Forcing, Transition Algebras, and Calculi

Go Hashimoto and Daniel Găină (IMI, Japan) Ionuț Țuțu (IMAR, Romania)

2nd Workshop on Logic, Algebra and Category Theory Fukuoka, 2025

In this talk

- 1. Short presentation of transition algebra
- 2. Applicability to process calculi
- 3. Proof system, soundness, completeness via forcing
- 4. Tool support and introduction to SpeX

Transition algebra (TA)

* at a glance, yet another logic used to reason about labelled transition systems

* deserves further examination thanks to a blend of special features...

Transition algebra (TA)

- * at a glance, yet another logic used to reason about labelled transition systems
- * deserves further examination thanks to a blend of special features:
 - provides support both for the static, structural aspects of systems, via equations, and for the dynamic aspects of systems, via transitions
 - uniform treatment of states and transition labels (in particular, quantification over labels)
 - unrestricted use of equations and transitions
 - increased expressivity by employing actions similar to those found in dynamic logics
 - operational semantics (more to follow)

TA signatures

- * ordinary algebraic signatures
- * pairs (S,F), where:
 - S is a set of so-called sorts
 - F is an $S^* \times S$ -indexed family of sets $F_{w \to s}$ of operation symbols of arity w and sort s
- * as usual, we also write

$$\sigma: W \to S \in F$$

in place of $\sigma \in F_{w \to s}$

Models

- * (S,F)-algebras A interpreting:
 - every sort $s \in S$ as a set A_s
 - every operation symbol $\sigma: w \to s \in F$ as a function $\sigma^A: A_w \to A_s$
 - for any sort $t \in S$, every element $e \in A_t$ as a binary S-sorted relation $(e_s \subseteq A_s \times A_s)_{s \in S}$

Sentences

* built using standard Boolean connectives and quantifiers from two kinds of atoms:

equations t = t'

transitions tat'

where t and t' are terms having the same sort and a is an action

* actions are built from terms using sequential composition $a \circ b$ choice $a \cup b$ iteration a^*

Semantics

*
$$A \models t = t'$$
 when $t^A = t'^A$
* $A \models t \ a \ t'$ when $(t^A, t'^A) \in a^A$
and so on, where

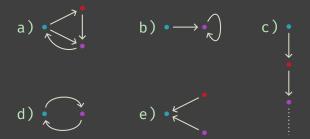
$$\star (a \circ b)^A = a^A \circ b^A$$

*
$$(a \cup b)^A = a^A \cup b^A$$

*
$$(a^*)^A = (a^A)^* = \bigcup \{(a^A)^n \mid n \in \mathbb{N}\}$$

Which of the following models satisfies $\forall y \cdot \exists! z \cdot y \rightarrow z$?

Which of the following models satisfies $\forall y \cdot \exists! z \cdot y \rightarrow z$?



How do the models of $\forall y \cdot \exists ! z \cdot y \rightarrow z \land \exists ! x \cdot x \rightarrow y$ look like?

How do the models of $\forall y \cdot \exists ! z \cdot y \rightarrow z \land \exists ! x \cdot x \rightarrow y$ look like?

What if we add one of the following constraints?

*
$$\forall x, x' \cdot x \rightarrow^* x'$$

*
$$\forall x, x' \cdot x \rightarrow^* x' \vee x' \rightarrow^* x$$

Application to process calculi

Syntactic entailment

- * get to $\Gamma \models \varphi$ via $\Gamma \vdash \varphi$
- * where ⊢ is defined by proof rules of the following form:

$$\frac{\Gamma \vdash t = t'}{\Gamma \vdash t' = t} \qquad \frac{\Gamma \vdash t \ a \ t', \ \Gamma \vdash t' \ b \ t''}{\Gamma \vdash t \ (a \ \S \ b) \ t''} \qquad \frac{\Gamma \vdash t \ (a \cup b) \ t'}{\Gamma \vdash t \ (a \cup b) \ t'}$$

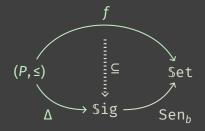
$$\frac{\Gamma \vdash t \ (a \ \S \ b) \ t'', \ \Gamma \cup \{t \ a \ x, x \ b \ t'\} \vdash \varphi}{\Gamma \vdash \varphi}$$

$$\frac{\Gamma \vdash \neg \neg \varphi}{\Gamma \vdash \varphi} \qquad \frac{\Gamma \cup \{\varphi\} \vdash \bot}{\Gamma \vdash \neg \varphi} \qquad \dots$$

Nota bene

- \star \vdash is ω_1 -compact whereas \models is not so for uncountable signatures
- * therefore, we cannot hope for a general completeness result for TA
- * for at most countable signatures, neither ⊢ nor ⊧ is compact
- * so we cannot tackle completeness using the classical Henkin method
- * which leads us to forcing...

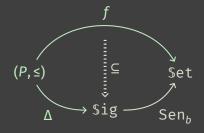
Forcing properties



where

- * (P, \leq) is a poset of so-called conditions
- \star Δ maps $p \leq q$ to $\Delta_p \subseteq \Delta_q$, and similarly for f
- * $f(p) \subseteq \operatorname{Sen}_b(\Delta_p)$
- * $f(p) \models \varphi$ implies $\varphi \in f(q)$ for some $q \ge p$

Syntactic forcing



where

*
$$p = (\Delta_p, \Gamma_p)$$
 where $\Delta_p = \Sigma \cup C_p$ and $\Gamma_p \subseteq \mathrm{Sen}(\Delta_p)$ consistent

*
$$p \le q$$
 iff $\Delta_p \subseteq \Delta_q$ and $\Gamma_p \subseteq \Gamma_q$

*
$$\Delta(p) = \Delta_p$$

*
$$f(p) = \Gamma_p \cap \operatorname{Sen}_b(\Delta_p)$$

Forcing relation

- * $p \Vdash \varphi$ when $\varphi \in f(p)$ for atomic sentences
- * $p \Vdash t(a \circ b) t'$ when $p \Vdash t a \tau$ and $p \Vdash \tau b t'$ for some Δ_p -term τ
- * $p \Vdash t(a \cup b)t'$ when $p \Vdash tat'$ or $p \Vdash tbt'$
- * $p \Vdash t \ a^* \ t'$ when $p \Vdash t \ a^n \ t'$ for some $n \in \mathbb{N}$
- * $p \Vdash \neg \varphi$ when $q \not\Vdash \varphi$ for all $q \ge p$
- * $p \Vdash \bigvee \Phi$ when $p \Vdash \varphi$ for some $\varphi \in \Phi$
- * $p \Vdash \exists x \cdot \varphi$ when $p \Vdash \theta(\varphi)$ for some substitution θ

Forcing properties

- * $p \Vdash \neg\neg \varphi$ iff for all $q \ge p$ there is $r \ge q$ such that $r \Vdash \varphi$
- * if $p \le q$ and $p \Vdash \varphi$ then $q \Vdash \varphi$
- * if $p \Vdash \varphi$ then $p \Vdash \neg \neg \varphi$
- * we cannot have both $p \Vdash \varphi$ and $p \Vdash \neg \varphi$
- * $\Gamma_p \vdash \varphi$ iff $p \Vdash \neg \neg \varphi$

Generic sets and models

- 1. Every $p \in P$ belongs to a generic set $G \subseteq P$.
- * G is an ideal
- * for all $q \in G$ and sentences φ there is $r \in G$ such that $r \ge q$ and either $r \Vdash \varphi$ or $r \Vdash \neg \varphi$

Generic sets and models

- 1. Every $p \in P$ belongs to a generic set $G \subseteq P$.
- * G is an ideal
- * for all $q \in G$ and sentences φ there is $r \in G$ such that $r \ge q$ and either $r \Vdash \varphi$ or $r \Vdash \neg \varphi$
- 2. If $p \in G$ and G is generic, then $\bigcup \{ \Gamma_q \mid q \in G \}$ is a maximally consistent set that includes Γ_p .

Generic sets and models

- 1. Every $p \in P$ belongs to a generic set $G \subseteq P$.
- * G is an ideal
- * for all $q \in G$ and sentences φ there is $r \in G$ such that $r \ge q$ and either $r \Vdash \varphi$ or $r \Vdash \neg \varphi$
- 2. If $p \in G$ and G is generic, then $\bigcup \{\Gamma_q \mid q \in G\}$ is a maximally consistent set that includes Γ_p .
- 3. *G* admits a countable and reachable generic model *A*.
- * $A \models \varphi$ iff $q \Vdash \varphi$ for some $q \in G$

Theorem
1. Every consistent set of sentences has a countable model.

Theorem

1. Every consistent set of sentences has a countable model.

2. $\Gamma \vdash \varphi$ iff $\Gamma \models \varphi$.

Theorem

1. Every consistent set of sentences has a countable model.

2. $\Gamma \vdash \varphi$ iff $\Gamma \models \varphi$.

* suppose ad absurdum $\Gamma \not\vdash \varphi$

Theorem
1. Every consistent set of sentences has a countable model.

2. $\Gamma \vdash \varphi$ iff $\Gamma \models \varphi$.

* suppose ad absurdum $\Gamma
ot \vdash \varphi$

 \star we get $\Gamma
notangle \neg \neg \varphi$, hence $\Gamma \cup \{\neg \varphi\}
notangle \perp$

- 1. Every consistent set of sentences has a countable model.
- 2. $\Gamma \vdash \varphi$ iff $\Gamma \models \varphi$.
- * suppose ad absurdum $\Gamma
 ot \mid \phi$
- * we get $\Gamma \not\vdash \neg \neg \varphi$, hence $\Gamma \cup \{\neg \varphi\} \not\vdash \bot$
- * it follows that $\Gamma \cup \{ \neg \varphi \}$ is consistent, so it has a model

- 1. Every consistent set of sentences has a countable model.
- 2. $\Gamma \vdash \varphi$ iff $\Gamma \models \varphi$.
- * suppose ad absurdum $\Gamma \not\vdash \varphi$
- * we get $\Gamma \not\vdash \neg \neg \varphi$, hence $\Gamma \cup \{\neg \varphi\} \not\vdash \bot$
- * it follows that $\Gamma \cup \{ \neg \varphi \}$ is consistent, so it has a model
- * thus contradicting $\Gamma \models \varphi$

Term rewriting as a substructure for specification-language interpreters

- * solid mathematical foundation
- * algebraic, close to standard notation used by working theoretical computer scientists
- * great for rapid prototyping

but

- * still somewhat rigid as a meta-language
- * limited support for modularization

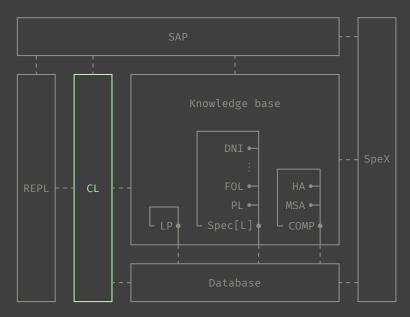
Object-based programming

```
* we rewrite configurations
 multisets of ₄
  1. objects
                  < Id : Class | Attributes >
 2. messages
                  message(To, From, Arguments)
* using rules of the form
 rl < Id : Class | ... >
    message(Id, ...)
   ⇒ ...
```

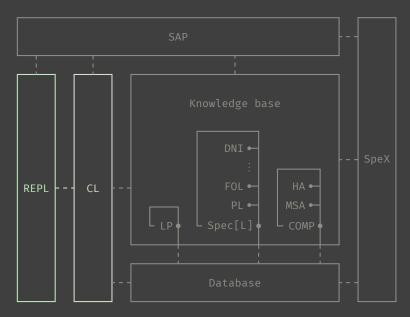
SpeX

- * not a plain interpreter, but an 'environment'
- * integrates specification-language processors
- * language agnostic
- * offers a basic system UI 'for free'
- * based on Maude 3 (OBP with external rewrites)

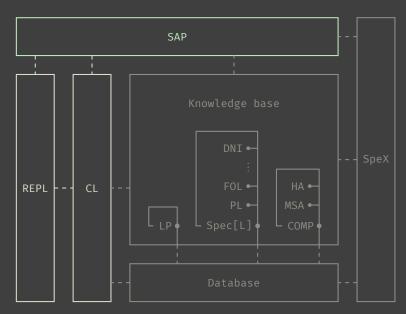
System overview (overly simplified)



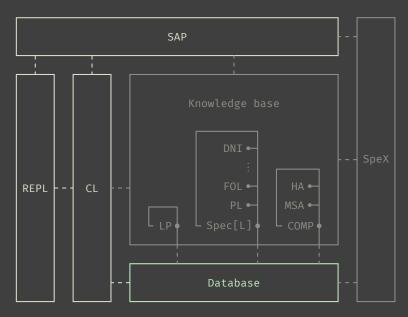
System overview (overly simplified)



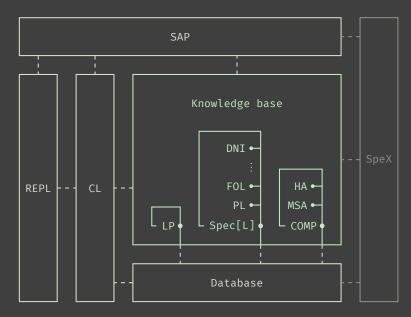
System overview (overly simplified)



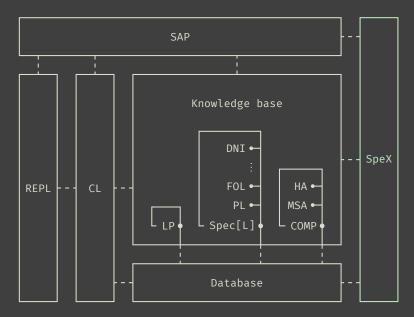
System overview (overly simplified)



System overview (overly simplified)



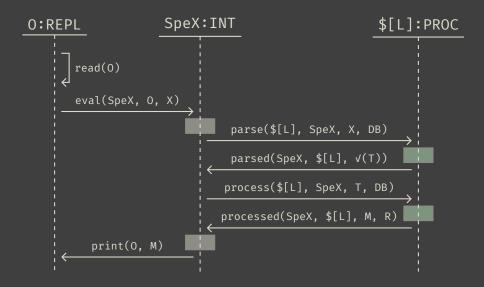
System overview (overly simplified)



Integrating new languages into SpeX

- * by means of processors
 - objects of class PROC
 - interact with SpeX (the object)
- * receive messages of the form
 parse(\$[L], SpeX, Input, DB)
 process(\$[L], SpeX, AnnotatedTerm, DB)
- * reply with messages of the form
 parsed(SpeX, \$[L], ParsingOutcome)
 processed(SpeX, \$[L], Text, Record)

A basic execution scenario



```
Example: Spec[DNI] (codev'd J. Fiadeiro
                           and C. Chirită)
spec Bind is
 including Base .
 mod bind : Protein Organelle \times Coat .
 ax store k:Nominal
    forall-local {p:Protein, o:Organelle}
     [ p o bind z:Coat ]
    (forall-local {o':Organelle}
      brane(o') = a(k) brane(o)
    and
     (forall-local {c':Coat}
      c' = z \text{ implies brane}(c') = a(k) \text{ brane}(o)
     [label: bind-effect] .
endspec
```

```
Example: Spec[DNI] (codev'd J.Fiadeiro
and C.Chiriță)
```

```
spec Bind is
 including Base .
 mod bind : Protein Organelle \times Coat .
 ax store k:Nominal
     [ p o bind z:Coat ]
     (forall-local {o':Organelle}
      brane(o') = a(k) brane(o)
     (forall-local {c':Coat}
      c' = z \text{ implies brane}(c') = a(k) \text{ brane}(o)
endspec
```

```
Example: Spec[DNI] (codev'd J.Fiadeiro
and C.Chiriță)
```

```
including Base .
mod bind : Protein Organelle × Coat
ax store k:Nominal
   [ p o bind z:Coat ]
   (forall-local {o':Organelle}
     brane(o') = a(k) brane(o)
   (forall-local {c':Coat}
     c' = z \text{ implies brane}(c') = a(k) \text{ brane}(o)
   [label: bind-effect] .
```

```
Example: Spec[DNI] (codev'd J. Fiadeiro
                           and C. Chirită)
 including Base .
 mod bind : Protein Organelle \times Coat .
 ax store k:Nominal
    forall-local {p:Protein, o:Organelle}
     [ p o bind z:Coat ]
    (forall-local {o':Organelle}
      brane(o') = a(k) brane(o)
    and
    (forall-local {c':Coat}
      c' = z \text{ implies brane}(c') = a(k) \text{ brane}(o)
```

```
Example: COMP (codev'd R.Diaconescu)
bobj WATCH is
 syncing (UP-TO-24-COUNTER as HOUR)
     and (UP-TO-60-COUNTER as MINUTE)
     and (UP-TO-60-COUNTER as SECOND) .
 op :: : Nat Nat Nat \rightarrow State.
 act tick : State \rightarrow State .
 act inc-min : State \rightarrow State .
endbo
open WATCH
 forall M:Nat < 60 = true
```

Example: COMP (codev'd R.Diaconescu)

```
bobj WATCH is
 syncing (UP-TO-24-COUNTER as HOUR)
     and (UP-TO-60-COUNTER as MINUTE)
     and (UP-TO-60-COUNTER as SECOND) .
 act inc-min : State \rightarrow State .
open WATCH
 check tick inc-min (H:Nat : M:Nat : S:Nat)
     ~ inc-min tick (H:Nat : M:Nat : S:Nat)
 forall M:Nat < 60 = true
    and S:Nat < 60 = true.
close
```

```
Example: IPDL (dev'd K.Sojakova,
                       M. Codescu,
                   and J. Gancher)
protocol real =
 newfamily SendInShare[bound N + 2 bound N + 2
                        dependentBound I]
           indices: m, n, i ... : bool in
 newfamily OTMsg-0[bound N + 2 bound N + 2]
                    bound K 1
           indices: n, m, k ... : bool in
 parties || 10ut0f40TReal
 where parties = ...
   and 10utOf40TReal = ...
```

See https://arxiv.org/abs/2507.22705

```
Example: Spec[TA] (codev'd D.Găină
                         and A.Riesco)
spec Institute is
 including CCS .
 ops theorem, coffee, coin ...
 ops Institute, Mathematician, CoffeeVM ...
 ax Institute
    = (Mathematician | CoffeeVM) \ coin \ coffee .
 ax Mathematician
    =(tau)> (snd(coin).rcv(coffee).
             snd(theorem).Mathematician).
 ax CoffeeVM
    =(tau)> (rcv(coin).snd(coffee).CoffeeVM).
endspec
```

Obtaining SpeX and TATP

* from the git repositories:

```
https://gitlab.com/ittutu/spex
https://github.com/Transition-Algebra/TATP

* then, provided Maude 3(>.2) is installed:
    ./configure
    make
    [sudo] make install
```

