THE MILNOR 7-SPHERE DOES NOT ADMIT A Special Generic Map into \mathbb{R}^3

Dominik Wrazidlo Kyushu University

Introduction: Problem of Existence of Special Generic Maps

Let M^n denote a connected closed smooth manifold of dimension $n \geq 5$.

A special generic function on M^n is ...

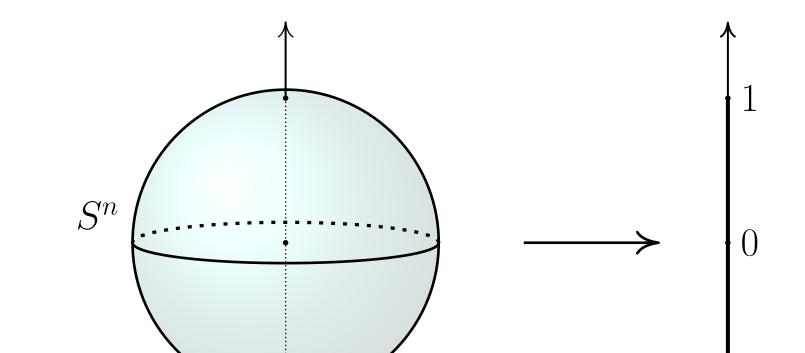
...a Morse function $M^n \to \mathbb{R}$ with exactly 2 critical points (equivalently, with only minima and maxima).

Theorem. (Morse theoretic characterization of homotopy n-spheres) M^n is homeomorphic to $S^n \Leftrightarrow M^n$ admits a special generic function.

Special generic functions generalize naturally to maps with higher-dimensional codomain as follows.

Example: Special Generic Maps on S^n

The canonical height function on S^n is a special generic function:



A special generic map on M^n is ...

... a smooth map $M^n \to \mathbb{R}^p$ $(p \in \{1, \ldots, n\})$ all of whose critical points have the local normal form $(x_1,\ldots,x_n)\mapsto (x_1,\ldots,x_{p-1},x_p^2+\cdots+x_n^2).$

Problem. (O. Saeki, 1993) Study the set $\mathcal{S}(M^n) := \{ p \in \{1, \dots, n\} \mid \exists \text{ special generic map } M^n \to \mathbb{R}^p \}.$ More generally, the composition of the inclusion $S^n \hookrightarrow \mathbb{R}^{n+1}$ with any orthogonal projection $\mathbb{R}^{n+1} \to \mathbb{R}^p$ yields a s.g.m. $S^n \to \mathbb{R}^p$. **Theorem.** (O. Saeki, 1993) For any exotic *n*-sphere Σ^n , $n \ge 7$,

 $\{1,2,n\} \subset \mathcal{S}(\Sigma^n) \subset \{1,2,\ldots,n-4,n\}.$

Gromoll Filtration & Morse Perfection

Let Θ_n denote the well-known group of homotopy *n*-spheres of dimension $n \geq 6$.

The group Γ^n of *twisted spheres* consists of . . .

... equivalence classes γ represented by orientation preserving diffeomorphisms $D^{n-1} \cong$ D^{n-1} that are the identity near S^{n-2} , and considered up to isotopy through such maps.

Notation. For a > b let $\pi_b^a \colon \mathbb{R}^a \to \mathbb{R}^b$ denote the projection to the *last* b coordinates. Let S^{n-1}_{+} (resp. S^{n-1}_{-}) be the hemisphere of S^{n-1} with first component ≥ 0 (resp. ≤ 0). **Convention.** For any $[g] \in \Gamma^n$ let $\varphi_g \colon S^{n-1} \cong S^{n-1}$ denote the diffeomorphism uniquely determined by requiring that φ_g extends $\operatorname{id}_{S^{n-1}_+}$, and that $\pi^n_{n-1} \circ \varphi_g = g \circ \pi^n_{n-1}$ on S^{n-1}_- .

Theorem. (Twisted spheres) The map $\Gamma^n \to \Theta_n$ which assigns to $\gamma \in \Gamma^n$ the homotopy *n*-sphere $\Sigma(\gamma)$ obtained by gluing two copies D_1 and D_2 of D^n via $\varphi_q \colon \partial D_1 \to \partial D_2$, and Standard Special Generic Maps & Fold Perfection

The *Stein factorization* of a map $f: X \to Y$ is ...

... the quotient $W_f := X / \sim_f$ of X by the following equivalence relation: $x_1 \sim_f x_2 \quad :\Leftrightarrow \quad y := f(x_1) = f(x_2)$, and x_1, x_2 lie in the same component of $f^{-1}(y)$. The quotient map $q_f: X \to W_f$ and the structure map $\overline{f}: W_f \to Y$ satisfy $f = \overline{f} \circ q_f$.

Proposition. If $f: M^n \to \mathbb{R}^p$ (p < n) is a special generic map, then W_f is a smooth pmanifold with boundary such that q_f is smooth, the singular locus is $S(f) = q_f^{-1}(\partial W_f)$, and f is an immersion. Moreover, q_f restricts to a diffeomorphism $S(f) \cong \partial W_f$.

Let Σ^n denote a homotopy sphere of dimension $n \geq 7$.

oriented such that $D_1 \hookrightarrow \Sigma(\gamma)$ is orientation preserving, is an isomorphism.

The *Gromoll filtration* of Γ^n is ...

... a subgroup filtration of the form $0 = \Gamma_{n-1}^n \subset \cdots \subset \Gamma_1^n = \Gamma^n$, where $\gamma \in \Gamma_{p+1}^n \quad :\Leftrightarrow \quad \gamma = [g] \text{ such that } \pi_p^{n-1} \circ g = \pi_p^{n-1}.$

The Morse perfection of M^n is ...

... the greatest integer $k \geq -1$ for which there exists a smooth map $\eta \colon S^k \times M^n \to \mathbb{R}$ such that $\eta_{-s} = -\eta_s$ for all $s \in S^k$, and such that η restricts for every $s \in S^k$ to a special generic function $\eta_s \colon M^n \to \mathbb{R}, \eta_s(x) = \eta(s, x)$.

Theorem. (M. Weiss, 1993) If Σ^n is a homotopy sphere of dimension $n \geq 7$, then Gromoll filtration of $\Sigma^n \leq (Morse perfection of \Sigma^n) + 1.$

Proposition. (O. Saeki, 1993) If $f: \Sigma^n \to \mathbb{R}^p$ (p < n) is a special generic map, then W_f is a compact contractible smooth manifold whose boundary is a homology sphere.

A standard special generic map on Σ^n is ...

... a special generic map $f \colon \Sigma^n \to \mathbb{R}^p$ (p < n) such that $W_f \cong D^p$.

Proposition. Any special generic map $f: \Sigma^n \to \mathbb{R}^p$ with $p \in \{1, 2, 3\}$ is standard.

The fold perfection of Σ^n is ...

... the greatest integer $p \geq 1$ for which Σ^n admits a s.s.g.m. $\Sigma^n \to \mathbb{R}^p$.

The standard filtration of Θ^n is ...

... a subgroup filtration of the form $F_{n-1}^n \subset \cdots \subset F_1^n \subset \Theta_n$, where $[\Sigma^n] \in F_p^n \quad :\Leftrightarrow \quad \Sigma^n \text{ has fold perfection } \geq p.$

Main Result

Theorem. (W., 2017) Let Σ^n denote a homotopy sphere of dimension $n \geq 7$. Then,

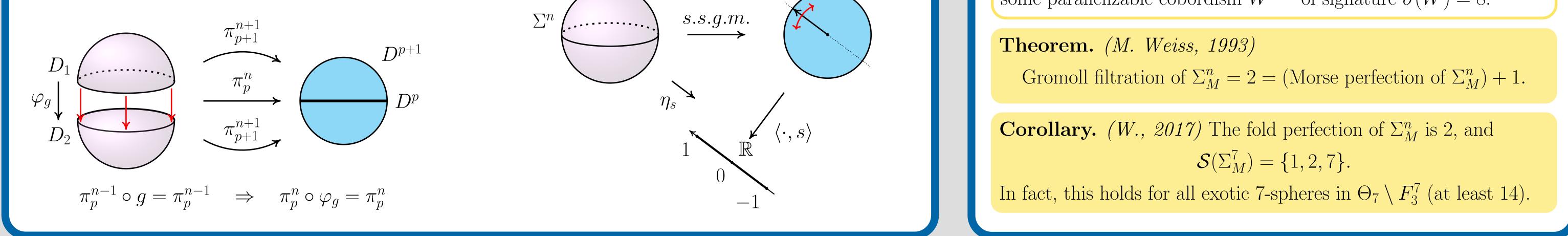
Gromoll filtration of $\Sigma^n \leq \text{fold perfection of } \Sigma^n \leq (\text{Morse perfection of } \Sigma^n) + 1.$

Application: Milnor Spheres

Suppose n = 4k - 1 for some integer $k \ge 2$.

The *Milnor* n-sphere Σ_M^n is ...

... the unique homotopy sphere in Γ^n satisfying $\Sigma_M^n = \partial W^{n+1}$ for some parallelizable cobordism W^{n+1} of signature $\sigma(W) = 8$.



 $s \in S^{p-1}$

 D^p

References

• O. Saeki, Topology of special generic maps into \mathbb{R}^3 , Workshop on Real and Complex Singularities (São Carlos, 1992), Mat. Contemp. 5 (1993) 161–186. • M. Weiss, *Pinching and concordance theory*, J. Differential Geometry **38** (1993) 387–416.

• D.J. Wrazidlo, Standard special generic maps of homotopy spheres into Euclidean spaces, submitted preprint (2017), arXiv: https://arxiv.org/abs/1707.08646