $\mathcal{A} \models T_{\forall \exists}$. Expand the signature from Σ, to $\Sigma[\overline{a}]$, by naming all elements of \mathcal{A}.

- Let $D_\forall(\mathcal{A}) = \{\varphi \in \Pi_1 : (\mathcal{A}, \overline{a}) \models \varphi\}$. $D_\forall(\mathcal{A})$ is the set of all universal $\Sigma[\overline{a}]$-sentences which are true in $(\mathcal{A}, \overline{a})$.

- **Claim B:** $D_\forall(\mathcal{A}) \cup T$ is consistent.

 - Suppose the contrary. Then for some $D_0 \subseteq_{\text{fin}} D_\forall(\mathcal{A})$ and $T_0 \subseteq_{\text{fin}} T$, the set $D_0 \cup T_0$ is inconsistent. Put $\delta(\overline{a_0}) = \bigwedge D_0$, where $\overline{a_0}$ are the constants occurring in D_0.

 Written explicitly, $\delta(\overline{a_0})$ is of the form $\forall x \cdot \eta(\overline{a_0}, \overline{x})$.

 - Then, $T_0 \models \neg \delta(\overline{a_0})$, that is, $T_0 \models \neg \forall x \cdot \eta(\overline{a_0}, \overline{x})$.

 - Therefore, $T_0 \models \forall y \cdot \neg \forall x \cdot \eta(\overline{y}, \overline{x})$, that is $T_0 \models \forall y \cdot \exists x \cdot \neg \eta(\overline{y}, \overline{x})$.

 Arbitrary constant trick at work again.

 - Thus, $\forall y \cdot \exists x \cdot \neg \eta(\overline{y}, \overline{x}) \in T_{\forall \exists}$. Therefore, $\mathcal{A} \models \forall y \cdot \exists x \cdot \neg \eta(\overline{y}, \overline{x})$.

 - Thus, $(\mathcal{A}, \overline{a}) \models \exists x \cdot \neg \eta(\overline{a_0}, \overline{x})$. But $\exists x \cdot \neg \eta(\overline{a_0}, \overline{x})$ is $\neg \delta(\overline{a_0})$, so $(\mathcal{A}, \overline{a}) \models \neg \delta(\overline{a_0})$.

 - On the other hand, $\delta(\overline{a_0}) = \bigwedge D_0$, so $(\mathcal{A}, \overline{a}) \models \delta(\overline{a_0})$. Contradiction.
Preservation under unions of chains

Theorem 10 (Chang-Łoś-Suszko)

Let T be a theory. If T is preserved under unions of chains, then T is equivalent to a set of Π_2 formulas.

Proof.

- Let $T_{\forall\exists}$ be $\{\varphi \in \Pi_2 : T \models \varphi\}$. Thus, every model of T is a model of $T_{\forall\exists}$.

 We will show that every model of $T_{\forall\exists}$ is a model of T.

- Let $\mathcal{A} \models T_{\forall\exists}$. Expand the signature from Σ, to $\Sigma[\bar{a}]$, by naming all elements of \mathcal{A}.

- Let $D_{\forall}(\mathcal{A}) = \{\varphi \in \Pi_1 : (\mathcal{A}, \bar{a}) \models \varphi\}$. $D_{\forall}(\mathcal{A})$ is the set of all universal $\Sigma[\bar{a}]$-sentences which are true in (\mathcal{A}, \bar{a}).

- Claim B: $D_{\forall}(\mathcal{A}) \cup T$ is consistent.

 - Suppose the contrary. Then for some $D_0 \subseteq \text{fin } D_{\forall}(\mathcal{A})$ and $T_0 \subseteq \text{fin } T$, the set $D_0 \cup T_0$ is inconsistent. Put $\delta(\bar{a}_0) = \bigwedge D_0$, where \bar{a}_0 are the constants occurring in D_0.

 Written explicitly, $\delta(\bar{a}_0)$ is of the form $\forall \bar{x} \cdot \eta(\bar{a}_0, \bar{x})$.

 - Then, $T_0 \models \neg \delta(\bar{a}_0)$, that is, $T_0 \models \neg \forall \bar{x} \cdot \eta(\bar{a}_0, \bar{x})$.

 - Therefore, $T_0 \models \forall \bar{y} \cdot \neg \forall \bar{x} \cdot \eta(\bar{y}, \bar{x})$, that is $T_0 \models \forall \bar{y} \cdot \exists \bar{x} \cdot \neg \eta(\bar{y}, \bar{x})$.

 Arbitrary constant trick at work again.

 - Thus, $\forall \bar{y} \cdot \exists \bar{x} \cdot \neg \eta(\bar{y}, \bar{x}) \in T_{\forall\exists}$. Therefore, $\mathcal{A} \models \forall \bar{y} \cdot \exists \bar{x} \cdot \neg \eta(\bar{y}, \bar{x})$.

 - Thus, $(\mathcal{A}, \bar{a}) \models \exists \bar{x} \cdot \neg \eta(\bar{a}_0, \bar{x})$. But $\exists \bar{x} \cdot \neg \eta(\bar{a}_0, \bar{x})$ is $\neg \delta(\bar{a}_0)$, so $(\mathcal{A}, \bar{a}) \models \neg \delta(\bar{a}_0)$.

 - On the other hand, $\delta(\bar{a}_0) = \bigwedge D_0$, so $(\mathcal{A}, \bar{a}) \models \delta(\bar{a}_0)$. Contradiction.
Preservation under unions of chains

Proof continued: alternating chains method.

- Let $\mathcal{B} \models D_\forall(\mathcal{A}) \cup T$.
- Since $D_\forall(\mathcal{A}) \supseteq \text{diag}(\mathcal{A})$, we have $\mathcal{A} \leq \mathcal{B}$.
- **Claim C:** $\text{diag}(\mathcal{B}) \cup \text{Th}(\mathcal{A}, \overline{a})$ is consistent.
 - **Exercise.** Prove it using the arbitrary constant trick. Note that any tuple \overline{b} from $|\mathcal{B}|$ can be written as $(\overline{c}, \overline{d})$ with $\overline{c} \in |\mathcal{B}| \setminus |\mathcal{A}|$ and $\overline{d} \in |\mathcal{A}|$.
- Let $\mathcal{A}_1 \models \text{diag}(\mathcal{B}) \cup \text{Th}(\mathcal{A}, \overline{a})$.
- Then $\mathcal{A} \leq \mathcal{B} \leq \mathcal{A}_1$, and $\mathcal{B} \models T$; moreover, $\mathcal{A} \leq \mathcal{A}_1$.
 - The elementarity of the embedding follows from the fact that $\mathcal{A}_1 \models \text{Th}(\mathcal{A}, \overline{a})$.
- Continuing inductively, we get $\mathcal{A} \leq \mathcal{B} \leq \mathcal{A}_1 \leq \mathcal{B}_1 \leq \mathcal{A}_2 \leq \ldots$ **Draw a diagram!**
- Let \mathcal{C} be the union of this chain.
- Then, \mathcal{C} is also the union of $\mathcal{B} \leq \mathcal{B}_1 \leq \mathcal{B}_2 \leq \ldots$
- Since $\mathcal{B}_i \models T$ for every i by construction, and T is preserved under unions of chains, we get $\mathcal{C} \models T$.
- But \mathcal{C} is also the union of $\mathcal{A} \leq \mathcal{A}_1 \leq \mathcal{A}_2 \leq \ldots$
- Since $\mathcal{A} \leq \mathcal{A}_1 \leq \mathcal{A}_2 \leq \ldots$, by Lemma 7 we get $\mathcal{A} \leq \mathcal{C}$.
 - **Exercise:** there is a hidden use of a part of Exercise 6 here. Find it.
- Therefore, $\mathcal{A} \models T$, as required.
Free algebras as basic/canonical models

Theorem 11 (Basic/Canonical model)

Let E be a set of atomic sentences in a signature Σ. Then, there exists a Σ-structure M such that

1. $M \models E$.

2. Every element of $|M|$ is of the form t^M for a closed term t.

3. If N is an Σ-structure and $N \models E$, then there exists a homomorphism $h : M \to N$. If Σ is non-void, then this homomorphism is unique.

Proof.

By Theorem 26 from Lecture 2. We called M “basic”. It is often called “canonical”.

Example 12

Let G be the set of equations $x \cdot (y \cdot z) = (x \cdot y) \cdot z$, $x^{-1} \cdot x = e = x \cdot x^{-1}$, $x \cdot e = x = e \cdot x$, that is, the group axioms. Let E be the set of all atomic sentences obtained from G by replacing variables by closed terms in the signature expanded by constants from some set X (here the “variables are constants” trick works very nicely). Then, the basic model G of X is the free group $G[X]$ generated by X.

29 / 37
Free algebras as basic/canonical models

Theorem 11 (Basic/Canonical model)

Let E be a set of atomic sentences in a signature Σ. Then, there exists a Σ-structure M such that

1. $M \models E$.
2. Every element of $|M|$ is of the form t^M for a closed term t.
3. If N is an Σ-structure and $N \models E$, then there exists a homomorphism $h: M \rightarrow N$. If Σ is non-void, then this homomorphism is unique.

Proof.

By Theorem 26 from Lecture 2. We called M "basic". It is often called "canonical".

Example 12

Let G be the set of equations $x \cdot (y \cdot z) = (x \cdot y) \cdot z$, $x^{-1} \cdot x = e = x \cdot x^{-1}$, $x \cdot e = x = e \cdot x$, that is, the group axioms. Let E be the set of all atomic sentences obtained from G by replacing variables by closed terms in the signature expanded by constants from some set X (here the "variables are constants" trick works very nicely). Then, the basic model G of X is the free group $G[X]$ generated by X.
Free algebras as basic/canonical models

Theorem 11 (Basic/Canonical model)

Let E be a set of atomic sentences in a signature Σ. Then, there exists a Σ-structure M such that

1. $M \models E$.

2. Every element of $|M|$ is of the form t^M for a closed term t.

3. If N is an Σ-structure and $N \models E$, then there exists a homomorphism $h: M \to N$. If Σ is non-void, then this homomorphism is unique.

Proof.

By Theorem 26 from Lecture 2. We called M “basic”. It is often called “canonical”.

Example 12

Let G be the set of equations $x \cdot (y \cdot z) = (x \cdot y) \cdot z$, $x^{-1} \cdot x = e = x \cdot x^{-1}$, $x \cdot e = x = e \cdot x$, that is, the group axioms. Let E be the set of all atomic sentences obtained from G by replacing variables by closed terms in the signature expanded by constants from some set X (here the “variables are constants” trick works very nicely). Then, the basic model G of X is the free group $G[X]$ generated by X.
Adding roots of polynomials to a field

Example 13

Let K be a field. As usual we write $K[x]$ for the ring of polynomials in x over K. We can think of $K[x]$ as a structure in the signature of rings with additional constants for each element of K, and one more for x. Take a polynomial $p(x)$ which is irreducible over K. Let T be the set of all equations that are true in $K[x]$. Now consider $T \cup \{p(x) = 0\}$. This is a set of atomic sentences, so it has a basic model M.

- By diagram lemma, there is an onto homomorphism $h: K[x] \rightarrow M$. In particular M is a ring.

- As $M \models p(x) = 0$, we have $h(a) = 0^M$ for every a in the ideal $(p(x))$.

- Because $K[x]_{p(x)}$ satisfies $T \cup \{p(x) = 0\}$, we get that $K[x]_{p(x)}$ is a homomorphic image of M.

- In fact, $K[x]_{p(x)}$ and M are isomorphic. For consider $K[x] \rightarrow M \rightarrow K[x]_{p(x)}$. Their composition is the quotient map.
Free algebras again

Let \mathcal{K} be a class of similar algebras, and X a set of variables. We write $\text{Eq}_X(\mathcal{K})$ for the set of all equations over X true in \mathcal{K}. If X is clear from context we write $\text{Eq}(\mathcal{K})$.

Lemma 14 (Free algebras)

Let \mathcal{K} and X be as above, and $E = \text{Eq}_X(\mathcal{K})$. Let $F[X]$ be the basic model for E. Then, $F[X] \in \text{SP}(\mathcal{K})$. Moreover, $\text{Eq}_X(\mathcal{K}) = \text{Eq}_X(F[X])$.

Proof.

- Let $\Phi = \{ \varphi_i : i < \gamma \}$ be the set of all homomorphisms $\varphi_i : F[X] \to K_i$, for some $K_i \in \mathcal{K}$. We take it up to identity of kernels, so it is a set.

- The map $\psi : F[X] \to \prod_{i < \gamma} K_i$, defined coordinatewise as $\psi = (\varphi_i : i < \gamma)$, is a homomorphism.

- By universal property of $F[X]$, for every $a, b \in |F[X]|$ with $a \neq b$, we have a homomorphism φ_i such that $\varphi_i(a) \neq \varphi_i(b)$. Note that a and b are values of some terms t and s over X, so $t \approx s \notin E$.

- Thus, the image $\psi(F[X])$ is a substructure of $\prod_{i < \gamma} K_i$. Hence, $F[X] \in \text{SP}(\mathcal{K})$, as claimed.

- For the moreover part: $\text{Eq}_X(\mathcal{K}) \subseteq \text{Eq}_X(F[X])$ follows by preservation of equations by SP; $\text{Eq}_X(\mathcal{K}) \supseteq \text{Eq}_X(F[X])$ follows by the remark above in blue.
Free algebras again

Let \mathcal{K} be a class of similar algebras, and X a set of variables. We write $\text{Eq}_X(\mathcal{K})$ for the set of all equations over X true in \mathcal{K}. If X is clear from context we write $\text{Eq}(\mathcal{K})$.

Lemma 14 (Free algebras)

Let \mathcal{K} and X be as above, and $E = \text{Eq}_X(\mathcal{K})$. Let $F[X]$ be the basic model for E. Then, $F[X] \in \text{SP}(\mathcal{K})$. Moreover, $\text{Eq}_X(\mathcal{K}) = \text{Eq}_X(F[X])$.

Proof.

- Let $\Phi = \{\varphi_i : i < \gamma\}$ be the set of all homomorphisms $\varphi_i : F[X] \to K_i$, for some $K_i \in \mathcal{K}$. We take it up to identity of kernels, so it is a set.
- The map $\psi : F[X] \to \prod_{i < \gamma} K_i$, defined coordinatewise as $\psi = (\varphi_i : i < \gamma)$, is a homomorphism.
- By universal property of $F[X]$, for every $a, b \in |F[X]|$ with $a \neq b$, we have a homomorphism φ_i such that $\varphi_i(a) \neq \varphi_i(b)$. Note that a and b are values of some terms t and s over X, so $t \approx s \notin E$.
- Thus, the image $\psi(F[X])$ is a substructure of $\prod_{i < \gamma} K_i$. Hence, $F[X] \in \text{SP}(\mathcal{K})$, as claimed.
- For the moreover part: $\text{Eq}_X(\mathcal{K}) \subseteq \text{Eq}_X(F[X])$ follows by preservation of equations by SP; $\text{Eq}_X(\mathcal{K}) \supseteq \text{Eq}_X(F[X])$ follows by the remark above in blue.
Birkhoff’s HSP Theorem

Theorem 15 (Birkhoff)

Let \mathbb{K} be a class of similar algebras, and X some countably infinite set of variables. If $HSP(\mathbb{K}) \subseteq \mathbb{K}$, then $\mathbb{K} = \text{Mod}(\text{Eq}_X(\mathbb{K}))$.

Proof.

- $\mathbb{K} \subseteq \text{Mod}(\text{Eq}_X(\mathbb{K}))$ trivially holds.
- Let $A \in \text{Mod}(\text{Eq}_X(\mathbb{K}))$. Fix some set Y, with $\text{card}(Y) = \max\{\text{card}(X), \text{card}(A)\}$.
- We have $\text{Eq}_X(\mathbb{K}) = \text{Eq}_Y(\mathbb{K})$ (*exercise*).
- Let $F[Y]$ be the basic model (free algebra) for $\text{Eq}_Y(\mathbb{K})$.
- By Lemma 14, we have $F[Y] \in \text{SP}(\mathbb{K})$.
- By universal property of $F[Y]$ we have $A \in H(F[Y])$ (*since Y is large enough*).
- Hence, $A \in HSP(\mathbb{K})$, and so $A \in \mathbb{K}$, as required.

Exercise 8

Prove that for any infinite X and Y we have $\text{Eq}_X(\mathbb{K}) = \text{Eq}_Y(\mathbb{K})$.

Birkhoff’s HSP Theorem

Theorem 15 (Birkhoff)

Let K be a class of similar algebras, and X some countably infinite set of variables. If $\text{HSP}(K) \subseteq K$, then $K = \text{Mod}(\text{Eq}_X(K))$.

Proof.

- $K \subseteq \text{Mod}(\text{Eq}_X(K))$ trivially holds.
- Let $A \in \text{Mod}(\text{Eq}_X(K))$. Fix some set Y, with $\text{card}(Y) = \max\{\text{card}(X), \text{card}(A)\}$.
- We have $\text{Eq}_X(K) = \text{Eq}_Y(K)$ (exercise).
- Let $F[Y]$ be the basic model (free algebra) for $\text{Eq}_Y(K)$.
- By Lemma 14, we have $F[Y] \in \text{SP}(K)$.
- By universal property of $F[Y]$ we have $A \in H(F[Y])$ (since Y is large enough).
- Hence, $A \in \text{HSP}(K)$, and so $A \in K$, as required.

Exercise 8

Prove that for any infinite X and Y we have $\text{Eq}_X(K) = \text{Eq}_Y(K)$.
Birkhoff’s HSP Theorem

Theorem 15 (Birkhoff)

Let \mathcal{K} be a class of similar algebras, and X some countably infinite set of variables. If $\text{HSP}(\mathcal{K}) \subseteq \mathcal{K}$, then $\mathcal{K} = \text{Mod}(\text{Eq}_X(\mathcal{K}))$.

Proof.

- $\mathcal{K} \subseteq \text{Mod}(\text{Eq}_X(\mathcal{K}))$ trivially holds.
- Let $A \in \text{Mod}(\text{Eq}_X(\mathcal{K}))$. Fix some set Y, with $\text{card}(Y) = \max\{\text{card}(X), \text{card}(A)\}$.
- We have $\text{Eq}_X(\mathcal{K}) = \text{Eq}_Y(\mathcal{K})$ (exercise).
- Let $F[Y]$ be the basic model (free algebra) for $\text{Eq}_Y(\mathcal{K})$.
- By Lemma 14, we have $F[Y] \in \text{SP}(\mathcal{K})$.
- By universal property of $F[Y]$ we have $A \in \text{H}(F[Y])$ (since Y is large enough).
- Hence, $A \in \text{HSP}(\mathcal{K})$, and so $A \in \mathcal{K}$, as required.

Exercise 8

Prove that for any infinite X and Y we have $\text{Eq}_X(\mathcal{K}) = \text{Eq}_Y(\mathcal{K})$.