Fold Maps,
 Positive Topological Field Theories, and Exotic Spheres

Dominik Wrazidlo
Institute of Mathematics for Industry (IMI)
Kyushu University

February 14, 2018

TFT \& Gluing

M.F. Atiyah (1988): Topological quantum field theory

TFT \& Gluing

M.F. Atiyah (1988): Topological quantum field theory
$(n+1)$-dim. TFT \boldsymbol{Z} (over comm. ground ring R):

- M^{n} closed manifold \longmapsto state module $Z(M)$ (f.g. over R)
- W^{n+1} compact manifold \longmapsto state sum $Z_{W} \in Z(\partial W)$

TFT \& Gluing

M.F. Atiyah (1988): Topological quantum field theory
$(n+1)$-dim. TFT \boldsymbol{Z} (over comm. ground ring R):

- M^{n} closed manifold \longmapsto state module $Z(M)$ (f.g. over R)
- W^{n+1} compact manifold \longmapsto state sum $Z_{W} \in Z(\partial W)$
gluing axiom: $\left(M^{n}, N^{n}, P^{n}\right) \rightsquigarrow$ contraction product:

$$
\langle\cdot, \cdot\rangle: Z(M \sqcup N) \otimes Z(N \sqcup P) \quad \longrightarrow \quad Z(M \sqcup P),
$$

s.t. $Z_{W}=\left\langle Z_{W^{\prime}}, Z_{W^{\prime \prime}}\right\rangle$ whenever $\boldsymbol{W}: M \xrightarrow{W^{\prime}} N \xrightarrow{W^{\prime \prime}} P$

TFT \& Gluing

M.F. Atiyah (1988): Topological quantum field theory
$(n+1)$-dim. TFT \boldsymbol{Z} (over comm. ground ring R):

- M^{n} closed manifold \longmapsto state module $Z(M)$ (f.g. over R)
- W^{n+1} compact manifold \longmapsto state sum $Z_{W} \in Z(\partial W)$
gluing axiom: $\left(M^{n}, N^{n}, P^{n}\right) \rightsquigarrow$ contraction product:

$$
\langle\cdot, \cdot\rangle: Z(M \sqcup N) \otimes Z(N \sqcup P) \quad \longrightarrow \quad Z(M \sqcup P),
$$

s.t. $Z_{W}=\left\langle Z_{W^{\prime}}, Z_{W^{\prime \prime}}\right\rangle$ whenever $\boldsymbol{W}: M \xrightarrow{W^{\prime}} N \xrightarrow{W^{\prime \prime}} P$
further axioms: $Z(M \sqcup N) \cong Z(M) \otimes Z(N), Z_{W \sqcup V} \cong Z_{W} \otimes Z_{V}$,
$Z(-M)=Z(M)^{*}$ (unitary theory), $Z_{M \times[0,1]}=\mathrm{id}_{Z(M)}$

Examples (Gluing)

$W^{n+1}: M^{n} \xrightarrow{W^{\prime}} N^{n} \xrightarrow{W^{\prime \prime}} P^{n}$

- Euler characteristic (n odd):

$$
\chi(W)=\chi\left(W^{\prime}\right)+\chi\left(W^{\prime \prime}\right)
$$

- Novikov additivity (compatibly oriented cobordisms):

$$
\sigma(W)=\sigma\left(W^{\prime}\right)+\sigma\left(W^{\prime \prime}\right)
$$

- Pontrjagin numbers ($n=7$, compatibly oriented cobordisms, $\left.M=P=\emptyset, \boldsymbol{H}^{\mathbf{3}}\left(\boldsymbol{N}^{\mathbf{7}}\right)=\boldsymbol{H}^{4}\left(\boldsymbol{N}^{\mathbf{7}}\right)=\mathbf{0}\right):$

$$
p_{1}^{2}[W]=p_{1}^{2}\left[W^{\prime}\right]+p_{1}^{2}\left[W^{\prime \prime}\right]
$$

\rightsquigarrow Milnor's invariant $\lambda\left(N^{7}\right)$

A convenient setting for topological invariants

GOAL:

Exploit concept of TFT \& gluing as a source of powerful (differential) topological invariants of manifolds!

A convenient setting for topological invariants

GOAL:

Exploit concept of TFT \& gluing as a source of powerful (differential) topological invariants of manifolds!

IDEA (Markus Banagl):

Find the formulation of Atiyah's axioms for TFT over semirings!

A convenient setting for topological invariants

GOAL:

Exploit concept of TFT \& gluing as a source of powerful (differential) topological invariants of manifolds!

IDEA (Markus Banagl):

Find the formulation of Atiyah's axioms for TFT over semirings!

- avoid measure theoretic difficulties in Feynman's path integral

$$
Z_{W}(f)=\int_{\mathcal{F}(W ; f)} e^{i S_{W}(F)} \mathrm{d} \mu_{W}
$$

A convenient setting for topological invariants

GOAL:

Exploit concept of TFT \& gluing as a source of powerful (differential) topological invariants of manifolds!

IDEA (Markus Banagl):

Find the formulation of Atiyah's axioms for TFT over semirings!

- avoid measure theoretic difficulties in Feynman's path integral

$$
Z_{W}(f)=\int_{\mathcal{F}(W ; f)} e^{i S_{W}(F)} \mathrm{d} \mu_{W}
$$

- accept certain deviations from Atiyah's axioms

A convenient setting for topological invariants

GOAL:

Exploit concept of TFT \& gluing as a source of powerful (differential) topological invariants of manifolds!

IDEA (Markus BanagI):

Find the formulation of Atiyah's axioms for TFT over semirings!

- avoid measure theoretic difficulties in Feynman's path integral

$$
Z_{W}(f)=\int_{\mathcal{F}(W ; f)} e^{i S_{W}(F)} \mathrm{d} \mu_{W}
$$

- accept certain deviations from Atiyah's axioms
- obtain positive TFT \& construct high-dimensional invariants!

Semirings

Definition

A semiring is a tuple $S=(S,+, \cdot, 0,1)$, where

- $(S,+, 0)$ comm. monoid
- $(S, \cdot, 1)$ monoid
satisfying distributivity: $a(b+c)=a b+a c,(a+b) c=a c+b c$, and such that 0 is absorbing: $0 \cdot a=a \cdot 0=0$.

Example

- Boolean semiring $\mathbb{B}=\{0,1\}$, require $1+1=1$
- semiring of formal power series $\mathbb{B} \llbracket q \rrbracket$
- tropical semiring $(\mathbb{R} \cup\{\infty\}, \min ,+, \infty, 0)$

Eilenberg-Completeness

S. Eilenberg (1974): Automata, Languages, and Machines

Eilenberg-Completeness

S. Eilenberg (1974): Automata, Languages, and Machines

Definition

1. A comm. monoid $(C,+, 0)$ is called complete if " + " extends to

$$
\sum: \quad\left\{c_{i}\right\}_{i \in I} \longmapsto \sum_{i \in I} c_{i} \in C
$$

satisfying Fubini's law: $I=\dot{\bigcup}_{j \in J} I_{j} \Rightarrow \sum_{i \in I} c_{i}=\sum_{j \in J} \sum_{i \in I_{j}} c_{i}$.
2. A semiring S is called complete if $(S,+, 0)$ is complete, and \sum satisfies distributivity.

Eilenberg-Completeness

S. Eilenberg (1974): Automata, Languages, and Machines

Definition

1. A comm. monoid $(C,+, 0)$ is called complete if " + " extends to

$$
\sum: \quad\left\{c_{i}\right\}_{i \in I} \longmapsto \sum_{i \in I} c_{i} \in C
$$

satisfying Fubini's law: $I=\dot{\bigcup}_{j \in J} I_{j} \Rightarrow \sum_{i \in I} c_{i}=\sum_{j \in J} \sum_{i \in I_{j}} c_{i}$.
2. A semiring S is called complete if $(S,+, 0)$ is complete, and \sum satisfies distributivity.

Eilenberg swindle: If S is an Eilenberg-complete ring, then

$$
s:=1+1+\cdots=1+(1+\ldots)=1+s \Rightarrow 0=1 \Rightarrow S=0
$$

Banagl's Abstract Framework of Positive TFT

C: small strict monoidal category
S : Eilenberg-complete semiring

Banagl's Abstract Framework of Positive TFT

C: small strict monoidal category
S : Eilenberg-complete semiring
$\left[\begin{array}{c}\text { system of fields } \mathcal{F} \\ \boldsymbol{C} \text {-valued action functional } \mathbb{T}\end{array}\right] \xrightarrow{\text { quantization }}\left[\begin{array}{c}(\mathrm{n}+1) \text {-dim. positive TFT } Z \\ \text { over semiring } Q=Q_{S}(\boldsymbol{C})\end{array}\right]$

Banagl's Abstract Framework of Positive TFT

C: small strict monoidal category
S : Eilenberg-complete semiring
$\left[\begin{array}{c}\text { system of fields } \mathcal{F} \\ \boldsymbol{C} \text {-valued action functional } \mathbb{T}\end{array}\right] \stackrel{\text { quantization }}{\longmapsto}\left[\begin{array}{c}(\mathrm{n}+1) \text {-dim. positive TFT } Z \\ \text { over semiring } Q=Q_{S}(\boldsymbol{C})\end{array}\right]$

- sets of fields $\mathcal{F}\left(W^{n+1}\right), \mathcal{F}\left(M^{n}\right)$, and compatible restriction maps (for codim. 0, 1): $\mathcal{F}(W) \rightarrow \mathcal{F}\left(W^{\prime}\right), \quad \mathcal{F}(W) \rightarrow \mathcal{F}(M), \quad \mathcal{F}(M) \rightarrow \mathcal{F}\left(M^{\prime}\right)$ in particular: $\mathcal{F}(W) \rightarrow \mathcal{F}(\partial W),\left.F \mapsto F\right|_{\partial W}$

Banagl's Abstract Framework of Positive TFT

C: small strict monoidal category
S : Eilenberg-complete semiring
$\left[\begin{array}{c}\text { system of fields } \mathcal{F} \\ \boldsymbol{C} \text {-valued action functional } \mathbb{T}\end{array}\right] \xrightarrow{\text { quantization }}\left[\begin{array}{c}(\mathrm{n}+1) \text {-dim. positive TFT } Z \\ \text { over semiring } Q=Q_{S}(\boldsymbol{C})\end{array}\right]$

- sets of fields $\mathcal{F}\left(W^{n+1}\right), \mathcal{F}\left(M^{n}\right)$,
and compatible restriction maps (for codim. 0, 1):
$\mathcal{F}(W) \rightarrow \mathcal{F}\left(W^{\prime}\right), \quad \mathcal{F}(W) \rightarrow \mathcal{F}(M), \quad \mathcal{F}(M) \rightarrow \mathcal{F}\left(M^{\prime}\right)$
in particular: $\mathcal{F}(W) \rightarrow \mathcal{F}(\partial W),\left.F \mapsto F\right|_{\partial W}$
- action functional $\mathbb{T}_{W}: \mathcal{F}(W) \rightarrow \operatorname{Mor}(\boldsymbol{C})$,
$\mathbb{T}_{W^{\prime} \sqcup W^{\prime \prime}}(F)=\mathbb{T}_{W^{\prime}}\left(\left.F\right|_{W^{\prime}}\right) \otimes \mathbb{T}_{W^{\prime \prime}}\left(\left.F\right|_{W^{\prime \prime}}\right)$
$\mathbb{T}_{W^{\prime} \cup W^{\prime \prime}}(F)=\mathbb{T}_{W^{\prime}}\left(\left.F\right|_{W^{\prime}}\right) \circ \mathbb{T}_{W^{\prime \prime}}\left(\left.F\right|_{W^{\prime \prime}}\right)$

Quantization

- profinite idempotent completion: construct Eilenberg-complete semiring $Q=Q_{S}(\boldsymbol{C})$ such that $\operatorname{Mor}(\boldsymbol{C}) \hookrightarrow Q$

Quantization

- profinite idempotent completion: construct Eilenberg-complete semiring $Q=Q_{S}(\boldsymbol{C})$ such that $\operatorname{Mor}(\boldsymbol{C}) \hookrightarrow Q$
- state modules: $Z\left(M^{n}\right)=\{\mathcal{F}(M) \rightarrow Q\}$

Quantization

- profinite idempotent completion: construct Eilenberg-complete semiring $Q=Q_{S}(\boldsymbol{C})$ such that $\operatorname{Mor}(\boldsymbol{C}) \hookrightarrow Q$
- state modules: $Z\left(M^{n}\right)=\{\mathcal{F}(M) \rightarrow Q\}$
- state sum (partition function) $Z_{W} \in Z(\partial W)$:

$$
Z_{W}(f)=\sum_{F \in \mathcal{F}(W, f)} \mathbb{T}_{W}(F) \quad \in Q
$$

Quantization

- profinite idempotent completion: construct Eilenberg-complete semiring $Q=Q_{S}(\boldsymbol{C})$ such that $\operatorname{Mor}(\boldsymbol{C}) \hookrightarrow Q$
- state modules: $Z\left(M^{n}\right)=\{\mathcal{F}(M) \rightarrow Q\}$
- state sum (partition function) $Z_{W} \in Z(\partial W)$:

$$
\begin{gathered}
Z_{W}(f)=\sum_{F \in \mathcal{F}(W, f)} \mathbb{T}_{W}(F) \quad \in Q \\
Z_{W}(f)=\int_{\mathcal{F}(W ; f)} e^{i S_{W}(F)} \mathrm{d} \mu_{W}
\end{gathered}
$$

Step 1: Time-Interacting Fields

$F: W^{n+1} \rightarrow \mathbb{R}^{2}$ is called fold map if F looks at every singular point $c \in S(F)$ in suitable coordinates centered at c and $F(c)$ like

$$
(t, x) \mapsto\left(t,-x_{1}^{2}-\cdots-x_{i}^{2}+x_{i+1}^{2}+\cdots+x_{n}^{2}\right) .
$$

Step 1: Time-Interacting Fields

$F: W^{n+1} \rightarrow \mathbb{R}^{2}$ is called fold map if F looks at every singular point $c \in S(F)$ in suitable coordinates centered at c and $F(c)$ like

$$
(t, x) \mapsto\left(t,-x_{1}^{2}-\cdots-x_{i}^{2}+x_{i+1}^{2}+\cdots+x_{n}^{2}\right) .
$$

Step 1: Time-Interacting Fields

$F: W^{n+1} \rightarrow \mathbb{R}^{2}$ is called fold map if F looks at every singular point $c \in S(F)$ in suitable coordinates centered at c and $F(c)$ like

$$
(t, x) \mapsto\left(t,-x_{1}^{2}-\cdots-x_{i}^{2}+x_{i+1}^{2}+\cdots+x_{n}^{2}\right) .
$$

Step 1: Time-Interacting Fields

$$
\begin{aligned}
\mathcal{F}(W)= & \{F \text { fold map } \mid \exists \text { residual subset } 0,1 \in A \subset[0,1] \forall t \in A: \\
& \left.t \in \operatorname{Reg}(\tau), S(F) \pitchfork W_{t}, \operatorname{Im} \circ F \text { is injective on } S(F) \cap W_{t}\right\}
\end{aligned}
$$

Step 1: Time-Interacting Fields

$\mathcal{F}(W)=\{F$ fold map $\mid \exists$ residual subset $0,1 \in A \subset[0,1] \forall t \in A$: $t \in \operatorname{Reg}(\tau), S(F) \pitchfork W_{t}, \operatorname{Im} \circ F$ is injective on $\left.S(F) \cap W_{t}\right\}$

Step 2: Action Functional

The Brauer category $\mathbf{C}=(\mathbf{B r}, \otimes,[0], b)$ is the categorification of the Brauer algebras D_{m} arising in representation theory of $O(n)$:

- $\mathrm{Ob} \mathrm{Br}:[0]=\emptyset,[1]=\{1\},[2]=\{1,2\}, \ldots$
- $\operatorname{Mor}_{B r}([m],[n])$:

- $[m] \otimes[n]=[m+n] ; \otimes$ of morphisms: vertical stacking
- braiding $b=\sqsupseteq \subset \operatorname{Mor}_{B r}([2],[2])$

Step 2: Action Functional

$\mathbb{T}_{W}: \mathcal{F}(W) \rightarrow \operatorname{Mor}(\mathbf{B r})$ is naturally induced by fold patterns!

Step 2: Action Functional

$\mathbb{T}_{W}: \mathcal{F}(W) \rightarrow \operatorname{Mor}(\mathbf{B r})$ is naturally induced by fold patterns!

Step 2: Action Functional

$\mathbb{T}_{W}: \mathcal{F}(W) \rightarrow \operatorname{Mor}(\mathbf{B r})$ is naturally induced by fold patterns!

Step 2: Action Functional

$\mathbb{T}_{W}: \mathcal{F}(W) \rightarrow \operatorname{Mor}(\mathbf{B r})$ is naturally induced by fold patterns!

Step 2: Action Functional

$\mathbb{T}_{W}: \mathcal{F}(W) \rightarrow \operatorname{Mor}(\mathbf{B r})$ is naturally induced by fold pattern!

Which fold patterns are excluded?

- $\mathcal{F}(M)=\left\{F \in \mathcal{F}([0,1] \times M) \mid \mathbb{T}_{[0,1] \times M}(F)=\mathrm{id} \in \operatorname{Mor}(\right.$ Br $\left.)\right\}$

Which fold patterns are excluded?

- $\mathcal{F}(M)=\left\{F \in \mathcal{F}([0,1] \times M) \mid \mathbb{T}_{[0,1] \times M}(F)=\mathrm{id} \in \operatorname{Mor}(\operatorname{Br})\right\}$
- $f: M \rightarrow \mathbb{R}$ excellent Morse function
$\rightsquigarrow \bar{f}:=\mathrm{id}_{[0,1]} \times f \in \mathcal{F}(M)$

Which fold patterns are excluded?

- $\mathcal{F}(M)=\left\{F \in \mathcal{F}([0,1] \times M) \mid \mathbb{T}_{[0,1] \times M}(F)=\mathrm{id} \in \operatorname{Mor}(\right.$ Br $\left.)\right\}$
- $f: M \rightarrow \mathbb{R}$ excellent Morse function
$\rightsquigarrow \bar{f}:=\mathrm{id}_{[0,1]} \times f \in \mathcal{F}(M)$
- restrictions $\mathcal{F}(W) \rightarrow \mathcal{F}\left(W_{t}\right), t \in[0,1]$

Which fold patterns are excluded?

- $\mathcal{F}(M)=\left\{F \in \mathcal{F}([0,1] \times M) \mid \mathbb{T}_{[0,1] \times M}(F)=\mathrm{id} \in \operatorname{Mor}(\right.$ Br $\left.)\right\}$
- $f: M \rightarrow \mathbb{R}$ excellent Morse function
$\rightsquigarrow \bar{f}:=\mathrm{id}_{[0,1]} \times f \in \mathcal{F}(M)$
- restrictions $\mathcal{F}(W) \rightarrow \mathcal{F}\left(W_{t}\right), t \in[0,1]$

Question (Banagl): Does the definition of $\mathcal{F}(W)$ exclude any patterns detected by \mathbb{T}_{W} ?

Which fold patterns are excluded?

- $\mathcal{F}(M)=\left\{F \in \mathcal{F}([0,1] \times M) \mid \mathbb{T}_{[0,1] \times M}(F)=\right.$ id $\in \operatorname{Mor}($ Br $\left.)\right\}$
- $f: M \rightarrow \mathbb{R}$ excellent Morse function
$\rightsquigarrow \bar{f}:=\mathrm{id}_{[0,1]} \times f \in \mathcal{F}(M)$
- restrictions $\mathcal{F}(W) \rightarrow \mathcal{F}\left(W_{t}\right), t \in[0,1]$

Question (Banagl): Does the definition of $\mathcal{F}(W)$ exclude any patterns detected by \mathbb{T}_{W} ?

Theorem (W.)
Every fold map $F: W^{n+1} \rightarrow \mathbb{R}^{2}$ satisfying $\left.F\right|_{[0, \varepsilon] \times M} \in \mathcal{F}(M)$ and $\left.F\right|_{[1-\varepsilon, 1] \times N} \in \mathcal{F}(N)$ is homotopic rel $[0, \varepsilon] \times M \sqcup[1-\varepsilon, 1] \times N$ to a field $G \in \mathcal{F}(W)$ such that $\mathbb{T}_{W}(F)=\mathbb{T}_{W}(G)$.

Sketch of Proof

Im $\circ F$ is injective on $S(F) \backslash X$

Sketch of Proof (continued)

Sketch of Proof (continued)

2.

Sketch of Proof (continued)

2.

3.

Step 3: Quantization

- profinite idempotent completion:

$$
\left.\operatorname{Mor}_{B r}([m],[n]) \hookrightarrow Q_{m, n}:=\bigoplus_{\substack{\varphi:([\mid])[([)] \\ \text { loop-free }}} \mathbb{B} \llbracket q\right], \quad \varphi \otimes \lambda^{\otimes k} \mapsto\left(\delta_{\varphi \varphi^{\prime}} q^{k}\right)_{\varphi^{\prime}}
$$

$$
\operatorname{Mor}(\operatorname{Br}) \hookrightarrow Q=Q_{\mathbb{B}}(\mathrm{Br})=\prod_{m, n \geq 0} Q_{m, n}
$$

Step 3: Quantization

- profinite idempotent completion:

$$
\operatorname{Mor}_{B r}([m],[n]) \hookrightarrow Q_{m, n}:=\bigoplus_{\substack{\varphi:([\mid])[([)] \\ \text { loop-free }}} \mathbb{B}[q], \quad \varphi \otimes \lambda^{\otimes k} \mapsto\left(\delta_{\varphi \varphi^{\prime}} q^{k}\right)_{\varphi^{\prime}}
$$

$$
\operatorname{Mor}(\operatorname{Br}) \hookrightarrow Q=Q_{\mathbb{B}}(\mathbf{B r})=\prod_{m, n \geq 0} Q_{m, n}
$$

- state modules: $Z(M)=\{\mathcal{F}(M) \rightarrow Q\}$

Step 3: Quantization

- profinite idempotent completion:

$$
\operatorname{Mor}_{B r}([m],[n]) \hookrightarrow Q_{m, n}:=\bigoplus_{\substack{\varphi:([\mid])[([)] \\ \text { loop-free }}} \mathbb{B}[q], \quad \varphi \otimes \lambda^{\otimes k} \mapsto\left(\delta_{\varphi \varphi^{\prime}} q^{k}\right)_{\varphi^{\prime}}
$$

$$
\operatorname{Mor}(\operatorname{Br}) \hookrightarrow Q=Q_{\mathbb{B}}(\mathrm{Br})=\prod_{m, n \geq 0} Q_{m, n}
$$

- state modules: $Z(M)=\{\mathcal{F}(M) \rightarrow Q\}$
- state sum (partition function) $Z_{W} \in Z(\partial W)$:

$$
Z_{W}(f)=\sum_{F \in \mathcal{F}(W, f)} \mathbb{T}_{W}(F) \quad \in Q
$$

Step 3: Quantization

- profinite idempotent completion:

$$
\operatorname{Mor}_{B r}([m],[n]) \hookrightarrow Q_{m, n}:=\bigoplus_{\substack{\varphi:[m] \rightarrow[n] \\ \text { loop-free }}} \mathbb{B} \llbracket q \rrbracket, \quad \varphi \otimes \lambda^{\otimes k} \mapsto\left(\delta_{\varphi \varphi^{\prime}} q^{k}\right)_{\varphi^{\prime}}
$$

$$
\operatorname{Mor}(\operatorname{Br}) \hookrightarrow Q=Q_{\mathbb{B}}(\mathbf{B r})=\prod_{m, n \geq 0} Q_{m, n}
$$

- state modules: $Z(M)=\{\mathcal{F}(M) \rightarrow Q\}$
- state sum (partition function) $Z_{W} \in Z(\partial W)$:

$$
Z_{W}(f)=\sum_{F \in \mathcal{F}(W, f)} \mathbb{T}_{W}(F) \quad \in Q
$$

Theorem (Banagl, 2015)
Z is a positive TFT. In particular, time-consistent diffeomorphism invariance and the gluing axiom hold.

Rationality of Partition Function

Theorem (Banagl, 2015)
For $n \geq 3, Z_{W}(f)$ is a rational function

$$
Z_{W}(f)=\frac{P_{f}(q)}{1-q^{2}}
$$

whith $P_{f}(q)$ some polynomial in q.

Rationality of Partition Function

Theorem (Banagl, 2015)
For $n \geq 3, Z_{W}(f)$ is a rational function

$$
Z_{W}(f)=\frac{P_{f}(q)}{1-q^{2}}
$$

whith $P_{f}(q)$ some polynomial in q.

Theorem (W.)
For $n \geq 3, Z_{W}(f)$ is a rational function

$$
Z_{W}(f)=\frac{Q_{f}(q)}{1-q}
$$

whith $Q_{f}(q)$ some polynomial in q of degree $\leq n$.

Aggregate Invariant

Let M^{n} be oriented closed n-manifold such that $\left[M^{n}\right]=0 \in \Omega_{n}^{S O}$:

Aggregate Invariant

Let M^{n} be oriented closed n-manifold such that $\left[M^{n}\right]=0 \in \Omega_{n}^{S O}$:

Aggregate Invariant

Let M^{n} be oriented closed n-manifold such that $\left[M^{n}\right]=0 \in \Omega_{n}^{S O}$:

Definition (aggregate invariant)

$$
\mathfrak{A}\left(M^{n}\right):=\sum_{W^{n+1}} Z_{W} \quad \in Z(M)
$$

Application: Exotic Smooth Spheres

Let $n \geq 5$.
Definition
An exotic sphere is a closed smooth manifold Σ^{n} which is homeomorphic, but not diffeomorphic to S^{n}.

Application: Exotic Smooth Spheres

Let $n \geq 5$.

Definition

An exotic sphere is a closed smooth manifold Σ^{n} which is homeomorphic, but not diffeomorphic to S^{n}.

FACT. $M^{n}=S^{n}$ and $M^{n}=\Sigma^{n}$ have Morse number 2 :

Application: Exotic Smooth Spheres

Let $n \geq 5$.
Definition
An exotic sphere is a closed smooth manifold Σ^{n} which is homeomorphic, but not diffeomorphic to S^{n}.

FACT. $M^{n}=S^{n}$ and $M^{n}=\Sigma^{n}$ have Morse number 2 :

Theorem (Banagl, 2015)

$$
M^{n} \cong S^{n} \quad \Longleftrightarrow \quad \mathfrak{A}\left(M^{n}\right)\left(\bar{f}_{M}\right) \notin q \cdot Q .
$$

Detecting Exotic Kervaire Spheres

Let $n=4 k+1, k \geq 1$.

- \sum_{K}^{n} : unique Kervaire sphere of dimension n
- Σ_{K}^{n} is exotic whenever $n+3 \notin 2^{\mathbb{N}}$

Detecting Exotic Kervaire Spheres

Let $n=4 k+1, k \geq 1$.

- \sum_{K}^{n} : unique Kervaire sphere of dimension n
- Σ_{K}^{n} is exotic whenever $n+3 \notin 2^{\mathbb{N}}$

Detecting Exotic Kervaire Spheres

Let $n=4 k+1, k \geq 1$.

- Σ_{K}^{n} : unique Kervaire sphere of dimension n
- Σ_{K}^{n} is exotic whenever $n+3 \notin 2^{\mathbb{N}}$

Theorem (W.)
Let $n \geq 237$ and $n \equiv 13(\bmod 16)$. Then,

$$
\Sigma^{n} \cong \Sigma_{K}^{n} \Longleftrightarrow \mathfrak{A}\left(\Sigma^{n}\right)\left(\bar{g}_{\Sigma}\right) \notin q \cdot Q
$$

Thank you for your attention!

