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M.F. Atiyah (1988): Topological quantum field theory

(n 4+ 1)-dim. TFT Z (over comm. ground ring R):
» M" closed manifold —— state module Z(M) (f.g. over R)
» Wl compact manifold — state sum Zy, € Z(OW)

gluing axiom: (M" N" P") ~~ contraction product:
() ZIMUN)® Z(NUP) — Z(MUP),
st. Zw = (Zyy, Zyyn) whenever W: M 55 v Y5 p

further axioms: Z(M U N) = Z(M) ® Z(N), Zwuy = Zw ® 2y,
Z(—M) = Z(M)* (unitary theory), Zuxjo,1] = idz(m)



Examples (Gluing)
wrtt: pn Yy yn W5 pn
» Euler characteristic (n odd):
X(W) = x(W') + x(W")
» Novikov additivity (compatibly oriented cobordisms):
a(W) =ao(W)+a(W")

» Pontrjagin numbers (n = 7, compatibly oriented cobordisms,
M=P=0, H}(N") = HYN") = 0):

piIW] = g2 [W'] + p[W"]

~~ Milnor’s invariant A\(N7)
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A convenient setting for topological invariants

GOAL:
Exploit concept of TFT & gluing as a source of powerful
(differential) topological invariants of manifolds!

IDEA (Markus Banagl):
Find the formulation of Atiyah's axioms for TFT over semirings!

» avoid measure theoretic difficulties in Feynman's path integral

Zwh = [ &

> accept certain deviations from Atiyah's axioms

» obtain positive TFT & construct high-dimensional invariants!



Semirings

Definition
A semiring is a tuple S = (S, +,-,0,1), where
» (S,+,0) comm. monoid
» (S,-,1) monoid
satisfying distributivity: a(b+ ¢) = ab+ ac, (a + b)c = ac + bc,
and such that 0 is absorbing: 0-a=a-0=0.
Example

» Boolean semiring B = {0,1}, require 1 +1=1
» semiring of formal power series B[q]
» tropical semiring (R U {oco}, min, +, 00, 0)

| S
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Eilenberg-Completeness
S. Eilenberg (1974): Automata, Languages, and Machines
Definition

1. A comm. monoid (C, +,0) is called complete if “+" extends to

Z: {C,‘},‘e/ — ZC,' eC

icl

satisfying Fubini’s law: | = UjeJlj =D i1 G =D ey Zie,j Gi.
2. A semiring S is called complete if (S, +,0) is complete,
and ) satisfies distributivity.

Eilenberg swindle: If S is an Eilenberg-complete ring, then

si=1414+---=14(1+4...)=14s5s=0=1=5=0.
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Banagl's Abstract Framework of Positive TFT

C: small strict monoidal category
S: Eilenberg-complete semiring

system of fields F quantization (n+1)-dim. positive TFT Z
C-valued action functional T over semiring Q@ = Qs(C)

> sets of fields F(W"T1), F(M™),
and compatible restriction maps (for codim. 0, 1):
FW)—=FW", FW)—=FM), FM)—FM)
in particular: F(W) — F(OW), F — Flaw

» action functional Ty : F(W) — Mor(C),
']FW/HW//(F) :TW/(F|W/)®TWII(F|W//)
TW’UW”(F) == TW’(F|W’) o TW”(F‘W”)
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Quantization

» profinite idempotent completion:
construct Eilenberg-complete semiring Q = Qs(C)
such that Mor(C) — Q

» state modules: Z(M") = {F(M) — Q}
» state sum (partition function) Zy € Z(OW):

Zw(f)= > Tw(F) €@

FeF(W,f)

Zw(f) = /F(W-f) > d i
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Step 1: Time-Interacting Fields

F(W) ={F fold map | 3 residual subset 0,1 € AC [0,1]Vt€ A:
t € Reg(7), S(F) M W;, ImoF is injective on S(F) N W;}

Im A

—
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Step 2: Action Functional

The Brauer category C = (Br,®, [0], b) is the categorification of
the Brauer algebras Dp, arising in representation theory of O(n):

» ObBr: [0] =0, [1] = {1}, [2] ={1,2}, ...
» Morg,([m],[n]):

» [m] ® [n] = [m + n]; ® of morphisms: vertical stacking
> braiding b=/ & Morg,([2],[2])
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Which fold patterns are excluded?

» F(M)={F € F([0,1] x M) | Tg1jxm(F) = id € Mor(Br)}
» f: M — R excellent Morse function

~ fi=idp g xf € F(M)
» restrictions F(W) — F(W,), t € [0,1]

Question (Banagl): Does the definition of (W) exclude any
patterns detected by T, ?

Theorem (W.)

Every fold map F: WL — R? satisfying Flio,xm € F(M) and
Fli—cxn € F(N) is homotopic rel [0,e] x MU[L —¢,1] x N to
a field G € F(W) such that Tw(F) = Tw(G).
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Step 3: Quantization
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Step 3: Quantization

» profinite idempotent completion:

MorB,([m], [n]) — Qm,n = @ B[[q]], 90®)\®k — ((Xp(p/qk)@/

@1 [m]—[n]
loop-free

Mor(Br) — Q = Qg(Br) = Hm7n20 Qm,n
» state modules: Z(M) = {F(M) — Q}
» state sum (partition function) Zy € Z(0W):

Zw(f)= > Tw(F) €@

FeF(W,f)

Theorem (Banagl, 2015)

Z is a positive TFT. In particular, time-consistent diffeomorphism
invariance and the gluing axiom hold.



Rationality of Partition Function

Theorem (Banagl, 2015)
For n >3, Zyw/(f) is a rational function

Zw(f) = ff_(Z)Q,

whith P¢(q) some polynomial in gq.



Rationality of Partition Function

Theorem (Banagl, 2015)
For n >3, Zyw/(f) is a rational function

_ Pr(q)

ZW(f) - 1 o q27

whith P¢(q) some polynomial in gq.

Theorem (W.)

For n >3, Zw(f) is a rational function

_ Qr(q)
1—-gq

Zw(f)

)

whith Qf(q) some polynomial in q of degree < n.
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Aggregate Invariant
Let M" be oriented closed n-manifold such that [M"] = 0 € Q30:

3 Wt oriented

M = gl
Definition (aggregate invariant)

AM™) =Y Zw € Z(M).
Wi+l
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Application: Exotic Smooth Spheres
Let n > 5.
Definition

An exotic sphere is a closed smooth manifold X" which is
homeomorphic, but not diffeomorphic to S".

FACT. M" = S™ and M" = X" have Morse number 2:

n
o 5
o
0

Theorem (Banagl, 2015)
M"= ST —  AM")(fu) ¢ q-Q.
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Detecting Exotic Kervaire Spheres
Let n=4k+1, k > 1.

» Y unique Kervaire sphere of dimension n
» 7 is exotic whenever n + 3 ¢ 2N

n
—
¥ [

Theorem (W.)
Let n > 237 and n =13 (mod 16). Then,

=Yk = AX")Ex) ¢ 9@



Thank you for your attention!



