Hybrid-Dynamic Ehrenfeucht-Fraïssé Games

G. Badia, D. Gaina, A. Knapp, T. Kowalski, M. Wirsing

U. of Queensland, Kyushu U., U. of Augsburg, Jagiellonian U., La Trobe U. Ludwig-Maximilian U.

Logic, Algebra and Category Theory 1 October 2025, KyuDai

Introduction

- Idea: take a hodgepodge of existing results and make a systematic sense of them.
- ► Ingredients:
 - Some results on bisimulations in hybrid and dynamic logics, for example [Areces et al., 2001, Hodkinson and Tahiri, 2010].
 - Classical first-order stuff: Ehrenfeucht-Fraïssé games, partial isomorphisms, back-and-forth.
 - ► Institution theory framework.
- ► Recipe:
 - ▶ Mix, shake well, simmer in a pot (see [Badia et al., 2025]) long enough for Daniel to lose patience.
 - ► Rewrite everything in institution theory framework, get some new results on the way.

Signatures

- ▶ All signatures will be of the form (Σ, \texttt{Prop}) , where $\Sigma = (F, P)$ is a single-sorted first-order signature consisting of
 - ightharpoonup a set of constants F (nominals), and
 - ightharpoonup a set of binary relation symbols P (accessibility),

and Prop is a set of propositional symbols.

- ▶ We let Δ range over signatures of the form (Σ, Prop) . When necessary, we will use indexing in a natural way.
- ▶ A signature morphism $\chi: \Delta_1 \to \Delta_2$ consists of a first-order signature morphism $\chi: \Sigma_1 \to \Sigma_2$ and a function $\chi: \operatorname{Prop}_1 \to \operatorname{Prop}_2$.
- ▶ The extension of Δ by a fresh nominal k is denoted $\Delta[k]$ yielding the inclusion $\Delta \hookrightarrow \Delta[k]$.
- ► We denote by Sig^{HDPL} the category of HDPL signatures.

Models

- Models over a signature Δ are standard Kripke structures $\mathfrak{M}=(W,M)$, where:
 - W is a first-order structure over Σ , that is, $W = (|\mathfrak{M}|, (\lambda^W)_{\lambda \in P})$. So $|\mathfrak{M}|$ is the set of worlds, and λ^W are accessibility relations.
 - ▶ M is a propositional valuation, that is, a map $M: |\mathfrak{M}| \to |\mathsf{Mod}^\mathsf{PL}(\mathsf{Prop})|$, where Mod^PL stands for power-set.
- ► Convention: \mathfrak{M} and \mathfrak{N} range over Kripke structures of the form (W, M) and (V, N).
- ▶ Δ -homomorphism $h: \mathfrak{M} \to \mathfrak{N}$ between two Kripke structures \mathfrak{M} and \mathfrak{N} is a first-order homomorphism $h: W \to V$ such that $h(M(w)) \subseteq N(h(w))$ for all states $w \in |\mathfrak{M}|$, that is, h preserves truth of propositions.
- ightharpoonup Δ -homomorphisms form a category $\mathsf{Mod}^{\mathsf{HDPL}}(\Delta)$.

Actions / Programs

The set of actions $\mathcal{A}^{\mathsf{HDPL}}(\Delta)$ over a signature Δ is defined by the following grammar:

$$\mathfrak{a} \coloneqq \lambda \mid \mathfrak{a} \cup \mathfrak{a} \mid \mathfrak{a} \, \mathfrak{g} \, \mathfrak{a} \mid \mathfrak{a}^*$$
 ,

where λ is a binary relation on nominals. Actions are interpreted in Kripke structures (W,M) as accessibility relations, as follows:

- \blacktriangleright $\lambda^{\mathfrak{M}} = \lambda^{W}$ for all binary relations λ in Δ ,
- $\qquad \qquad (\mathfrak{a}_1 \cup \mathfrak{a}_2)^{\mathfrak{M}} = \mathfrak{a}_1^{\mathfrak{M}} \cup \mathfrak{a}_2^{\mathfrak{M}} \text{ (union),}$
- $\qquad \qquad (\mathfrak{a}_1 \, \mathfrak{s} \, \mathfrak{a}_2)^{\mathfrak{M}} = \mathfrak{a}_1^{\mathfrak{M}} \, \mathfrak{s} \, \mathfrak{a}_2^{\mathfrak{M}} \, \text{(composition)},$
- $(\mathfrak{a}^*)^{\mathfrak{M}} = (\mathfrak{a}^{\mathfrak{M}})^*$ (reflexive & transitive closure).

Sentences

The set of sentences $\mathsf{Sen}^\mathsf{HDPL}(\Delta)$ over a signature Δ is defined by:

$$\phi \coloneqq p \mid k \mid \bigwedge \Phi \mid \neg \phi \mid \langle \mathfrak{a} \rangle \phi \mid @_k \phi \mid \downarrow x \cdot \phi_x \mid \exists x \cdot \phi_x ,$$

where (i) p is a propositional symbol, (ii) k is a nominal, (iii) Φ is a finite set of sentences over Δ , (iv) x is a variable for Δ , (v) $\mathfrak a$ is an action over Δ , (vi) $\phi_x \in \mathsf{Sen}^{\mathsf{HDPL}}(\Delta[x])$.

- \blacktriangleright $\langle \mathfrak{a} \rangle \phi$ is read ϕ holds after a run of \mathfrak{a} (possibility),
- $ightharpoonup @_k \phi$ is read ϕ holds at state k (retrieve),
- $\blacktriangleright \ \downarrow x \cdot \phi_x$ is read ϕ_x holds with the current state set to x (store).

Usual abbreviations are in force: $\bigvee \Phi$ for $\neg(\bigwedge_{\phi \in \Phi} \neg \phi)$, $[\mathfrak{a}]\phi$ for $\neg\langle \mathfrak{a} \rangle \neg \phi$, and $\forall x \cdot \phi_x$ for $\neg \exists x \cdot \neg \phi_x$.

Local satisfaction relation

Satisfaction of a sentence ϕ at a world $w \in |\mathfrak{M}|$ in a model $\mathfrak{M} = (W, M)$ over a signature Δ , is defined by induction:

- \blacktriangleright $(\mathfrak{M},w)\models p$ if $p\in M(w)$;
- \blacktriangleright $(\mathfrak{M}, w) \models k \text{ if } w = k^{\mathfrak{M}}$
- \blacktriangleright $(\mathfrak{M},w)\models\bigwedge\Phi$ if $(\mathfrak{M},w)\models\phi$ for all $\phi\in\Phi$;
- \blacktriangleright $(\mathfrak{M}, w) \models @_k \phi \text{ if } (\mathfrak{M}, k^{\mathfrak{M}}) \models \phi;$
- $\bullet \quad (\mathfrak{M}, w) \models \langle \mathfrak{a} \rangle \phi \text{ if } (\mathfrak{M}, v) \models \phi \text{ for some } \\ v \in \mathfrak{a}^{\mathfrak{M}}(w) \coloneqq \{ w' \in |\mathfrak{M}| \mid (w, w') \in \mathfrak{a}^{\mathfrak{M}} \};$
- $(\mathfrak{M},w)\models \downarrow x\cdot \phi_x \text{ if } (\mathfrak{M}^{x\leftarrow w},w)\models \phi_x, \\$ where $\mathfrak{M}^{x\leftarrow w}$ is the expansion of \mathfrak{M} to $\Delta[x]$ interpreting x as w;
- \blacktriangleright $(\mathfrak{M},w)\models\exists x\cdot\phi_x$ if $(\mathfrak{M}^{x\leftarrow v},w)\models\phi_x$ for some $v\in|\mathfrak{M}|$.

Local satisfaction condition

We call the pair (\mathfrak{M},w) a pointed model, and w the current state.

Theorem (Local satisfaction condition)

For all signature morphisms $\chi:\Delta_1\to\Delta_2$, all Δ_2 -models \mathfrak{M} , all states $w\in |\mathfrak{M}|$, all Δ_1 -sentences ϕ , we have

$$(\mathfrak{M},w)\models\chi(\phi) \text{ iff } (\mathfrak{M}|\chi,w)\models\phi$$
 .

where $\mathfrak{M}|\chi$ is the χ -reduct of \mathfrak{M} .

- ► Technically, this shows that HDPL is a stratified institution (see [Diaconescu, 2017, Găină, 2020]).
- ► In practice, it means that signature morphisms are very decent translations.
- ► Folklore in institution theory (see [Diaconescu, 2016]).

Framework for fragments

HDPL is too powerful, so we want to consider fragments. Let $\mathcal{L} = (\mathsf{Sig}^{\mathsf{HDPL}}, \mathsf{Sen}^{\mathcal{L}}, \mathsf{Mod}^{\mathsf{HDPL}}, \models)$ of HDPL be an arbitrary fragment of HDPL closed under Boolean connectives. Boolean closure in not needed for the games, but it is for game sentences.

In practice, any ${\cal L}$ is obtained from HDPL by discarding:

- some constructors for actions from the grammar which defines actions in HDPL, and/or
- some constructors for sentences from the grammar which defines sentences in HDPL.

Two extreme cases:

- ▶ drop the action part, get hybrid propositional logic (HPL),
- ▶ drop the hybrid part, get propositional dynamic logic (PDL).

Notational conventions

- ▶ Let $\mathcal{O} \subseteq \{\lozenge, @, \downarrow, \exists\}$ be the subset of the sentence constructors which belong to \mathcal{L} .
 - \diamond \in \mathcal{O} means that \mathcal{L} is closed under possibility over actions, but no assumption is made concerning the existence of action constructors. One or more constructors for actions can be discarded from \mathcal{L} .
- ▶ Let $\mathsf{Mod}_p(\Delta) = \{(\mathfrak{M}, w) \mid \mathfrak{M} \in |\mathsf{Mod}(\Delta)| \text{ and } w \in |\mathfrak{M}|\}$ be the class of pointed Δ -models.
- ▶ Let $\mathsf{Mod}_p(\Delta, \phi) = \{(\mathfrak{M}, w) \in \mathsf{Mod}_p(\Delta) \mid (\mathfrak{M}, w) \models \phi\}$ be the class of pointed Δ -models which satisfy a sentence ϕ .
- ▶ Let $\operatorname{Sen}_b:\operatorname{Sig} \to \operatorname{\mathbb{S}et}$ be the subfunctor of $\operatorname{Sen}:\operatorname{Sig} \to \operatorname{\mathbb{S}et}$ which maps each signature $\Delta=(\Sigma,\operatorname{Prop})$ to the set of basic (or atomic) sentences $F\cup\operatorname{Prop}$.

Elementary equivalence

Definition

Let Δ be a signature.

- Two pointed Δ -models (\mathfrak{M},w) and (\mathfrak{N},v) are \mathcal{L} -elementarily equivalent, in symbols, $(\mathfrak{M},w)\equiv (\mathfrak{N},v)$, when $(\mathfrak{M},w)\models \phi$ iff $(\mathfrak{N},v)\models \phi$, for all Δ -sentences $\phi\in \mathsf{Sen}^\mathcal{L}(\Delta)$.
- ► Two Δ -sentences ϕ_1 and ϕ_2 are semantically equivalent if they are satisfied by the same pointed models, that is, $\mathsf{Mod}_p(\Delta,\phi_1) = \mathsf{Mod}_p(\Delta,\phi_2)$.
- ightharpoonup \mathcal{L} -elementary equivalence is an equivalence relation for any \mathcal{L} .
- ▶ Strength of \equiv depends on \mathcal{L} .

Ehrenfeucht-Fraïssé games in our framework

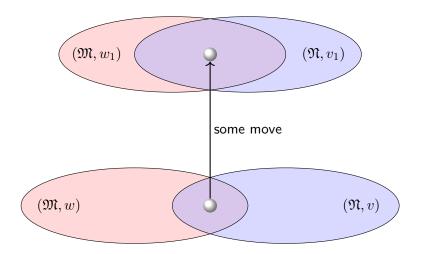
Idea based on [Găină and Kowalski, 2020].

- ► A game is a collection of all its plays over a set of gameboard trees.
- ▶ A play of the game starts with two pointed models (\mathfrak{M},w) and (\mathfrak{N},v) defined over the same signature Δ , and a gameboard tree tr with $root(tr) = \Delta$.
- ▶ ∃loise loses if the following game property is not satisfied:

$$(\mathfrak{M},w)\models\phi$$
 iff $(\mathfrak{N},v)\models\phi$ for all $\phi\in\mathsf{Sen}_b(\Delta)$.

- ▶ Otherwise, the play can continue and \forall belard can move one of the pointed models along an edge of the gameboard tree. Wlog, \forall belard picks up the first pointed model (\mathfrak{M}, w) .
- ► A winning strategy for a player is a sequence of moves that ensure that the player wins any play of the game.

Idea illustrated

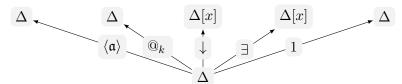


Gameboard trees

A gameboard tree describes the possible moves in the play of a game. The edges are labelled to account for different kinds of "quantifiers": $\langle \mathfrak{a} \rangle$, $@_k$, \downarrow , \exists .

- ► Nodes are labelled by signatures
- ► Edges are labelled by sentence operators; they are uniquely identified by source and label.

Here are all possible labels for HDPL. For a particular $\mathcal L$ there may be fewer possible labels. But the idle label 1 always occurs for technical reasons.



- $\Diamond \in \mathcal{O}$: A pair consisting of the identity signature morphism $1_{\Delta}: \Delta \to \Delta$ and the modal operator $\langle \mathfrak{a} \rangle$.
- $@ \in \mathcal{O}$: A pair consisting of the identity signature morphism $1_{\Delta}: \Delta \to \Delta$ and the operator retrieve $@_k$.
- $\downarrow \in \mathcal{O}$: A pair consisting of a signature inclusion $\Delta \longrightarrow \Delta[x]$ and the operator store $\downarrow x$.
- $\exists \in \mathcal{O}$: A pair consisting of a signature inclusion $\Delta \longrightarrow \Delta[x]$ and the first-order quantifier $\exists x$.
 - idle: The identity signature morphism $1_{\Delta}: \Delta \to \Delta$. The idle edge serves to construct complex gameboard trees from simpler components and to define game sentences that represent conjunctions.

$\Diamond \in \mathcal{O}$:

A move along $\Delta \xrightarrow{\langle \mathfrak{a} \rangle} \Delta$. The next state w_1 chosen by \forall belard is accessible from w via $\mathfrak{a}^{\mathfrak{M}}$. \exists loise needs to find a state v_1 accessible from v via $\mathfrak{a}^{\mathfrak{M}}$ such that for her new pointed model (\mathfrak{N}, v_1) the game property still holds.

$$\begin{array}{ccc} (\mathfrak{M},w) & & & (\mathfrak{M},w_1) \\ & & & & & & \\ (\mathfrak{N},v) & & & & & \\ \end{array}$$

$@\in \mathcal{O}$:

A move along an edge $\Delta \xrightarrow{@_k} \Delta$. \forall belard changes the current state w to $k^{\mathfrak{M}}$. The only possible choice for \exists loise is $(\mathfrak{N}, k^{\mathfrak{N}})$. If the game property still holds, the play continues with $(\mathfrak{M}, k^{\mathfrak{M}})$ and $(\mathfrak{N}, k^{\mathfrak{N}})$.

$$(\mathfrak{M}, w)$$
 $(\mathfrak{M}, k^{\mathfrak{M}})$

$$\Delta \longrightarrow \Delta \qquad \qquad (\mathfrak{M}, k^{\mathfrak{M}})$$
 $(\mathfrak{M}, k^{\mathfrak{M}})$

$\downarrow \in \mathcal{O}$:

A move along $\Delta \xrightarrow{\downarrow} \Delta[x]$. \forall belard gives name x to his current state. \exists loise can only respond by giving name x to her current state.

$\exists \in \mathcal{O}:$

A move along $\Delta \stackrel{\exists}{\to} \Delta[x]$. \forall belard gives name x to a new arbitrary state $w_1 \in |\mathfrak{M}|$ without changing his current state. \exists loise needs to match \forall belard's choice by giving name x to a state $v_1 \in |\mathfrak{M}|$.

$$(\mathfrak{M},w) \qquad \qquad (\mathfrak{M}^{x\leftarrow w_1},w) \\ \Delta \qquad \qquad \qquad \Delta[x] \qquad \qquad (\mathfrak{R},v) \qquad \qquad (\mathfrak{R}^{x\leftarrow w_1},w)$$

idle: $\Delta \xrightarrow{1} \Delta$, no change in models.

Game sentences

The set of game sentences Θ_{tr} over a gameboard tree tr with root labelled by a finite signature Δ , is defined by structural induction on gameboard trees:

- ▶ Base case $(tr = \Delta)$. Put $\Theta_{\Delta} = \{ \bigwedge_{\rho \in \mathsf{Sen}_b(\Delta)} \rho^{f(\rho)} \mid f : \mathsf{Sen}_b(\Delta) \to \{0,1\} \}$, where $\rho^0 = \rho$ and $\rho^1 = \neg \rho$. (All atomic "state descriptions")
- ▶ Inductive step $(tr = \Delta(\xrightarrow{lb_1} tr_1 \dots \xrightarrow{lb_n} tr_n))$, as below:



- ▶ Fix an index $i \in \{1, ..., n\}$. Then define
 - 1. a subset $S_i \subseteq \mathcal{P}(\Theta_{tr_i})$ of the powerset of Θ_{tr_i} , and
 - 2. a Δ -sentence φ_{Γ} for each set of game sentences $\Gamma \in S_i$.

Depending on the label lb_i , there are five cases:

Game sentences

which we will not go into. Except two:

- ▶ Possibility move $(\Delta \xrightarrow{\langle \mathfrak{a} \rangle} \Delta)$: This case assumes $\Diamond \in \mathcal{O}$.
 - 1. $S_i \coloneqq \mathcal{P}(\Theta_{tr_i})$, and
 - 2. $\varphi_{\Gamma} \coloneqq (\bigwedge_{\gamma \in \Gamma} \langle \mathfrak{a} \rangle \gamma) \wedge ([\mathfrak{a}] \bigvee \Gamma)$ for all $\Gamma \in S_i$. (For any $\gamma \in \Gamma$ one can go somewhere where γ holds, and wherever one goes some γ will hold.)
- ▶ Existential q. move: $(\Delta \xrightarrow{\exists} \Delta[x])$: This case assumes $\exists \in \mathcal{O}$.
 - 1. $S_i \coloneqq \mathcal{P}(\Theta_{tr_i})$, and
 - 2. $\varphi_{\Gamma} := (\bigwedge_{\gamma \in \Gamma} \exists x \cdot \gamma) \wedge (\forall x \cdot \bigvee \Gamma)$, for all $\Gamma \in S_i$.

Definition

The set of game sentences over tr is

$$\Theta_{tr} = \{ \varphi_{\Gamma_1} \wedge \cdots \wedge \varphi_{\Gamma_n} \mid \Gamma_1 \in S_1, \dots, \Gamma_n \in S_n \}.$$

Fraïssé-Hintikka theorem

Theorem

Let Δ be a finite signature.

- 1. For all pointed models (\mathfrak{M}, w) defined over Δ , and all gameboard trees tr with $root(tr) = \Delta$, there exists a unique game sentence $\varphi \in \Theta_{tr}$ such that $(\mathfrak{M}, w) \models \varphi$.
- 2. For all pointed models (\mathfrak{M},w) and (\mathfrak{N},v) defined over Δ and all gameboard trees tr with $root(tr)=\Delta$, the following are equivalent:
 - 2.1 $(\mathfrak{M}, w) \approx_{tr} (\mathfrak{N}, v)$
 - 2.2 There exists a unique game sentence $\varphi \in \Theta_{tr}$ such that $(\mathfrak{M},w) \models \varphi$ and $(\mathfrak{N},v) \models \varphi$.
- 3. For each sentence ϕ defined over Δ , there exists a gameboard tree tr with $root(tr) = \Delta$ and a set of game sentences $\Psi_{\phi} \subseteq \Theta_{tr}$ such that $\phi \leftrightarrow \bigvee \Psi_{\phi}$ is a theorem of \mathcal{L} .

Finite EF games: exactly what you would expect

Corollary

Let $\mathfrak M$ and $\mathfrak N$ be two Kripke structures defined over a finite signature Δ . The following are equivalent:

- 1. (\mathfrak{M},w) and (\mathfrak{N},v) are \mathcal{L} -elementarily equivalent. In symbols $(\mathfrak{M},w)\equiv (\mathfrak{N},v).$
- 2. \exists loise has a winning strategy for the EF game starting with (\mathfrak{M},w) and (\mathfrak{N},v) , that is, $(\mathfrak{M},w)\approx_{tr}(\mathfrak{N},v)$ for all finite gameboard trees tr.

Example 1

Let Δ be a signature with no nominals, one binary relation λ , and one propositional symbol p. Let $\mathfrak M$ and $\mathfrak N$ be the Δ -models shown below:

- 1. If \mathcal{L} is PDL, then $(\mathfrak{M},0)$ and $(\mathfrak{N},0)$ are \mathcal{L} -elementarily equivalent.
- 2. If \mathcal{L} is HPL, then $(\mathfrak{M},0)\not\approx_{tr}(\mathfrak{N},0)$ for any complete gameboard tree tr of height greater or equal than 3, as shown below:

In the third round, ∃loise loses.

Example 2

Let Δ be the signature with one relation λ . Let $\mathfrak M$ be the model on the left, and $\mathfrak N$ the model on the right, with one infinite path.

- 1. In all fragments of HPL, \exists loise has a winning strategy over finite gameboard trees starting with $(\mathfrak{M},0)$ and $(\mathfrak{N},0)$.
- 2. In any fragment of HDPL closed under the Booleans and actions, \exists loise loses the game played over $\Delta \xrightarrow{\langle \lambda \rangle} \Delta \xrightarrow{\langle \lambda^* \rangle} \Delta \xrightarrow{\langle \lambda \rangle} \Delta$ starting with $(\mathfrak{M},0)$ and $(\mathfrak{N},0)$:

Example 3

Let Δ be a signature with one binary relation λ , and let $\mathfrak M$ and $\mathfrak N$ be model on the left and right, respectively.

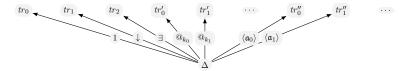
- 1. $(\mathfrak{M},0)\equiv (\mathfrak{N},0)$ in any fragment $\mathcal L$ of HPL closed under the Booleans.
- 2. $(\mathfrak{M},0)\not\equiv (\mathfrak{N},0)$ in any fragment of HDPL closed under the Booleans, actions and store. For \forall belard can win in three steps:

Interlude: a glossary of equivalences

	already occurred
\cong	isomorphism
=	elementary equivalence
\approx_{tr}	∃loise has a winning strategy in a finite EF game
	to come shortly
\approx_{ω}	∃loise has a winning strategy in a countable EF game
$\equiv_{\mathcal{I}}$	back-and-forth equivalence
\equiv_B	bisimulation equivalence

Gameboard trees

A countable gameboard tree tr is of countable height and countable width, and is defined recursively as follows. Start with:



where

- ► $F = \{k_i \mid i < \alpha\}$ is an enumeration of all Δ-nominals and α is the cardinal of Sen(Δ),
- ▶ $A(\Delta) = \{a_i \mid i < \alpha\}$ is an enumeration of all actions defined over Δ .

Extend so that each of tr_0 , tr_1 , tr_2 , tr_i' and tr_i'' are trees of the same form as tr.

ω -bisimulations

Definition

Let $\mathfrak M$ and $\mathfrak M$ be Kripke structures. A relation $B_\ell\subseteq (|\mathfrak M|^\ell\times |\mathfrak M|)\times (|\mathfrak N|^\ell\times |\mathfrak M|)$ is an ℓ -bisimulation from $\mathfrak M$ to $\mathfrak M$ if for all $(\overline w,w)$ B_ℓ $(\overline v,v)$ the following hold:

- (prop) $p \in M(w)$ iff $p \in N(v)$ for all propositional symbols $p \in Prop$;
- $(\text{nom}) \quad w = k^{\mathfrak{M}} \text{ iff } v = k^{\mathfrak{N}} \text{ for all nominals } k \in F;$
- $({\rm wvar}) \ \ \overline{w}(j) = w \ {\rm iff} \ \overline{v}(j) = v \ {\rm for \ all} \ 1 \leq j \leq \ell;$
- (forth) if $\Diamond \in \mathcal{O}$ then for all actions $\mathfrak{a} \in \mathcal{A}(\Delta)$ and all states $w' \in \mathfrak{a}^{\mathfrak{M}}(w)$ there exists $v' \in \mathfrak{a}^{\mathfrak{M}}(v)$ such that (\overline{w}, w') $B_{\ell}(\overline{v}, v')$;
- (back) if $\lozenge \in \mathcal{O}$ then for all actions $\mathfrak{a} \in \mathcal{A}(\Delta)$ and all states $v' \in \mathfrak{a}^{\mathfrak{N}}(v)$ there exists $w' \in \mathfrak{a}^{\mathfrak{M}}(w)$ such that (\overline{w}, w') $B_{\ell}(\overline{v}, v')$;
- (atv) if $@\in \mathcal{O}$ then $(\overline{w},\overline{w}(j))$ B_{ℓ} $(\overline{v},\overline{v}(j))$ for all $1\leq j\leq \ell;$
- (atn) if $@ \in \mathcal{O}$ then $(\overline{w}, k^{\mathfrak{M}})$ B_{ℓ} $(\overline{v}, k^{\mathfrak{N}})$ for all nominals $k \in F$;

An ω -bisimulation from $\mathfrak M$ to $\mathfrak N$ is a family of ℓ -bisimulations $B=(B_\ell)_{\ell\in\omega}$ from $\mathfrak M$ to $\mathfrak N$ such that for all natural numbers $\ell\in\omega$ and all tuples $(\overline w,w)\in |\mathfrak M|^\ell\times |\mathfrak M|$ and $(\overline v,v)\in |\mathfrak N|^\ell\times |\mathfrak N|$ the following conditions are satisfied:

- (st) if $\downarrow \in \mathcal{O}$ and (\overline{w}, w) B_{ℓ} (\overline{v}, v) then $(\overline{w} \ w, w)$ $B_{\ell+1}$ $(\overline{v} \ v, v)$, where the juxtaposition stands for the concatenation of sequences; and
- (ex) if $\exists \in \mathcal{O}$ and (\overline{w}, w) B_{ℓ} (\overline{v}, v) then:
 - (ex-f) for all $w' \in |\mathfrak{M}|$ there is $v' \in |\mathfrak{M}|$ such that $(\overline{w} \ w', w) \ B_{\ell+1} \ (\overline{v} \ v', v),$
 - (ex-b) for all $v' \in |\mathfrak{N}|$ there is $w' \in |\mathfrak{M}|$ such that $(\overline{w}\ w', w)\ B_{\ell+1}\ (\overline{v}\ v', v).$

ω -bisimilar models

Definition

Two pointed models (\mathfrak{M},w) and (\mathfrak{N},v) are ω -bisimilar if there exists an ω -bisimulation B from \mathfrak{M} to \mathfrak{N} such that w B_0 v.

- ▶ Notation for ω -bisimilarity: $(\mathfrak{M}, w) \equiv_B (\mathfrak{N}, v)$.
- ▶ An ω -bisimulation is a relation between $|\mathfrak{M}|^*$ and $|\mathfrak{N}|^*$.
- lacktriangle Very roughly: ω -bisimulations are bisimulations with memory.

Lemma

Let B be an ω -bisimulation between (\mathfrak{M},μ) and (\mathfrak{N},ν) such that (μ,μ') B_1 (ν,ν') for some $(\mu,\mu')\in |\mathfrak{M}|\times |\mathfrak{M}|$ and $(\nu,\nu')\in |\mathfrak{M}|\times |\mathfrak{M}|$. Let $\chi:\Delta\to\Delta[x]$ be a signature extension with a variable x. Then $B^x=(B_\ell^x)_{\ell\in\omega}$ defined by

$$\begin{array}{c} (\overline{w},w) \ B_\ell^x \ (\overline{v},v) \ \textit{iff} \ (\mu \, \overline{w},w) \ B_{\ell+1} \ (\nu \, \overline{v},v), \\ \\ \textit{for all} \ \ell \in \omega, \ \textit{all} \ (\overline{w},w) \in |\mathfrak{M}|^\ell \times |\mathfrak{M}| \ \textit{and all} \ (\overline{v},v) \in |\mathfrak{M}|^\ell \times |\mathfrak{M}|, \end{array}$$

is a bisimulation between $(\mathfrak{M}^{x\leftarrow\mu},\mu')$ and $(\mathfrak{N}^{x\leftarrow\nu},\nu')$.

Back-and-forth systems

A partial isomorphism $h: \mathfrak{M} \nrightarrow \mathfrak{N}$ is a bijection between a subset of $|\mathfrak{M}|$ and a subset of $|\mathfrak{N}|$, preserving and reflecting all accessibility relations λ .

Definition

A back-and-forth system between two Kripke structures $\mathfrak M$ and $\mathfrak N$ over a signature $\Delta=((F,P),\operatorname{Prop})$ is a non-empty family $\mathcal I$ of basic partial isomorphisms between $\mathfrak M$ and $\mathfrak N$ satisfying the following:

- (@-extension) If $\mathcal L$ is closed under retrieve, then for all $h \in \mathcal I$ and all $k \in F$, there exists a $g \in \mathcal I$ such that $h \subseteq g$ and $k^{\mathfrak{M}} \in \mathrm{dom}(g)$.
- (\lozenge -extension) If \mathcal{L} is closed under possibility over an action \mathfrak{a} , then:
 - ► (forth) for all $h \in \mathcal{I}$, all $w_1 \in \text{dom}(h)$ and all $w_2 \in |\mathfrak{M}|$ such that $w_1 \mathfrak{a}^{\mathfrak{M}} w_2$, there exists a $g \in \mathcal{I}$ such that $h \subset g$, $w_2 \in \text{dom}(g)$, and $g(w_1) \mathfrak{a}^{\mathfrak{N}} g(w_2)$;
 - $\begin{array}{c} \blacktriangleright \quad \text{(back) for all } h \in \mathcal{I} \text{, all } v_1 \in \operatorname{rng}(h) \text{ and all } v_2 \in |\mathfrak{N}| \text{ such that } v_1 \ \mathfrak{a}^{\mathfrak{N}} \ v_2 \text{, there exists a} \\ g \in \mathcal{I} \text{ such that } h \subseteq g, \ v_2 \in \operatorname{rng}(g) \text{, and } g^{-1}(v_1) \ \mathfrak{a}^{\mathfrak{M}} \ g^{-1}(v_2). \end{array}$
- lacktriangle (\exists -extension) If $\mathcal L$ is closed under existential quantifiers, then:
 - $\qquad \qquad \text{(forth) for all } h \in \mathcal{I} \text{ and all } w \in |\mathfrak{M}| \text{, there exists a } g \in \mathcal{I} \text{ such that } h \subseteq g \text{ and } w \in \mathrm{dom}(g);$
 - $\qquad \qquad \text{(back) for all } h \in \mathcal{I} \text{ and all } v \in |\mathfrak{N}|, \text{ there exists a } g \in \mathcal{I} \text{ such that } h \subseteq g \text{ and } v \in \operatorname{rng}(g).$

Back-and-forth systems

Definition

- ► Two Kripke structures $\mathfrak M$ and $\mathfrak N$ are back-and-forth equivalent, if there is a back-and-forth system $\mathcal I$ between $\mathfrak M$ and $\mathfrak N$, in symbols, $\mathfrak M \equiv_{\mathcal I} \mathfrak N$.
- ► Two pointed models (\mathfrak{M},w) and (\mathfrak{N},v) are back-and-forth equivalent, if there is a back-and-forth system \mathcal{I} between \mathfrak{M} and \mathfrak{N} such that h(w)=v for some $h\in\mathcal{I}$, in symbols, $(\mathfrak{M},w)\equiv_{\mathcal{I}}(\mathfrak{N},v)$.

Bisimulations, back-and-forth systems, ω -EF games

Theorem

Let (\mathfrak{M},w) and (\mathfrak{N},v) be two pointed models over a signature Δ . Then:

$$(\mathfrak{M}, w) \equiv_B (\mathfrak{N}, v) \quad iff \quad (\mathfrak{M}, w) \approx_{\omega} (\mathfrak{N}, v).$$

$\mathsf{Theorem}$

Let (\mathfrak{M}, w) and (\mathfrak{N}, v) be two pointed models over a signature Δ .

- 1. If $(\mathfrak{M},w)\equiv_{\mathcal{I}} (\mathfrak{N},v)$ for some back-and-forth system \mathcal{I} , then $(\mathfrak{M},w)\approx_{\omega} (\mathfrak{N},v).$
- 2. Assume that (i) $\downarrow \in \mathcal{O}$, and (ii) $@ \in \mathcal{O}$ whenever $\lozenge \in \mathcal{O}$ or $\exists \in \mathcal{O}$. Then the converse holds as well, that is:

 If $(\mathfrak{M}, w) \approx_{\omega} (\mathfrak{N}, v)$, then $(\mathfrak{M}, w) \equiv_{\mathcal{I}} (\mathfrak{N}, v)$ for some back-and-forth system \mathcal{I} .

Image-finite models

A model $\mathfrak M$ is image-finite if each state has a finite number of direct successors.

Theorem

Let (\mathfrak{M},w) and (\mathfrak{N},v) be two image-finite pointed models defined over a signature Δ . Then:

$$(\mathfrak{M}, w) \equiv (\mathfrak{N}, v)$$
 iff $(\mathfrak{M}, w) \approx_{\omega} (\mathfrak{N}, v)$.

Corollary (Hennessy-Milner theorem)

Let (\mathfrak{M},w) and (\mathfrak{N},v) be two image-finite pointed models. Then:

$$(\mathfrak{M}, w) \equiv (\mathfrak{N}, v)$$
 iff $(\mathfrak{M}, w) \equiv_B (\mathfrak{N}, v)$.

Countable rooted models

Theorem

Assume that $\{\lozenge, @, \downarrow\} \subseteq \mathcal{O}$. Let (\mathfrak{M}, w_0) and (\mathfrak{N}, v_0) be two rooted pointed models that are countable. Then:

$$(\mathfrak{M}, w_0) \cong (\mathfrak{N}, v_0)$$
 iff $(\mathfrak{M}, w_0) \equiv_B (\mathfrak{N}, v_0)$.

Corollary

Assume that $\{\lozenge, @, \downarrow\} \subseteq \mathcal{O}$. Let (\mathfrak{M}, w_0) and (\mathfrak{N}, v_0) be two rooted image-finite pointed models. Then:

$$(\mathfrak{M}, w_0) \cong (\mathfrak{N}, v_0)$$
 iff $(\mathfrak{M}, w_0) \equiv (\mathfrak{N}, v_0)$.

Bibliography

Areces, C., Blackburn, P., and Marx, M. (2001).

Hybrid Logics: Characterization, Interpolation and Complexity. J. Symbolic Logic, 66(3):977–1010.

Badia, G., Gaina, D., Knapp, A., Kowalski, T., and Wirsing, M. (2025).

A modular bisimulation characterisation for fragments of hybrid logic. The Bulletin of Symbolic Logic, page 1–24.

Diaconescu, R. (2016).

Quasi-varieties and Initial Semantics for Hybridized Institutions. J. Logic Comput., 26(3):855–891.

Diaconescu, R. (2017).

Implicit Kripke Semantics and Ultraproducts in Stratified Institutions. J. Log. Comput., 27(5):1577–1606.

Găină, D. (2020).

Forcing and Calculi for Hybrid Logics. J. ACM, 67(4):25:1–25:55.

Găină, D. and Kowalski, T. (2020).

Fraïssé-Hintikka Theorem in Institutions. J. Log. Comput., 30(7):1377–1399.

Hodkinson, I. and Tahiri, H. (2010).

A bisimulation characterization theorem for hybrid logic with the current-state binder. Rev. Symbolic Logic, 3(2):247–261.