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TFT & Gluing

M.F. Atiyah (1988): Topological quantum field theory

(n + 1)-dim. TFT Z (over comm. ground ring R):

I Mn closed manifold 7−→ state module Z (M) (f.g. over R)

I W n+1 compact manifold 7−→ state sum ZW ∈ Z (∂W )

gluing axiom: (Mn,Nn,Pn)  contraction product:

〈·, ·〉 : Z (M t N)⊗ Z (N t P) −→ Z (M t P),

s.t. ZW = 〈ZW ′ ,ZW ′′〉 whenever W : M
W ′
−→ N

W ′′
−→ P

further axioms: Z (M t N) ∼= Z (M)⊗ Z (N), ZWtV ∼= ZW ⊗ ZV ,
Z (−M) = Z (M)∗ (unitary theory), ZM×[0,1] = idZ(M)
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Examples (Gluing)

W n+1 : Mn W ′
−→ Nn W ′′

−→ Pn

I Euler characteristic (n odd):

χ(W ) = χ(W ′) + χ(W ′′)

I Novikov additivity (compatibly oriented cobordisms):

σ(W ) = σ(W ′) + σ(W ′′)

I Pontrjagin numbers (n = 7, compatibly oriented cobordisms,
M = P = ∅, H3(N7) = H4(N7) = 0):

p2
1[W ] = p2

1[W ′] + p2
1[W ′′]

 Milnor’s invariant λ(N7)



A convenient setting for topological invariants

GOAL:
Exploit concept of TFT & gluing as a source of powerful
(differential) topological invariants of manifolds!

IDEA (Markus Banagl):
Find the formulation of Atiyah’s axioms for TFT over semirings!

I avoid measure theoretic difficulties in Feynman’s path integral

ZW (f ) =

∫
F(W ;f )

e iSW (F ) dµW

I accept certain deviations from Atiyah’s axioms

I obtain positive TFT & construct high-dimensional invariants!
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Semirings

Definition
A semiring is a tuple S = (S ,+, ·, 0, 1), where

I (S ,+, 0) comm. monoid

I (S , ·, 1) monoid

satisfying distributivity: a(b + c) = ab + ac, (a + b)c = ac + bc,
and such that 0 is absorbing: 0 · a = a · 0 = 0.

Example

I Boolean semiring B = {0, 1}, require 1 + 1 = 1

I semiring of formal power series BJqK
I tropical semiring (R ∪ {∞},min,+,∞, 0)

I . . .



Eilenberg-Completeness

S. Eilenberg (1974): Automata, Languages, and Machines

Definition

1. A comm. monoid (C ,+, 0) is called complete if “+” extends to∑
: {ci}i∈I 7−→

∑
i∈I

ci ∈ C

satisfying Fubini’s law: I =
⋃̇

j∈J Ij ⇒
∑

i∈I ci =
∑

j∈J
∑

i∈Ij ci .

2. A semiring S is called complete if (S ,+, 0) is complete,
and

∑
satisfies distributivity.

Eilenberg swindle: If S is an Eilenberg-complete ring, then

s := 1 + 1 + · · · = 1 + (1 + . . . ) = 1 + s ⇒ 0 = 1⇒ S = 0.
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Banagl’s Abstract Framework of Positive TFT

C : small strict monoidal category
S : Eilenberg-complete semiring

[
system of fields F

C -valued action functional T

]
quantization7−→

[
(n+1)-dim. positive TFT Z
over semiring Q = QS(C )

]

I sets of fields F(W n+1), F(Mn),
and compatible restriction maps (for codim. 0, 1):
F(W )→ F(W ′), F(W )→ F(M), F(M)→ F(M ′)
in particular: F(W )→ F(∂W ), F 7→ F |∂W

I action functional TW : F(W )→ Mor(C ),
TW ′tW ′′(F ) = TW ′(F |W ′)⊗ TW ′′(F |W ′′)
TW ′∪W ′′(F ) = TW ′(F |W ′) ◦ TW ′′(F |W ′′)
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Quantization

I profinite idempotent completion:
construct Eilenberg-complete semiring Q = QS(C )
such that Mor(C ) ↪→ Q

I state modules: Z (Mn) = {F(M)→ Q}
I state sum (partition function) ZW ∈ Z (∂W ):

ZW (f ) =
∑

F∈F(W ,f )

TW (F ) ∈ Q.

ZW (f ) =

∫
F(W ;f )

e iSW (F ) dµW
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Step 1: Time-Interacting Fields
F : W n+1 → R2 is called fold map if F looks at every singular
point c ∈ S(F ) in suitable coordinates centered at c and F (c) like

(t, x) 7→ (t,−x2
1 − · · · − x2

i + x2
i+1 + · · ·+ x2

n ).
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Step 1: Time-Interacting Fields

F(W ) = {F fold map | ∃ residual subset 0, 1 ∈ A ⊂ [0, 1] ∀t ∈ A :

t ∈ Reg(τ), S(F ) tWt , Im ◦F is injective on S(F ) ∩Wt}
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Step 2: Action Functional

The Brauer category C = (Br ,⊗, [0], b) is the categorification of
the Brauer algebras Dm arising in representation theory of O(n):

I Ob Br : [0] = ∅, [1] = {1}, [2] = {1, 2}, . . .
I MorBr ([m], [n]) :

I [m]⊗ [n] = [m + n]; ⊗ of morphisms: vertical stacking

I braiding b = ∈ MorBr ([2], [2])



Step 2: Action Functional

TW : F(W )→ Mor(Br) is naturally induced by fold patterns!
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Which fold patterns are excluded?

I F(M) = {F ∈ F([0, 1]×M) | T[0,1]×M(F ) = id ∈ Mor(Br)}

I f : M → R excellent Morse function
 f := id[0,1]×f ∈ F(M)

I restrictions F(W )→ F(Wt), t ∈ [0, 1]

Question (Banagl): Does the definition of F(W ) exclude any
patterns detected by TW ?

Theorem (W.)

Every fold map F : W n+1 → R2 satisfying F |[0,ε]×M ∈ F(M) and
F |[1−ε,1]×N ∈ F(N) is homotopic rel [0, ε]×M t [1− ε, 1]× N to
a field G ∈ F(W ) such that TW (F ) = TW (G ).
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Sketch of Proof

Im ◦F is injective on S(F ) \ X



Sketch of Proof (continued)
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Step 3: Quantization

I profinite idempotent completion:

MorBr ([m], [n]) ↪→ Qm,n :=
⊕

ϕ : [m]→[n]

loop-free

BJqK, ϕ⊗λ⊗k 7→ (δϕϕ′qk)ϕ′

Mor(Br) ↪→ Q = QB(Br) =
∏

m,n≥0 Qm,n

I state modules: Z (M) = {F(M)→ Q}
I state sum (partition function) ZW ∈ Z (∂W ):

ZW (f ) =
∑

F∈F(W ,f )

TW (F ) ∈ Q.

Theorem (Banagl, 2015)

Z is a positive TFT. In particular, time-consistent diffeomorphism
invariance and the gluing axiom hold.
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Rationality of Partition Function

Theorem (Banagl, 2015)

For n ≥ 3, ZW (f ) is a rational function

ZW (f ) =
Pf (q)

1− q2
,

whith Pf (q) some polynomial in q.

Theorem (W.)

For n ≥ 3, ZW (f ) is a rational function

ZW (f ) =
Qf (q)

1− q
,

whith Qf (q) some polynomial in q of degree ≤ n.
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Aggregate Invariant

Let Mn be oriented closed n-manifold such that [Mn] = 0 ∈ ΩSO
n :

∃W n+1 oriented

Mn = ∂W n+1

Definition (aggregate invariant)

A(Mn) :=
∑
W n+1

ZW ∈ Z (M).



Aggregate Invariant

Let Mn be oriented closed n-manifold such that [Mn] = 0 ∈ ΩSO
n :

∃W n+1 oriented

Mn = ∂W n+1

Definition (aggregate invariant)

A(Mn) :=
∑
W n+1

ZW ∈ Z (M).



Aggregate Invariant

Let Mn be oriented closed n-manifold such that [Mn] = 0 ∈ ΩSO
n :

∃W n+1 oriented

Mn = ∂W n+1

Definition (aggregate invariant)

A(Mn) :=
∑
W n+1

ZW ∈ Z (M).



Application: Exotic Smooth Spheres

Let n ≥ 5.

Definition
An exotic sphere is a closed smooth manifold Σn which is
homeomorphic, but not diffeomorphic to Sn.

FACT. Mn = Sn and Mn = Σn have Morse number 2:

Mn fM

n

0

Theorem (Banagl, 2015)

Mn ∼= Sn ⇐⇒ A(Mn)(f M) /∈ q · Q.
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Mn ∼= Sn ⇐⇒ A(Mn)(f M) /∈ q · Q.



Detecting Exotic Kervaire Spheres
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I Σn
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I Σn
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Thank you for your attention!


