Fold Maps, Positive Topological Field Theories, and Exotic Spheres

Dominik Wrazidlo

Institute of Mathematics for Industry (IMI) Kyushu University

February 14, 2018

M.F. Atiyah (1988): Topological quantum field theory

M.F. Atiyah (1988): Topological quantum field theory

(n + 1)-dim. TFT Z (over comm. ground ring R):

• M^n closed manifold \mapsto state module Z(M) (f.g. over R)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• W^{n+1} compact manifold \mapsto state sum $Z_W \in Z(\partial W)$

M.F. Atiyah (1988): Topological quantum field theory

(n + 1)-dim. TFT Z (over comm. ground ring R):

- M^n closed manifold \mapsto state module Z(M) (f.g. over R)
- W^{n+1} compact manifold \mapsto state sum $Z_W \in Z(\partial W)$

gluing axiom: $(M^n, N^n, P^n) \rightsquigarrow$ contraction product:

$$\langle \cdot, \cdot \rangle \colon Z(M \sqcup N) \otimes Z(N \sqcup P) \longrightarrow Z(M \sqcup P),$$

s.t. $Z_{W} = \langle Z_{W'}, Z_{W''} \rangle$ whenever $W : M \xrightarrow{W'} N \xrightarrow{W''} P$

M.F. Atiyah (1988): Topological quantum field theory

(n + 1)-dim. TFT Z (over comm. ground ring R):

- M^n closed manifold \mapsto state module Z(M) (f.g. over R)
- W^{n+1} compact manifold \mapsto state sum $Z_W \in Z(\partial W)$

gluing axiom: $(M^n, N^n, P^n) \rightsquigarrow$ contraction product:

$$\langle \cdot, \cdot \rangle \colon Z(M \sqcup N) \otimes Z(N \sqcup P) \longrightarrow Z(M \sqcup P),$$

s.t. $Z_{W} = \langle Z_{W'}, Z_{W''} \rangle$ whenever $W : M \xrightarrow{W'} N \xrightarrow{W''} P$

further axioms: $Z(M \sqcup N) \cong Z(M) \otimes Z(N)$, $Z_{W \sqcup V} \cong Z_W \otimes Z_V$, $Z(-M) = Z(M)^*$ (unitary theory), $Z_{M \times [0,1]} = \operatorname{id}_{Z(M)}$

Examples (Gluing)

 $W^{n+1}\colon M^n \stackrel{W'}{\longrightarrow} N^n \stackrel{W''}{\longrightarrow} P^n$

Euler characteristic (n odd):

$$\chi(W) = \chi(W') + \chi(W'')$$

Novikov additivity (compatibly oriented cobordisms):

$$\sigma(W) = \sigma(W') + \sigma(W'')$$

▶ Pontrjagin numbers (n = 7, compatibly oriented cobordisms, M = P = Ø, H³(N⁷) = H⁴(N⁷) = 0):

$$p_1^2[W] = p_1^2[W'] + p_1^2[W'']$$

 \rightsquigarrow Milnor's invariant $\lambda(N^7)$

GOAL:

Exploit concept of TFT & gluing as a source of powerful (differential) topological invariants of manifolds!

GOAL:

Exploit concept of TFT & gluing as a source of powerful (differential) topological invariants of manifolds!

IDEA (Markus Banagl):

Find the formulation of Atiyah's axioms for TFT over semirings!

GOAL:

Exploit concept of TFT & gluing as a source of powerful (differential) topological invariants of manifolds!

IDEA (Markus Banagl):

Find the formulation of Atiyah's axioms for TFT over semirings!

▶ avoid measure theoretic difficulties in Feynman's path integral

$$Z_W(f) = \int_{\mathcal{F}(W;f)} e^{iS_W(F)} \,\mathrm{d}\,\mu_W$$

GOAL:

Exploit concept of TFT & gluing as a source of powerful (differential) topological invariants of manifolds!

IDEA (Markus Banagl):

Find the formulation of Atiyah's axioms for TFT over semirings!

▶ avoid measure theoretic difficulties in Feynman's path integral

$$Z_W(f) = \int_{\mathcal{F}(W;f)} e^{iS_W(F)} \,\mathrm{d}\,\mu_W$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

accept certain deviations from Atiyah's axioms

GOAL:

Exploit concept of TFT & gluing as a source of powerful (differential) topological invariants of manifolds!

IDEA (Markus Banagl):

Find the formulation of Atiyah's axioms for TFT over semirings!

▶ avoid measure theoretic difficulties in Feynman's path integral

$$Z_W(f) = \int_{\mathcal{F}(W;f)} e^{iS_W(F)} \,\mathrm{d}\,\mu_W$$

- accept certain deviations from Atiyah's axioms
- obtain positive TFT & construct high-dimensional invariants!

Semirings

Definition

A semiring is a tuple $S = (S, +, \cdot, 0, 1)$, where

- ▶ (*S*, +, 0) comm. monoid
- ▶ (*S*, ·, 1) monoid

satisfying distributivity: a(b+c) = ab + ac, (a+b)c = ac + bc, and such that 0 is absorbing: $0 \cdot a = a \cdot 0 = 0$.

Example

- Boolean semiring $\mathbb{B} = \{0, 1\}$, require 1 + 1 = 1
- semiring of formal power series $\mathbb{B}[\![q]\!]$
- tropical semiring ($\mathbb{R} \cup \{\infty\}, \min, +, \infty, 0$)

▶ ...

Eilenberg-Completeness

S. Eilenberg (1974): Automata, Languages, and Machines

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Eilenberg-Completeness

S. Eilenberg (1974): Automata, Languages, and Machines

Definition

1. A comm. monoid (C, +, 0) is called **complete** if "+" extends to

$$\sum: \{c_i\}_{i\in I} \longmapsto \sum_{i\in I} c_i \in C$$

satisfying Fubini's law: $I = \bigcup_{j \in J} I_j \Rightarrow \sum_{i \in I} c_i = \sum_{j \in J} \sum_{i \in I_j} c_i$.

2. A semiring S is called **complete** if (S, +, 0) is complete, and \sum satisfies distributivity.

Eilenberg-Completeness

S. Eilenberg (1974): Automata, Languages, and Machines

Definition

1. A comm. monoid (C, +, 0) is called **complete** if "+" extends to

$$\sum: \{c_i\}_{i\in I} \longmapsto \sum_{i\in I} c_i \in C$$

satisfying Fubini's law: $I = \bigcup_{j \in J} I_j \Rightarrow \sum_{i \in I} c_i = \sum_{j \in J} \sum_{i \in I_j} c_i$.

2. A semiring S is called **complete** if (S, +, 0) is complete, and \sum satisfies distributivity.

Eilenberg swindle: If S is an Eilenberg-complete *ring*, then

$$s := 1 + 1 + \cdots = 1 + (1 + \dots) = 1 + s \Longrightarrow 0 = 1 \Rightarrow S = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- C: small strict monoidal category
- S: Eilenberg-complete semiring

- C: small strict monoidal category
- S: Eilenberg-complete semiring

$$\begin{bmatrix} \text{system of fields } \mathcal{F} \\ \mathcal{C}\text{-valued action functional } \mathbb{T} \end{bmatrix} \stackrel{\text{quantization}}{\mapsto} \begin{bmatrix} (n+1)\text{-dim. positive TFT } Z \\ \text{over semiring } Q = Q_S(\mathcal{C}) \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- C: small strict monoidal category
- S: Eilenberg-complete semiring

$$\begin{bmatrix} \text{system of fields } \mathcal{F} \\ \mathcal{C}\text{-valued action functional } \mathbb{T} \end{bmatrix} \stackrel{\text{quantization}}{\mapsto} \begin{bmatrix} (n+1)\text{-dim. positive TFT } Z \\ \text{over semiring } Q = Q_S(\mathcal{C}) \end{bmatrix}$$

 sets of fields *F*(*Wⁿ⁺¹*), *F*(*Mⁿ*), and compatible restriction maps (for codim. 0, 1): *F*(*W*) → *F*(*W'*), *F*(*W*) → *F*(*M*), *F*(*M*) → *F*(*M'*) in particular: *F*(*W*) → *F*(∂*W*), *F* ↦ *F*|_{∂W}

- C: small strict monoidal category
- S: Eilenberg-complete semiring

$$\begin{bmatrix} \text{system of fields } \mathcal{F} \\ \mathcal{C}\text{-valued action functional } \mathbb{T} \end{bmatrix} \stackrel{\text{quantization}}{\mapsto} \begin{bmatrix} (n+1)\text{-dim. positive TFT } Z \\ \text{over semiring } Q = Q_S(\mathcal{C}) \end{bmatrix}$$

- sets of fields *F*(*Wⁿ⁺¹*), *F*(*Mⁿ*), and compatible restriction maps (for codim. 0, 1): *F*(*W*) → *F*(*W'*), *F*(*W*) → *F*(*M*), *F*(*M*) → *F*(*M'*) in particular: *F*(*W*) → *F*(∂*W*), *F* ↦ *F*|_{∂W}
- ▶ action functional $\mathbb{T}_W : \mathcal{F}(W) \to Mor(C)$, $\mathbb{T}_{W' \sqcup W''}(F) = \mathbb{T}_{W'}(F|_{W'}) \otimes \mathbb{T}_{W''}(F|_{W''})$ $\mathbb{T}_{W' \cup W''}(F) = \mathbb{T}_{W'}(F|_{W'}) \circ \mathbb{T}_{W''}(F|_{W''})$

profinite idempotent completion:

construct Eilenberg-complete semiring $Q = Q_S(\boldsymbol{C})$ such that $\mathsf{Mor}(\boldsymbol{C}) \hookrightarrow Q$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ profinite idempotent completion: construct Eilenberg-complete semiring Q = Q₅(C) such that Mor(C) → Q

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ state modules: $Z(M^n) = \{\mathcal{F}(M) \to Q\}$

▶ profinite idempotent completion: construct Eilenberg-complete semiring Q = Q_S(C) such that Mor(C) → Q

- ▶ state modules: $Z(M^n) = \{\mathcal{F}(M) \to Q\}$
- ▶ state sum (partition function) $Z_W \in Z(\partial W)$:

$$Z_W(f) = \sum_{F \in \mathcal{F}(W,f)} \mathbb{T}_W(F) \in Q.$$

▶ profinite idempotent completion: construct Eilenberg-complete semiring Q = Q_S(C) such that Mor(C) → Q

- ▶ state modules: $Z(M^n) = \{\mathcal{F}(M) \to Q\}$
- ▶ state sum (partition function) $Z_W \in Z(\partial W)$:

$$Z_W(f) = \sum_{F \in \mathcal{F}(W,f)} \mathbb{T}_W(F) \quad \in Q.$$

$$Z_W(f) = \int_{\mathcal{F}(W;f)} e^{iS_W(F)} \,\mathrm{d}\,\mu_W$$

 $F: W^{n+1} \to \mathbb{R}^2$ is called **fold map** if *F* looks at every singular point $c \in S(F)$ in suitable coordinates centered at *c* and *F*(*c*) like

$$(t,x)\mapsto (t,-x_1^2-\cdots-x_i^2+x_{i+1}^2+\cdots+x_n^2).$$

 $F: W^{n+1} \to \mathbb{R}^2$ is called **fold map** if *F* looks at every singular point $c \in S(F)$ in suitable coordinates centered at *c* and *F*(*c*) like

$$(t,x)\mapsto (t,-x_1^2-\cdots-x_i^2+x_{i+1}^2+\cdots+x_n^2).$$

 $F: W^{n+1} \to \mathbb{R}^2$ is called **fold map** if *F* looks at every singular point $c \in S(F)$ in suitable coordinates centered at *c* and *F*(*c*) like

$$(t,x)\mapsto (t,-x_1^2-\cdots-x_i^2+x_{i+1}^2+\cdots+x_n^2).$$

 $\mathcal{F}(W) = \{F \text{ fold map} \mid \exists \text{ residual subset } 0, 1 \in A \subset [0, 1] \forall t \in A : \\ t \in \operatorname{Reg}(\tau), \ \boldsymbol{S(F)} \pitchfork W_t, \ \operatorname{Im} \circ F \text{ is injective on } \boldsymbol{S(F)} \cap W_t \}$

・ロト・日本・モート モー うへぐ

 $\mathcal{F}(W) = \{F \text{ fold map} \mid \exists \text{ residual subset } 0, 1 \in A \subset [0, 1] \forall t \in A : \\ t \in \operatorname{Reg}(\tau), \ \boldsymbol{S(F)} \pitchfork W_t, \ \operatorname{Im} \circ F \text{ is injective on } \boldsymbol{S(F)} \cap W_t \}$

The Brauer category $C = (Br, \otimes, [0], b)$ is the categorification of the Brauer algebras D_m arising in representation theory of O(n):

- Ob Br: $[0] = \emptyset$, $[1] = \{1\}$, $[2] = \{1, 2\}$, ...
- Mor_{Br}([m], [n]):

• $[m] \otimes [n] = [m + n]; \otimes$ of morphisms: vertical stacking

• braiding $b = \square \subseteq \in Mor_{Br}([2], [2])$

 $\mathbb{T}_W : \mathcal{F}(W) \to \mathsf{Mor}(Br)$ is naturally induced by fold patterns!

 $\mathbb{T}_W : \mathcal{F}(W) \to \mathsf{Mor}(\boldsymbol{Br})$ is naturally induced by fold patterns!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\mathbb{T}_W : \mathcal{F}(W) \to \mathsf{Mor}(\boldsymbol{Br})$ is naturally induced by fold patterns!

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

 $\mathbb{T}_W : \mathcal{F}(W) \to \mathsf{Mor}(Br)$ is naturally induced by fold patterns!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 $\mathbb{T}_W : \mathcal{F}(W) \to \mathsf{Mor}(Br)$ is naturally induced by fold pattern!

▶
$$\mathcal{F}(M) = \{F \in \mathcal{F}([0,1] \times M) \mid \mathbb{T}_{[0,1] \times M}(F) = \mathsf{id} \in \mathsf{Mor}(Br)\}$$

F(*M*) = {*F* ∈ *F*([0,1] × *M*) |
$$\mathbb{T}_{[0,1] × M}(F)$$
 = id ∈ Mor(*Br*)}
f : *M* → ℝ excellent Morse function

(ロ)、(型)、(E)、(E)、 E) の(の)

 $\rightsquigarrow \overline{f} := \operatorname{id}_{[0,1]} \times f \in \mathcal{F}(M)$

► $\mathcal{F}(M) = \{F \in \mathcal{F}([0,1] \times M) \mid \mathbb{T}_{[0,1] \times M}(F) = \mathsf{id} \in \mathsf{Mor}(Br)\}$

- ▶ $f: M \to \mathbb{R}$ excellent Morse function $\rightsquigarrow \overline{f} := \mathrm{id}_{[0,1]} \times f \in \mathcal{F}(M)$
- ▶ restrictions $\mathcal{F}(W) \rightarrow \mathcal{F}(W_t)$, $t \in [0, 1]$

►
$$\mathcal{F}(M) = \{F \in \mathcal{F}([0,1] \times M) \mid \mathbb{T}_{[0,1] \times M}(F) = \mathsf{id} \in \mathsf{Mor}(Br)\}$$

▶
$$f: M \to \mathbb{R}$$
 excellent Morse function
 $\rightsquigarrow \overline{f} := id_{[0,1]} \times f \in \mathcal{F}(M)$

▶ restrictions $\mathcal{F}(W) \rightarrow \mathcal{F}(W_t)$, $t \in [0, 1]$

Question (Banagl): Does the definition of $\mathcal{F}(W)$ exclude any patterns detected by \mathbb{T}_W ?

►
$$\mathcal{F}(M) = \{F \in \mathcal{F}([0,1] \times M) \mid \mathbb{T}_{[0,1] \times M}(F) = \mathsf{id} \in \mathsf{Mor}(Br)\}$$

▶
$$f: M \to \mathbb{R}$$
 excellent Morse function
 $\rightsquigarrow \overline{f} := id_{[0,1]} \times f \in \mathcal{F}(M)$

▶ restrictions $\mathcal{F}(W) \rightarrow \mathcal{F}(W_t)$, $t \in [0, 1]$

Question (Banagl): Does the definition of $\mathcal{F}(W)$ exclude any patterns detected by \mathbb{T}_W ?

Theorem (W.)

Every fold map $F: W^{n+1} \to \mathbb{R}^2$ satisfying $F|_{[0,\varepsilon] \times M} \in \mathcal{F}(M)$ and $F|_{[1-\varepsilon,1] \times N} \in \mathcal{F}(N)$ is homotopic rel $[0,\varepsilon] \times M \sqcup [1-\varepsilon,1] \times N$ to a field $G \in \mathcal{F}(W)$ such that $\mathbb{T}_W(F) = \mathbb{T}_W(G)$.

Sketch of Proof

Im $\circ F$ is injective on $S(F) \setminus X$

Sketch of Proof (continued)

Sketch of Proof (continued)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Sketch of Proof (continued)

profinite idempotent completion:

$$\mathsf{Mor}_{Br}([m], [n]) \hookrightarrow Q_{m,n} := \bigoplus_{\substack{\varphi : [m] \to [n] \\ \mathsf{loop-free}}} \mathbb{B}\llbracket q \rrbracket, \quad \varphi \otimes \lambda^{\otimes k} \mapsto (\delta_{\varphi \varphi'} q^k)_{\varphi'}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\mathsf{Mor}(\boldsymbol{Br}) \hookrightarrow Q = Q_{\mathbb{B}}(\boldsymbol{Br}) = \prod_{m,n \geq 0} Q_{m,n}$

profinite idempotent completion:

$$\mathsf{Mor}_{Br}([m], [n]) \hookrightarrow Q_{m,n} := \bigoplus_{\substack{\varphi : [m] \to [n] \\ \mathsf{loop-free}}} \mathbb{B}\llbracket q \rrbracket, \quad \varphi \otimes \lambda^{\otimes k} \mapsto (\delta_{\varphi \varphi'} q^k)_{\varphi'}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\mathsf{Mor}(\boldsymbol{Br}) \hookrightarrow Q = Q_{\mathbb{B}}(\boldsymbol{Br}) = \prod_{m,n \geq 0} Q_{m,n}$$

▶ state modules:
$$Z(M) = \{\mathcal{F}(M) \rightarrow Q\}$$

profinite idempotent completion:

$$\mathsf{Mor}_{Br}([m], [n]) \hookrightarrow Q_{m,n} := \bigoplus_{\substack{\varphi : [m] \to [n] \\ \mathsf{loop-free}}} \mathbb{B}\llbracket q \rrbracket, \quad \varphi \otimes \lambda^{\otimes k} \mapsto (\delta_{\varphi \varphi'} q^k)_{\varphi'}$$

$$\mathsf{Mor}(\boldsymbol{Br}) \hookrightarrow Q = Q_{\mathbb{B}}(\boldsymbol{Br}) = \prod_{m,n \geq 0} Q_{m,n}$$

- ▶ state modules: $Z(M) = \{\mathcal{F}(M) \rightarrow Q\}$
- ▶ state sum (partition function) $Z_W \in Z(\partial W)$:

$$Z_W(f) = \sum_{F \in \mathcal{F}(W,f)} \mathbb{T}_W(F) \quad \in Q.$$

profinite idempotent completion:

$$\mathsf{Mor}_{Br}([m], [n]) \hookrightarrow Q_{m,n} := \bigoplus_{\substack{\varphi : [m] \to [n] \\ \mathsf{loop-free}}} \mathbb{B}\llbracket q \rrbracket, \quad \varphi \otimes \lambda^{\otimes k} \mapsto (\delta_{\varphi \varphi'} q^k)_{\varphi'}$$

$$\mathsf{Mor}(\boldsymbol{Br}) \hookrightarrow Q = Q_{\mathbb{B}}(\boldsymbol{Br}) = \prod_{m,n \geq 0} Q_{m,n}$$

- ▶ state modules: $Z(M) = \{\mathcal{F}(M) \rightarrow Q\}$
- ▶ state sum (partition function) $Z_W \in Z(\partial W)$:

$$Z_W(f) = \sum_{F \in \mathcal{F}(W,f)} \mathbb{T}_W(F) \quad \in Q.$$

Theorem (Banagl, 2015)

Z is a **positive TFT**. In particular, time-consistent diffeomorphism invariance and the gluing axiom hold.

Rationality of Partition Function

Theorem (Banagl, 2015) For $n \ge 3$, $Z_W(f)$ is a rational function

$$Z_W(f)=rac{P_f(q)}{1-q^2},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

whith $P_f(q)$ some polynomial in q.

Rationality of Partition Function

Theorem (Banagl, 2015) For $n \ge 3$, $Z_W(f)$ is a rational function

$$Z_W(f)=rac{P_f(q)}{1-q^2},$$

whith $P_f(q)$ some polynomial in q.

Theorem (W.) For $n \ge 3$, $Z_W(f)$ is a rational function

$$Z_W(f)=rac{Q_f(q)}{1-q},$$

whith $Q_f(q)$ some polynomial in q of degree $\leq n$.

Aggregate Invariant

Let M^n be oriented closed *n*-manifold such that $[M^n] = 0 \in \Omega_n^{SO}$:

◆□ → < 個 → < Ξ → < Ξ → < Ξ → の < ⊙</p>

Aggregate Invariant

Let M^n be oriented closed *n*-manifold such that $[M^n] = 0 \in \Omega_n^{SO}$:

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Aggregate Invariant

Let M^n be oriented closed *n*-manifold such that $[M^n] = 0 \in \Omega_n^{SO}$:

Definition (aggregate invariant)

$$\mathfrak{A}(M^n):=\sum_{W^{n+1}}Z_W\quad\in Z(M).$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Application: Exotic Smooth Spheres

Let $n \ge 5$.

Definition

An *exotic sphere* is a closed smooth manifold Σ^n which is homeomorphic, but not diffeomorphic to S^n .

Application: Exotic Smooth Spheres

Let $n \geq 5$.

Definition

An *exotic sphere* is a closed smooth manifold Σ^n which is homeomorphic, but not diffeomorphic to S^n .

FACT. $M^n = S^n$ and $M^n = \Sigma^n$ have Morse number 2:

Application: Exotic Smooth Spheres

Let $n \geq 5$.

Definition

An *exotic sphere* is a closed smooth manifold Σ^n which is homeomorphic, but not diffeomorphic to S^n .

FACT. $M^n = S^n$ and $M^n = \Sigma^n$ have Morse number 2:

Theorem (Banagl, 2015) $M^n \cong S^n \iff \mathfrak{A}(M^n)(\overline{f}_M) \notin q \cdot Q.$

Detecting Exotic Kervaire Spheres

Let n = 4k + 1, $k \ge 1$.

• Σ_{K}^{n} : unique **Kervaire sphere** of dimension *n*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Σ_K^n is exotic whenever $n+3 \notin 2^{\mathbb{N}}$

Detecting Exotic Kervaire Spheres

Let n = 4k + 1, $k \ge 1$.

- $\Sigma_{\mathcal{K}}^{n}$: unique **Kervaire sphere** of dimension *n*
- Σ_K^n is exotic whenever $n+3 \notin 2^{\mathbb{N}}$

Detecting Exotic Kervaire Spheres

Let n = 4k + 1, $k \ge 1$.

- Σ_{K}^{n} : unique **Kervaire sphere** of dimension *n*
- Σ_K^n is exotic whenever $n+3 \notin 2^{\mathbb{N}}$

Theorem (W.) Let $n \ge 237$ and $n \equiv 13 \pmod{16}$. Then,

 $\Sigma^n \cong \Sigma_K^n \iff \mathfrak{A}(\Sigma^n)(\overline{g}_{\Sigma}) \notin q \cdot Q.$

Thank you for your attention!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>