Minimally undecidable reducts of Tarski's relation algebras

Marcel Jackson (joint with Robin Hirsch and Jaš Šemrl)

La Trobe University, Melbourne, Australia

Relation Algebras and results

Binary relations on a set X

The subsets $\wp(X \times X)$ of $X \times X$ forms:

- a Boolean algebra wrt $\cap, \cup, -, \varnothing, X \times X$
- a involuted monoid with respect to \circ , converse $^{-1}$ and $=_X$ (identity relation)
- some properties relating the "action" part to the "logic" part

Binary relations on a set X

The subsets $\wp(X \times X)$ of $X \times X$ forms:

- a Boolean algebra wrt $\cap, \cup, -, \varnothing, X \times X$
- a involuted monoid with respect to \circ , converse $^{-1}$ and $=_X$ (identity relation)
- some properties relating the "action" part to the "logic" part
 - Distributivity of \circ over \cup
 - Peircean law: $x \circ y \subseteq -z^{-1} \Leftrightarrow y \subseteq z \le -y^{-1}$

$$x$$
; y can't sit over z^{-1}
 \Leftrightarrow
 y ; z can't sit over x^{-1}

Binary relations on a set X

The subsets $\wp(X \times X)$ of $X \times X$ forms:

- a Boolean algebra wrt $\cap, \cup, -, \varnothing, X \times X$
- a involuted monoid with respect to \circ , converse $^{-1}$ and $=_X$ (identity relation)
- some properties relating the "action" part to the "logic" part

History

- 1800s: de Morgan, Peirce, Schröder (logic of relatives)
- 1940s: Tarski (relation algebras)

Binary relations on a set X

The subsets $\wp(X \times X)$ of $X \times X$ forms:

- a Boolean algebra wrt $\cap, \cup, -, \varnothing, X \times X$
- a involuted monoid with respect to \circ , converse $^{-1}$ and $=_X$ (identity relation)
- some properties relating the "action" part to the "logic" part

(Tarski 1941) "Is it the case that every sentence of the calculus of relations which is true in every domain of individuals is derivable from the axioms adopted under the second method? This problem presents some difficulties and still remains open. I can only say that I am practically sure that I can prove with the help of the second method, all of the hundreds of theorems to be found in Schröder's Algebra und Logic der Relative"

Binary relations on a set X

The subsets $\wp(X \times X)$ of $X \times X$ forms:

- a Boolean algebra wrt $\cap, \cup, -, \varnothing, X \times X$
- a involuted monoid with respect to \circ , converse $^{-1}$ and $=_X$ (identity relation)
- some properties relating the "action" part to the "logic" part

The next problem is the so-called representation problem. Is every model of the axiom system of the calculus of relations isomorphic with a class of binary relations which contains the relations 1,0,1',0' and is closed under all the operations considered in this calculus?

Binary relations on a set X

The subsets $\wp(X \times X)$ of $X \times X$ forms:

- a Boolean algebra wrt $\cap, \cup, -, \varnothing, X \times X$
- a involuted monoid with respect to \circ , converse $^{-1}$ and $=_X$ (identity relation)
- some properties relating the "action" part to the "logic" part

Fundamental representability question

When is an abstract algebra $\langle A, +, \cdot, -, :, \overset{\smile}{,} 0, 1, 1' \rangle$ isomorphic to an algebra of binary relations?

3

Binary relations on a set X

The subsets $\wp(X \times X)$ of $X \times X$ forms:

- a Boolean algebra wrt $\cap, \cup, -, \varnothing, X \times X$
- a involuted monoid with respect to \circ , converse $^{-1}$ and $=_X$ (identity relation)
- some properties relating the "action" part to the "logic" part

... temporarily skipping 60 years of history...

Robin Hirsch and Ian Hodkinson 2001

This problem is undecidable for finite algebras

The question of representability of finite algebras of finite sets remains open

Point algebra

The 8-element relation algebra with atoms <,>,=

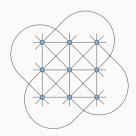
This is representable by giving these symbols their usual interpretation on a dense linear order such as $\langle \mathbb{Q}, < \rangle$, but not on any finite set

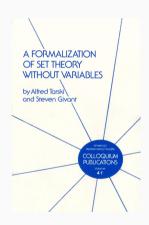
4

Lyndon algebras

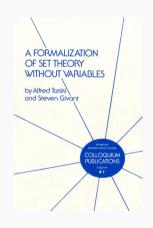
Boolean atoms are $1', c_1, \ldots, c_n$ where c_i ; $c_i = 1' + c_i$ and c_i ; $c_j = -(c_i + c_j)$. Representable only over affine plane of order n - 1

The question of which orders an affine plane exists remains open





ZFC can be expressed equationally within the equational theory of relation algebras



ZFC can be expressed equationally within the equational theory of relation algebras

Axiom of Extensionality:

$$\forall x \forall y \big(\forall z (z \in x \leftrightarrow z \in y) \to x = y \big)$$

Relation Algebra:

$$(\in^{\smile};(-\in))+((-\in)^{\smile};\in)+1'\approx 1$$

(In general it is known that the language of relation algebras captures the 3-variable fragment of the first order predicate calculus of binary relations)

Example	Relation	Example	Relation
XY	X dis Y	(X)	X in Y Y over X
XY	X et Y	X	X it Y Y it \(^{\times}X\)
XY	X po Y	X, Y	X = Y

Example	Relation	Example	Relation
XY	X dis Y	X	X in Y Y over X
XY	X et Y	(N)	X it Y Y it X
X	X po Y	(X, Y)	X = Y

Example

Example	Relation	Example	Relation
XY	X dis Y	X	X in Y Y over X
XY	X et Y	X	X it Y Y it X
X	X po Y	(X, Y)	X = Y

Example *et*

Example	Relation	Example	Relation
XY	X dis Y	(X)	X in Y Y over X
XY	X et Y	(X)	X it Y Y it X
X	X po Y	(X, Y)	X = Y

Example $et \circ in$

Example	Relation	Example	Relation
XY	X dis Y	X	X in Y Y over X
XY	X et Y	X	X it Y Y it X
X	X po Y	(X, Y)	X = Y

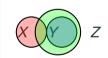
Example et ∘ in

X et Y in Z

Example	Relation	Example	Relation
XY	X dis Y	X	X in Y Y over X
XY	X et Y	(X)	X it Y Y it X
X	X po Y	(X, Y)	X = Y

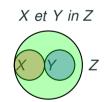
Example $et \circ in$

X et Y in Z



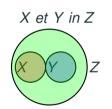
Example	Relation	Example	Relation
XY	X dis Y	(X)	X in Y Y over X
XY	X et Y	X	X it Y Y it X
X Y	X po Y	(X, Y)	X = Y

Example $et \circ in$



Example	Relation	Example	Relation
XY	X dis Y	X	X in Y Y over X
XY	X et Y	X	X it Y Y it X
X	X po Y	(X, Y)	X = Y

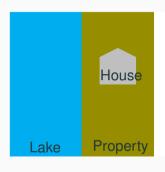
Example et o in



Example	Relation	Example	Relation
XY	X dis Y	(X)	X in Y Y over X
XY	X et Y	X	X it Y Y it X
X Y	X po Y	(X, Y)	X = Y

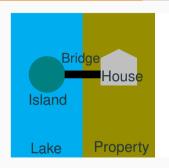
Example et ∘ in {*po*, *it*, *in*} X et Y in Z

There is a house *H*Properly within a property *P*

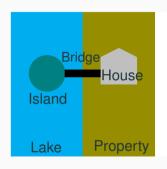


There is a house *H*Properly within a property *P*Bordering lake *L*

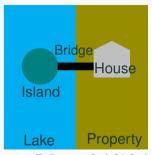
There is a house *H*Properly within a property *P*Bordering lake *L*Containing island *I*



There is a house HProperly within a property PBordering lake LContaining island IA bridge B connects I to H

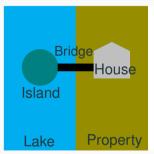


There is a house HProperly within a property PBordering lake LContaining island IA bridge B connects I to H



1. *B* {*et*, *po*} *I* {*in*} *L*

There is a house HProperly within a property PBordering lake LContaining island IA bridge B connects I to H



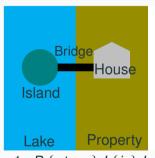
1. B {et, po} I {in} L

2. \Rightarrow B {po, it, in} L

There is a house HProperly within a property PBordering lake LContaining island IA bridge B connects I to H

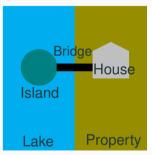
How does B relate to L?

(composing relations)



There is a house HProperly within a property PBordering lake LContaining island IA bridge B connects I to H

- 1. B {et, po} I {in} L
- 2. $\Rightarrow B \{po, it, in\} L$ (composing relations)
- 3. *B* {*et*} *H* {*in*} *P* {*et*} *L*

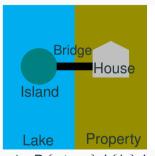


- 1. *B* {*et*, *po*} *I* {*in*} *L*
- 2. \Rightarrow *B* {*po*, *it*, *in*} *L*
- 3. *B* {*et*} *H* {*dis*} *L*

There is a house HProperly within a property PBordering lake LContaining island IA bridge B connects I to H

How does B relate to L?

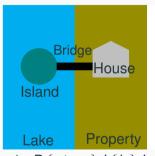
(composing relations)



There is a house H Properly within a property P Bordering lake L Containing island / A bridge B connects I to H

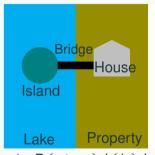
- 1. B {et, po} I {in} L
- 2. $\Rightarrow B \{po, it, in\} L$ (composing relations)

- 3. *B* {*et*} *H* {*dis*} *L*
- 4. $\Rightarrow B \{ dis, et, po, over, it^{\smile} \} L$ (composing relations)



There is a house HProperly within a property PBordering lake LContaining island IA bridge B connects I to H

- 1. B {et, po} I {in} L
- 2. \Rightarrow *B* {*po*, *it*, *in*} *L* (composing relations)
- 3. *B* {*et*} *H* {*dis*} *L*
- 4. \Rightarrow *B* {*dis*, *et*, *po*, *over*, *it* $^{\sim}$ } *L* (composing relations)
- 5. (2) and (4) give $B \{po, it, in\} \cap \{dis, et, po, over, it \} L$



There is a house HProperly within a property PBordering lake LContaining island IA bridge B connects I to H

- 1. B {et, po} I {in} L
- 2. $\Rightarrow B \{po, it, in\} L$ (composing relations)
- 3. *B* {*et*} *H* {*dis*} *L*
- 4. \Rightarrow *B* {*dis*, *et*, *po*, *over*, *it* $^{\sim}$ } *L* (composing relations)
- 5. (2) and (4) give $B \{po, it, in\} \cap \{dis, et, po, over, it^{\smile}\} L$
- 6. \Rightarrow *B* {*po*} *L*

Hirsch Hodkinson proof

Tiling algebras

Algebras encoding the tiling problem for square tiles

Hirsch Hodkinson proof

Tiling algebras

Algebras encoding the tiling problem for square tiles

Jónsson signature (also allegories in the sense of Peter Freyd)

The argument can be carried through using only the operations $\cdot, ;, \overset{\smile}{\cdot}$

How far down does undecidability of representability (UR) pervade?

Hirsch and J 2012: undecidability of representability for reducts

$$\{+,\cdot,;,1'\},\{\setminus,;,1'\},\{\Rightarrow,;,1'\},\{\leq,-,1'\}$$

Here, as usual,
$$x \setminus y := x \cdot (-y)$$
, $x \Rightarrow y := -x \vee y$ and $x \leq y$ means $x \cdot y = x$

Hirsch and J 2012: undecidability of representability for reducts

$$\{+,\cdot,;,1'\},\{\setminus,;,1'\},\{\Rightarrow,;,1'\},\{\leq,-,1'\}$$

Neuzerling 2016

$$\{+,\cdot,;\},\{;,\leq,-\}$$

Hirsch and J 2012: undecidability of representability for reducts

$$\{+,\cdot,;,1'\},\{\setminus,;,1'\},\{\Rightarrow,;,1'\},\{\leq,-,1'\}$$

Neuzerling 2016

$$\{+,\cdot,;\},\{;,\leq,-\}$$

Very small cases

 $\{;,\Rightarrow\}$ (Lewis-Smith, Semrl 2023), $\{;,-\}$ (Hirsch, J, Šemrl 2022)

Hirsch and J 2012: undecidability of representability for reducts

$$\{+,\cdot,;,1'\},\{\setminus,;,1'\},\{\Rightarrow,;,1'\},\{\leq,-,1'\}$$

Neuzerling 2016

$$\{+,\cdot,;\},\{;,\leq,-\}$$

Main result (Hirsch-J-Šemrl, Semigroup Forum 111 (2025) 469–489)

1. The signature $\{;,-\}$ is a minimal subset of Tarski's having UR

Hirsch and J 2012: undecidability of representability for reducts

$$\{+,\cdot,;,1'\},\{\setminus,;,1'\},\{\Rightarrow,;,1'\},\{\leq,-,1'\}$$

Neuzerling 2016

$$\{+,\cdot,;\},\{;,\leq,-\}$$

Main result (Hirsch-J-Šemrl, Semigroup Forum 111 (2025) 469–489)

- 1. The signature $\{;, -\}$ is a minimal subset of Tarski's having UR
- 2. But there is an infinite chain of increasingly weak term reduct signatures, each with UR, but whose limit is {;} with DR

Hirsch and J 2012: undecidability of representability for reducts

$$\{+,\cdot,;,1'\},\{\setminus,;,1'\},\{\Rightarrow,;,1'\},\{\leq,-,1'\}$$

Neuzerling 2016

$$\{+,\cdot,;\},\{;,\leq,-\}$$

Main result (Hirsch-J-Šemrl, Semigroup Forum 111 (2025) 469–489)

- 1. The signature $\{;, -\}$ is a minimal subset of Tarski's having UR
- 2. But there is an infinite chain of increasingly weak term reduct signatures, each with UR, but whose limit is {;} with DR
- 3. Moreover, UR holds for a term reduct of a term reduct with DR

Some example open problems on decidability of representability

- The finite representability problem for $\{;,\cdot\}$ (Bredikhin and Schein 1978)
- {;,+} (Andreka 1990s)
- {;, ``} (Schein 1974)
- $\{;, \leq, 1'\}$ (Hirsch, 2005)

Some example open problems on decidability of representability

- The finite representability problem for $\{;,\cdot\}$ (Bredikhin and Schein 1978)
- {;,+} (Andreka 1990s)
- {;, ``} (Schein 1974)
- {;, ≤, 1'} (Hirsch, 2005)

Theorem from Schein 1974

The free involuted semigroup is representable as binary relations

Some example open problems on decidability of representability

- The finite representability problem for $\{;,\cdot\}$ (Bredikhin and Schein 1978)
- {;,+} (Andreka 1990s)
- {;, ``} (Schein 1974)
- {;, ≤, 1'} (Hirsch, 2005)

Theorem from Schein 1974

The free involuted semigroup is representable as binary relations

These either involve \subseteq but don't seem amenable to the tiling method, or avoid \subseteq but seem incapable of fully encoding the the partial group embedding problem. All are nontrivial

Methods

Partial group embedding problem

Trevor Evans 1953

The uniform word problem in a class is Turing equivalent to the problem of deciding if partial algebras complete to full algebras in the class

Partial group embedding problem

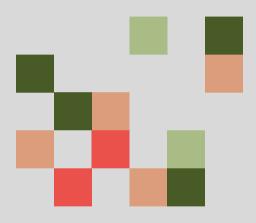
Trevor Evans 1953

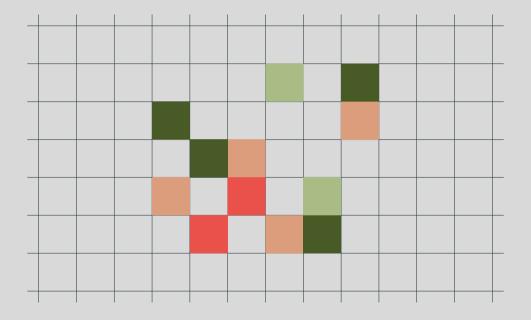
The uniform word problem in a class is Turing equivalent to the problem of deciding if partial algebras complete to full algebras in the class

Groups

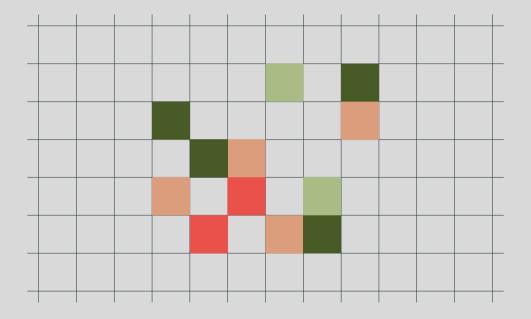
The uniform word problem for groups is undecidable (Novikov 1955, Boone 1958). The uniform word problem for finite groups is undecidable (Slobodskoĭ 1982)

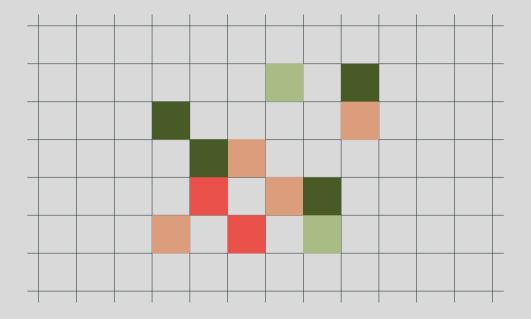
In the particular case of groups, we may interpret "complete to full algebras" in a very flexible way

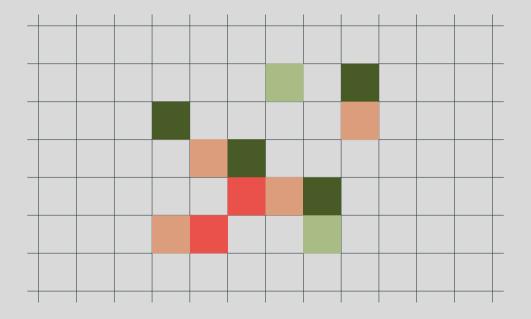


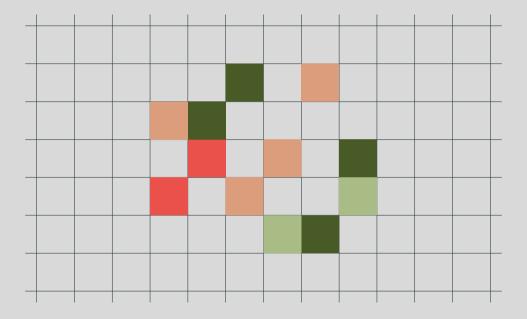


That 7-element example with 12 coloured squares is from Dietrich and Wanless 2018, after a 10-element example with 26 coloured squares in Hirsch and J (2012)









Square partial groups

Square partial group A

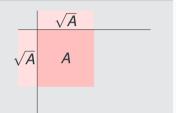
There is $e \in A$ and a subset $\sqrt{A} \subseteq A$ with

1.
$$e \cdot x = x \cdot e = x$$
 for $x \in \sqrt{A}$

2.
$$x \cdot y$$
 if and only if $x, y \in \sqrt{A}$ or $e \in \{x, y\}$

3. for each
$$x \in \sqrt{A}$$
 there is x' with $xx' = e = x'x$

4.
$$\sqrt{A} \cdot \sqrt{A} = A$$



Square partial groups

Square partial group A

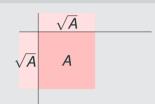
There is $e \in A$ and a subset $\sqrt{A} \subseteq A$ with

1.
$$e \cdot x = x \cdot e = x$$
 for $x \in \sqrt{A}$

2.
$$x \cdot y$$
 if and only if $x, y \in \sqrt{A}$ or $e \in \{x, y\}$

3. for each
$$x \in \sqrt{A}$$
 there is x' with $xx' = e = x'x$

4.
$$\sqrt{A} \cdot \sqrt{A} = A$$



Theorem: the following are undecidable

Input: a square partial group A

- does A embed into a group?
- does A embed into a finite group?

Square partial groups

Square partial group A

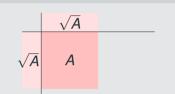
There is $e \in A$ and a subset $\sqrt{A} \subseteq A$ with

1.
$$e \cdot x = x \cdot e = x$$
 for $x \in \sqrt{A}$

2.
$$x \cdot y$$
 if and only if $x, y \in \sqrt{A}$ or $e \in \{x, y\}$

3. for each
$$x \in \sqrt{A}$$
 there is x' with $xx' = e = x'x$

4.
$$\sqrt{A} \cdot \sqrt{A} = A$$



Theorem: the following are recursively inseparable

- finite square partial groups A that do not embed into a group
- finite square partial groups A that embed into finite groups

Green's relations

Definition: \mathcal{L} (with \Re defined dually)

 $a \leq_{\mathcal{L}} b$ if $\exists x \ xb = a$. Define the binary relation \mathcal{L} by

$$a \mathcal{L} b \iff a \leq_{\mathcal{L}} b \text{ and } b \leq_{\mathcal{L}} a$$

Definition: \mathcal{H}

$$\mathcal{H}=\mathcal{L}\cap\mathcal{R}$$

Split systems

Given a square partial group A

Split system $\mathcal A$

$$\{a_{12} \mid a \in \sqrt{A}\} \cup \{a_{23} \mid a \in \sqrt{A}\} \cup \{a_{13} \mid a \in A\} \cup \{a_{ii} \mid a = e\}$$

with multiplication $a_{ij} \cdot a_{jk} = a_{ik}$

Theorem (Sapir, 1997)

It is undecidable to determine, given a split system \mathcal{A} , if there is a semigroup embedding \mathcal{A} in which $\{a_{ij} \mid a \in A\}$ lie within an \mathcal{H} class for each $i, j \in \{1, 2, 3\}$

Split system as a semigroup

Split system $\mathcal A$

$$\{a_{12} \mid a \in \sqrt{A}\} \cup \{a_{23} \mid a \in \sqrt{A}\} \cup \{a_{13} \mid a \in A\} \cup \{a_{ii} \mid a = e\}$$

with multiplication $a_{ij} \cdot a_{jk} = a_{ik}$

Note that if A is an actual group, then $\sqrt{A} = A$ and we could define a_{21}, a_{32}, a_{31} as well and obtain a Brandt groupoid $B_3(A)$ with inverses: $(a_{ij})^{\smile} = a_{ji}^{-1}$

Split system as a semigroup

Split system \mathcal{A}

$$\{a_{12} \mid a \in \sqrt{A}\} \cup \{a_{23} \mid a \in \sqrt{A}\} \cup \{a_{13} \mid a \in A\} \cup \{a_{ii} \mid a = e\}$$

with multiplication $a_{ij} \cdot a_{jk} = a_{ik}$

Note that if A is an actual group, then $\sqrt{A} = A$ and we could define a_{21}, a_{32}, a_{31} as well and obtain a Brandt groupoid $B_3(A)$ with inverses: $(a_{ij})^{\smile} = a_{ji}^{-1}$

As a semigroup S(A)

Add a 0 and let all undefined products be 0. Note that $a_{ij} \leq_{\mathcal{L}} e_{jj}$ and $a_{ij} \leq_{\mathcal{R}} e_{ii}$

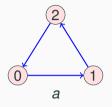
Example

	е	а	b
е	е	а	b
а	а	b	e
b	b	e	а

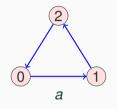
Example

	e	а	b
е	е	а	b
а	а	b	e
b	b	e	а

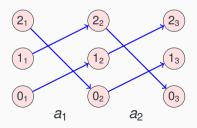
				e_2					
e_1	0	0	0	<i>e</i> ₃	a_3	b_3	0	0	0
a_1	0	0	0	<i>e</i> ₃ <i>a</i> ₃	b_3	e_3	0	0	0
b_1	0	0	0	b_3	<i>e</i> ₃	<i>c</i> ₃	0	0	0

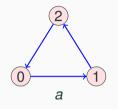


	е	а	b
е	е	а	b
а	а	b	e
b	b	e	а

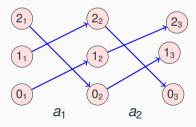


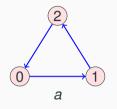
		e	а	b
_	е	е	а	b
	а	а	b	e
	b	b	e	а



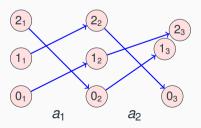


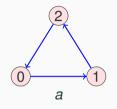
	e	а	b
е	е	а	b
а	а	b	e
b	b	e	а



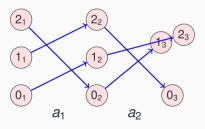


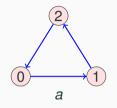
	e	а	b
е	е	а	b
а	а	b	e
b	b	e	а



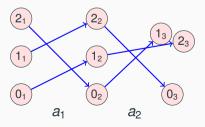


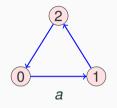
		e	а	b
_	е	е	а	b
	а	а	b	e
	b	b	e	а



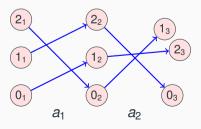


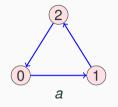
		е	а	b
е	,	е	а	b
а	!	а	b	e
b	,	b	e	а



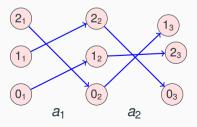


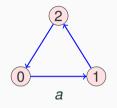
	e	а	b
е	е	а	b
а	а	b	e
b	b	е	а



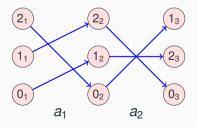


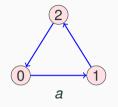
		e	а	b
_	е	е	а	b
	а	а	b	e
	b	b	e	а



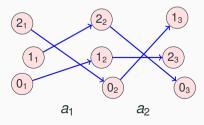


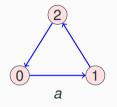
	e	а	b
е	е	а	b
а	а	b	e
b	b	е	а



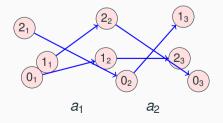


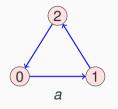
		e	а	b
е		e	а	b
а	!	а	b	e
b	,	b	e	а



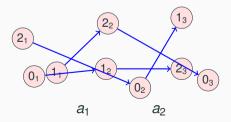


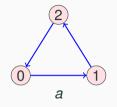
	е	а	b
е	е	а	b
а	а	b	e
b	b	е	а



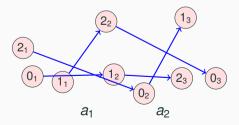


	е	а	b
е	е	а	b
а	а	b	e
b	b	е	а





	е	а	b
е	е	а	b
а	а	b	e
b	b	е	а



If e; a = e then $e \leq_{\mathcal{L}} a$.

If e; 1 = a; 1 and e, a are known to represent as injective partial functions, then $e \mathcal{L} a$

If e; a = e then $e \leq_{\mathcal{L}} a$.

If e; 1 = a; 1 and e, a are known to represent as injective partial functions, then $e \mathcal{L} a$

Only "injective partial functions" is not abstract. This focusses on methods to force certain elements to be representable as injective partial functions

If e; a = e then $e \leq_{\mathcal{L}} a$.

If e; 1 = a; 1 and e, a are known to represent as injective partial functions, then $e \mathcal{L} a$

Only "injective partial functions" is not abstract. This focusses on methods to force certain elements to be representable as injective partial functions

Tricks for defining a as an "injective partial functions"

• a; $a^{\smile} \le 1'$ and a^{\smile} ; $a \le 1'$ (too obvious to be a trick!)

If e; a = e then $e \leq_{\mathcal{L}} a$.

If e; 1 = a; 1 and e, a are known to represent as injective partial functions, then $e \mathcal{L} a$

Only "injective partial functions" is not abstract. This focusses on methods to force certain elements to be representable as injective partial functions

Tricks for defining a as an "injective partial functions"

- a; $a^{\smile} \le 1'$ and a^{\smile} ; $a \le 1'$ (too obvious to be a trick!)
- $((a; 0') \cdot a = 0 \& (0'; a) \cdot a = 0)$ (Hirsch and Jackson, 2011)

If e; a = e then $e \leq_{\mathcal{L}} a$.

If e; 1 = a; 1 and e, a are known to represent as injective partial functions, then $e \mathcal{L} a$

Only "injective partial functions" is not abstract. This focusses on methods to force certain elements to be representable as injective partial functions

Tricks for defining a as an "injective partial functions"

- a; $a^{\smile} \le 1'$ and a^{\smile} ; $a \le 1'$ (too obvious to be a trick!)
- $((a; 0') \cdot a = 0 \& (0'; a) \cdot a = 0)$ (Hirsch and Jackson, 2011)
- ((-(a;-1')); 1; (-(-1';a)) = 1) & 1; 1 = 1 & -1; -1 = -1 & ... (new trick for Hirsch, J and Šemrl 2025)

Consider the relation algebraic terms $K_{L,n}(x) := (x ; x^{\smile})^n$ and $K_{R,n} := (x^{\smile} ; x)^n$

Consider the relation algebraic terms $K_{L,n}(x) := (x ; x^{\smile})^n$ and $K_{R,n} := (x^{\smile} ; x)^n$

Observation

The operations $K_{L,n}$ and $K_{R,n}$ do have an obvious definition in S(A), even if itself does not:

$$K_{L,n}(a_{ij})=e_{ii}$$
 and $K_{R,n}(a_{ij})=e_{jj}$

Consider the relation algebraic terms $K_{L,n}(x) := (x ; x^{\smile})^n$ and $K_{R,n} := (x^{\smile} ; x)^n$

Observation

The operations $K_{L,n}$ and $K_{R,n}$ do have an obvious definition in S(A), even if itself does not:

$$K_{L,n}(a_{ij}) = e_{ii}$$
 and $K_{R,n}(a_{ij}) = e_{jj}$

Idea: if $(a_{ij})^{\smile}$ were to equal $(a^{-1})_{ji}$, then a_{ij} ; $(a_{ij})^{\smile} = a_{ij}$; $(a^{-1})_{ji} = (aa^{-1})_{ii} = e_{ii}$

Consider the relation algebraic terms $K_{L,n}(x) := (x ; x^{\smile})^n$ and $K_{R,n} := (x^{\smile} ; x)^n$

Observation

The operations $K_{L,n}$ and $K_{R,n}$ do have an obvious definition in S(A), even if itself does not:

$$K_{L,n}(a_{ij}) = e_{ii}$$
 and $K_{R,n}(a_{ij}) = e_{jj}$

An H-embedding

If S(A) is isomorphic to a system of binary relations respecting $K_{L,n}$ and $K_{R,n}$, then A embeds into a group (an undecidable problem)

Proof: we know that $e_{ii} \ge_{\Re} a_{ij}$ from before.

Consider the relation algebraic terms $K_{L,n}(x) := (x ; x^{\smile})^n$ and $K_{R,n} := (x^{\smile} ; x)^n$

Observation

The operations $K_{L,n}$ and $K_{R,n}$ do have an obvious definition in S(A), even if itself does not:

$$K_{L,n}(a_{ij}) = e_{ii}$$
 and $K_{R,n}(a_{ij}) = e_{jj}$

An H-embedding

If S(A) is isomorphic to a system of binary relations respecting $K_{L,n}$ and $K_{R,n}$, then A embeds into a group (an undecidable problem)

Proof: we know that $e_{ii} \ge_{\mathcal{R}} a_{ij}$ from before. But $e_{ii} = (a_{ij}; (a_{ij})^{\smile})^n$ shows that $a_{ij} \ge_{\mathcal{R}} e_{ij}$ also.

Consider the relation algebraic terms $K_{L,n}(x) := (x ; x^{\smile})^n$ and $K_{R,n} := (x^{\smile} ; x)^n$

Observation

The operations $K_{L,n}$ and $K_{R,n}$ do have an obvious definition in S(A), even if itself does not:

$$K_{L,n}(a_{ij}) = e_{ii}$$
 and $K_{R,n}(a_{ij}) = e_{jj}$

An \mathcal{H} -embedding

If S(A) is isomorphic to a system of binary relations respecting $K_{L,n}$ and $K_{R,n}$, then A embeds into a group (an undecidable problem)

Proof: we know that $e_{ii} \ge_{\mathcal{R}} a_{ij}$ from before. But $e_{ii} = (a_{ij}; (a_{ij})^{\smile})^n$ shows that $a_{ij} \ge_{\mathcal{R}} e_{ii}$ also. Similarly for \mathcal{L} wrt e_{jj} and therefore $a_{ij} \mathcal{H} b_{ij}$ (for all a, b)

If and only if

An \mathcal{H} -embedding (from previous slide)

If S(A) is isomorphic to a system of binary relations respecting $K_{L,n}$ and $K_{R,n}$, then A embeds into a group

If and only if

An H-embedding (from previous slide)

If S(A) is isomorphic to a system of binary relations respecting $K_{L,n}$ and $K_{R,n}$, then A embeds into a group

Converse direction

S(A) is isomorphic to a system of binary relations respecting $K_{L,n}$ and $K_{R,n}$, if A embeds into a group

Proof: this is just because if A completes to G, then S(A) embeds in the Brandt semigroup $B_3(G)$ which is representable, even as injective partial functions

Obviously $\{K_{L,2^{n+1}}, K_{R,2^{n+1}},;\}$ are term functions in $\{K_{L,2^n}, K_{R,2^n},;\}$, so we have an infinite descending chain of weaker (?) and weaker signatures having undecidability of representability

Theorem

The only terms expressible in $\{K_{L,2^n}, K_{R,2^n}, ;\}$ for all n are those that are expressible in $\{;\}$ (that is, semigroups)

Theorem

The only terms expressible in $\{K_{L,2^n}, K_{R,2^n}, ;\}$ for all n are those that are expressible in $\{;\}$ (that is, semigroups)

Proof. Every term $t(x_1, ..., x_n)$ in $\{K_{L,2^n}, K_{R,2^n}, ;\}$ is a term in $\{;, \check{} \}$ so can be expressed as a semigroup word in the alphabet $\{x_1, ..., x_n, x_1\check{}, ..., x_n\check{}\}$.

Theorem

The only terms expressible in $\{K_{L,2^n}, K_{R,2^n}, ;\}$ for all n are those that are expressible in $\{;\}$ (that is, semigroups)

Proof. Every term $t(x_1, \ldots, x_n)$ in $\{K_{L,2^n}, K_{R,2^n}, ;\}$ is a term in $\{;, \check{} \}$ so can be expressed as a semigroup word in the alphabet $\{x_1, \ldots, x_n, x_1\check{}, \ldots, x_n\check{}\}$. By Schein's Theorem (free involuted semigroup is representable), such a representation is unique.

Theorem

The only terms expressible in $\{K_{L,2^n}, K_{R,2^n}, ;\}$ for all n are those that are expressible in $\{;\}$ (that is, semigroups)

Proof. Every term $t(x_1, \ldots, x_n)$ in $\{K_{L,2^n}, K_{R,2^n}, ;\}$ is a term in $\{;, \check{} \}$ so can be expressed as a semigroup word in the alphabet $\{x_1, \ldots, x_n, x_1\check{}, \ldots, x_n\check{}\}$. By Schein's Theorem (free involuted semigroup is representable), such a representation is unique.

The length of any term involving $K_{L,m}$ or $K_{R,m}$ is at least 2m under this "norm".

Theorem

The only terms expressible in $\{K_{L,2^n}, K_{R,2^n}, ;\}$ for all n are those that are expressible in $\{;\}$ (that is, semigroups)

Proof. Every term $t(x_1, \ldots, x_n)$ in $\{K_{L,2^n}, K_{R,2^n}, ;\}$ is a term in $\{;, \check{} \}$ so can be expressed as a semigroup word in the alphabet $\{x_1, \ldots, x_n, x_1\check{}, \ldots, x_n\check{}\}$. By Schein's Theorem (free involuted semigroup is representable), such a representation is unique.

The length of any term involving $K_{L,m}$ or $K_{R,m}$ is at least 2m under this "norm". So a term expressible in $\{K_{L,2^n}, K_{R,2^n}, ;\}$ for all n must involve; only