Conjunctive Queries with Equations and Disequations for Databases over Semirings

Guillermo Badia^(a), Carles Noguera^(b), Gaia Petreni^(c), Val Tannen^(d)

(a): University of Queensland

(b), (c): DIISM, University of Siena

(d): University of Pennsylvania

September 2025

Goal of the talk

- Databases with annotated relations: tuple annotations used to track provenance, providing information on how the query results depend on atomic facts.
- Containment problem for conjunctive queries with equations and disequations: are all the answers to query P also answers to query Q?
- Are these problems decidable? For a positive answer: find equivalence with the existence of specific types of mappings between queries (Chandra-Merlin strategy).
- Complexity results for the containment problem.
- Containment for regular CQs over semiring-annotated databases is well-understood since Green (2011).

Take-home message: results of this talk

Klug (1988) and Van der Meyden (1997) show that containment for $\{=\neq\}$ – CQs on standard databases is Π_2^p -c.

Cohen, Nutt & Sagiv (2007) give a characterization in terms of mappings between **families of queries**.

Туре	Complexity	Known semirings
$\{=\neq\}$ -Can. map. (identifications)	Π_2^p -c	\mathbb{B} (Klug, VdM), Distr. Latt. (e.g. PosBool[X])
$\{=\neq\}$ -Hom. coverage for rel. atoms (identifications)	Π_2^p -c	Lin[X]
$\{=\neq\}$ -Injective for rel. atoms (identifications)	$\Pi_2^{\overline{p}}$ -c	Sorp[X]
$\{=\neq\}$ -Surjective for rel. atoms (identifications)	Π ₂ -c	Why[X], Trio[X]
$\{=\neq\}$ -Bijective for rel. atoms (identifications)	in Π_2^p and NP-hard	$\mathbb{N}[X]$, $\mathbb{B}[X]$
n/a	Undecidable	N (Kolaitis et al.)

Semirings

Definition

A **semiring** is an algebra $\mathbf{K} = (K, +, \cdot, 0, 1)$ where:

- (K, +, 0) is a commutative monoid.
- $(K, \cdot, 1)$ is a monoid.
- distributes over +:

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$

$$(y+z)\cdot x = (y\cdot x) + (z\cdot x)$$

• 0 is absorbing: $x \cdot 0 = 0 \cdot x = 0$.

K is **commutative** if \cdot is commutative.

Easy examples: \mathbb{N} , \mathbb{B} (two-element Boolean algebra).

Semirings for Provenance

Definition (Green et al. 2007)

The **provenance polynomials semiring** for X (a countable set of variables) is the semiring of polynomials with variables from X and coefficients from \mathbb{N} , with the operations defined as usual: $(\mathbb{N}[X], +, \cdot, 0, 1)$.

Definition (Green, 2009)

The **Boolean provenance polynomials** semiring for X is the semiring of polynomials over variables X with Boolean coefficients: $(\mathbb{B}[X], +, \cdot, 0, 1)$.

Semirings for Provenance (cont'd)

Let $f: \mathbb{N}[X] \to \mathbb{N}[X]$ be the mapping that "drops exponents", e.g.,

$$f(2x^2y + 3xy + 2z^3 + 1) = 5xy + 2z + 1.$$

Denote by \approx_f the congruence relation on $\mathbb{N}[X]$ defined by

$$a \approx_f b \iff f(a) = f(b).$$

Definition (Benjelloun et al., 2008)

The **Trio semiring** for X, Trio(X), is the quotient semiring of $\mathbb{N}[X]$ by \approx_f .

The why-provenance of a tuple is the set of sets of "contributing" source tuples and it can be captured using the following semiring.

Definition (Buneman et al., 2008)

The **why-provenance** semiring for X is $(Why(X), \cup, \uplus, \emptyset, \{\emptyset\})$ where $Why(X) = \mathcal{P}_{fin}(\mathcal{P}_{fin}(X))$ and \uplus denotes pairwise union:

$$A \cup B = \{a \cup b : a \in A, b \in B\}$$

The **lineage semiring** for X is $(\mathcal{P}_{fin}(X) \cup \{\bot\}, +, \cdot, \bot, \emptyset)$ where

- X is a set of variables,
- $\bullet \perp +S = S + \perp = S$,
- $\bullet \perp \cdot S = S \cdot \perp = \perp$,
- $S + T = S \cdot T = S \cup T$ if $S, T \neq \perp$.

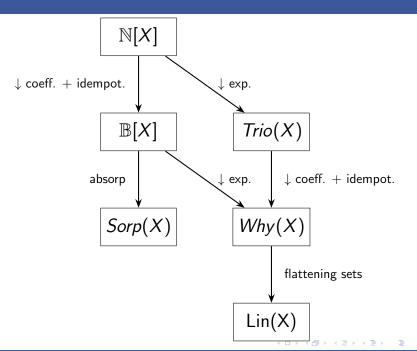
A commutative semiring $\mathbf{K}=(K,+,\cdot,0,1)$ is **absorptive** if for every $a,b\in K$

$$a + ab = a$$
.

Denote by \approx the smallest congruence on $\mathbb{N}[X]$ that identifies polynomials according to absorption.

Definition

The **absorptive** semiring for X, Sorp(X), is the quotient semiring of $\mathbb{N}[X]$ by \approx .



Fix a countable domain $\mathbb D$ of individuals and a semiring $\mathbf K=(K,+,\cdot,0,1)$.

Definition

An *n*-ary K-relation is a function $R: \mathbb{D}^n \to K$ such that its support, defined by

$$supp(R) = \{t : t \in \mathbb{D}^n, R(t) \neq 0\}$$

is finite.

A \mathbb{B} -relation:

Name	City	
James Bond	Brisbane	1
James Bond	Tokyo	0
Ethan Hunt	Fukuoka	1

A N-relation:

Name	City	
James Bond	Brisbane	5
James Bond	Tokyo	0
Ethan Hunt	Fukuoka	3

Set semantics:

2 tuples

Bag semantics:

8 tuples

If R is an n-ary K-relation and t is an n-tuple, we call the value $R(t) \in K$ the **annotation** of t in R.

Definition

A K-instance is a mapping from predicate symbols to K-relations. If $\mathfrak A$ is a K-instance and S is a predicate symbol, we denote by $S^{\mathfrak A}$ the value of S in $\mathfrak A$.

Example

Where \mathbb{N} is the semiring of natural numbers:

$$R^{\mathfrak{A}} \stackrel{\mathsf{def}}{=} \left[\begin{array}{c|ccc} a & b & 2 \\ d & b & 1 \\ b & c & 1 \end{array} \right] \quad S^{\mathfrak{A}} \stackrel{\mathsf{def}}{=} \left[\begin{array}{c|ccc} b & g & f & 3 \\ d & a & b & 1 \end{array} \right]$$

A conjunctive query (CQ) is an expression of the form

$$Q(\bar{u}):-R_{1}(\bar{u}_{1}),\ldots,R_{n}(\bar{u}_{n})$$

where

- $Q(\bar{u})$ is the **head** of the query (head(Q)),
- the multiset (bag) of **atoms** $R_1(\bar{u}_1), \ldots, R_n(\bar{u}_n)$ is the **body** of the query (body(Q)),
- \bullet \bar{u} is the tuple of distinguished variables and constants,
- $\bar{u}_1, \ldots, \bar{u}_n$ are tuples of variables and constants whose arities are consistent with their associated predicate symbols; each variable appearing in the head also appears somewhere in the body.

Think of CQs as existential formulas where only conjunctions are allowed!

A **valuation** is a function $v : vars(Q) \rightarrow \mathbb{D}$.

Valuations operate component-wise on tuples in the expected way.

Let Q be a CQ

$$Q(\bar{u}):-R_{1}(\bar{u}_{1}),\ldots,R_{n}(\bar{u}_{n})$$

and let \mathfrak{A} be a K-instance of the same schema.

The **result of evaluating** Q **on** $\mathfrak A$ is the K-relation defined

$$[\![Q]\!]^{\mathfrak{A}}(t) \stackrel{\mathsf{def}}{=} \sum_{\substack{v \text{ s.t.} v(\bar{u})=t \ i=1}} \prod_{i=1}^{n} R_{i}^{\mathfrak{A}}(v(\bar{u}_{i}))$$

and the sums and products are in K.

The Natural Order

Let $(K, +, \cdot, 0, 1)$ be a semiring and define

$$a \le b \Longleftrightarrow \exists c : a + c = b.$$

When \leq is a partial order we say that K is **naturally-ordered**.

Example

For $\mathbb{B}[X]$ we have $a \leq b$ iff every monomial in a also appears in b.

For $\mathbb{N}[X]$ we have $a \leq b$ iff every monomial in a also appears in b with an equal or greater coefficient. Thus, $2x^2y \leq 5x^2y + 2z$, but $x + 2y \leq 5x + 3y^2$.

For lineage and why-provenance the natural order corresponds to set inclusion.

Let K be a naturally-ordered semiring and let R_1, R_2 be two K-relations. R_1 is **contained** in R_2 ($R_1 \leq_K R_2$) iff

$$\forall t \in \mathbb{D}^n, \ R_1(t) \leq R_2(t)$$

Definition

Consider two queries P, Q.

P is **contained** in Q ($P \sqsubseteq_K Q$) iff

 $\forall K$ -instance \mathfrak{A} , $\llbracket P \rrbracket^{\mathfrak{A}} \leq_K \llbracket Q \rrbracket^{\mathfrak{A}}$

CQ with equations and disequations

Definition

A $\{=, \neq\}$ -CQ is simply a CQ where literals of the form x=y and $x\neq y$ are allowed in the body of the query. (In evaluating the query in a semiring these literals take only values 0 or 1 in the usual manner.)

We focus on queries that are:

- safe: the only variables allowed are those in the active domain of the query.
- **consistent**: $x \neq x$ does not follow logically from the body of the query for any variable x.

Completions and identifications

Definition

Given a $\{=, \neq\}$ -CQ Q, a **completion** Q' of Q comes from adding either x = y or $x \neq y$ for every couple of variables x, y that appear in a relational atom of Q, as long as the new query is consistent.

Consider the equivalence relation between variables of a completion Q^\prime given by

 $x \equiv y$ iff x = y is a logical consequence of the body of Q'.

A canonical substitution maps all elements in an equivalence class to a representative.

Definition (Cohen et al., 2007)

An **identification** Q^{id} of a completion Q' comes by eliminating all equations by applying a canonical substitution to Q'.

Consider the queries

$$q:=\exists x,y(R(x,y)\wedge R(y,x))$$

and

$$p := \exists x, y (R(x, y) \land x = y).$$

Observe that q has the following two possible identifications:

- 1. $\exists x, y (R(x, y) \land R(y, x) \land x \neq y)$
- 2. $\exists x (R(x,x) \land R(x,x)),$

where $\exists x (R(x,x) \land R(x,x))$ comes from the completion

 $\exists x, y (R(x,y) \land R(y,x) \land x = y)$ and the canonical substitution that sends y to x.

Similarly, p (which is already a completion of itself) has only the following identification:

1. $\exists x R(x,x)$.

Containment mappings

Definition (Cohen et al., 2007)

Given two $\{=, \neq\}$ -CQs, q_1 and q_2 , a $\{=, \neq\}$ -containment mapping h from q_1 to q_2 is a function from the variables of q_1 to q_2 that preserves literals in the following sense:

- if the atom $I(\overline{x})$ appears in q_1 , the atom $I(h(\overline{x}))$ appears in q_2 ,
- if the equation (disequation) $I(\overline{x})$ appears in q_1 , the atom $I(h(\overline{x}))$ is a **logical consequence** of the body of q_2 .

A containment mapping is **one-to-one** or **injective** for relational atoms if the multiset of images of atoms of Q_1 is bag-contained in the multiset of relational atoms of Q_2 .

Also, h is **surjective** for relational atoms if the multiset of relational atoms of Q_2 is equal to the multiset of images of atoms of Q_1 . (Surjective on relational atoms gives also surjective as a mapping on variables.)

Exact for relational atoms means being both surjective and injective.

Canonical database

Given an identification q^{id} of some $\{=, \neq\}$ -CQ q, one can build its canonical database $D^{q^{id}}$ as follows.

- For any relation R of the schema of q^{id} we let $R_{D^{q^{id}}}$ contain the tuple of (x_1, \ldots, x_n) iff $R(x_1, \ldots, x_n)$ is an atom in q^{id} .
- By construction, if the identification $\{=, \neq\}$ -CQ q^{id} is a formula $\phi(u)$, then u is an answer to the query ϕ in the database $D^{q^{id}}$.

The Boolean case

Theorem (Klug (1988), Kolaitis et al. (1998), Cohen et al. (2007))

For each $\{=, \neq\}$ -CQs Q_1, Q_2 with the same tuple of free variables \overline{u} , the following are equivalent:

- 1. $Q_1 \sqsubseteq_{\mathbb{B}} Q_2$.
- 2. For every identification Q_1^{id} of Q_1 , there is a $\{=, \neq\}$ -containment mapping $h_{Q_1^{id}} \colon Q_2 \longrightarrow Q_1^{id}$.

The case of distributive lattices

Theorem

Let P and Q be $\{=, \neq\}$ -CQs with the same tuple of free variables \overline{u} , and K a bounded distributive lattice. Then, the following are equivalent:

- 1. $P \sqsubseteq_{\mathcal{K}} Q$.
- 2. For every identification P^{id} of P, there is a $\{=, \neq\}$ -containment mapping $h_{P^{id}} \colon Q \longrightarrow P^{id}$.

The case of various provenance semirings

Use the abstractly tagged version of canonical databases introduced by Green (2011). (E.g. for $\mathbb{N}[X]$, each tuple of the canonical database gets annotated with a different $p \in X$.)

Theorem

For $\{=, \neq\}$ -CQs P, Q with the same tuple of free variables \overline{u} , the following are equivalent where $K \in \{\mathbb{B}[X], \mathbb{N}[X]\}$:

- 1. $P \sqsubseteq_{\mathcal{K}} Q$,
- 2. For every identification P^{id} of P, we have that $[P^{id}]^{can_K(P^{id})} \leq [Q]^{can_K(P^{id})}$.
- 3. For every identification P^{id} of P, there is an $\{=, \neq\}$ -containment mapping $h_{P^{id}}: Q \longrightarrow P^{id}$ exact for relational atoms.

$\mathsf{Theorem}$

For $\{=, \neq\}$ -CQs P, Q with the same tuple of free variables \overline{u} , the following are equivalent:

- 1. $P \sqsubseteq_{Sorp[X]} Q$,
- 2. For every identification P^{id} of P, we have that $[P^{id}]^{can_{Sorp}[X]}(P^{id}) \leq [Q]^{can_{Sorp}[X]}(P^{id})$.
- 3. For every identification P^{id} of P, there is an $\{=, \neq\}$ -containment mapping $h_{P^{id}}: Q \longrightarrow P^{id}$ injective for relational atoms.

$\mathsf{Theorem}$

For $\{=, \neq\}$ -CQs P, Q with the same tuple of free variables \overline{u} , the following are equivalent where $K \in \{Why[X], Trio[X]\}$:

- 1. $P \sqsubseteq_K Q$,
- 2. For every identification P^{id} of P, we have that $\llbracket P^{id} \rrbracket^{can_K(P^{id})} \leq \llbracket Q \rrbracket^{can_K(P^{id})}$.
- 3. For every identification P^{id} of P, there is an $\{=, \neq\}$ -containment mapping $h_{P^{id}}: Q \longrightarrow P^{id}$ onto for relational atoms.

Theorem

For $\{=, \neq\}$ -CQs P, Q with the same tuple of free variables \overline{u} , the following are equivalent:

- 1. $P \sqsubseteq_{Lin[X]} Q$,
- 2. For every identification P^{id} of P, we have that $\llbracket P^{id} \rrbracket^{can_{Lin}[X]}(P^{id}) \leq \llbracket Q \rrbracket^{can_{Lin}[X]}(P^{id})$.
- 3. For every identification P^{id} of P, and every relational atom $R(\overline{y})$ of P^{id} there is a $\{=, \neq\}$ -containment mapping $h_{P^{id}}: Q \longrightarrow P^{id}$ with $R(\overline{y})$ in the image of $h_{P^{id}}$.

Theorem

The containment problems for $\{=, \neq\}$ -CQs over Lin[X], Trio[X], Why[X], Sorp[X], $\mathbb{N}[X]$ and $\mathbb{B}[X]$ are in Π_2^p .

Theorem (Van der Meyden 1997)

The following problem is Π_2^p -hard: Given two safe conjunctive $\{=, \neq\}$ -queries Q_1, Q_2 , is it true that for every identification Q_1^{id} of Q_1 there is a $\{=, \neq\}$ -canonical mapping $h_{Q_1^{id}}: Q_2 \longrightarrow Q_1^{id}$?

Theorem

The containment problem for $\{=, \neq\}$ -CQs over Lin[X], Sorp[X], Why[X] and Trio[X], is Π_2^p -complete.

Next steps

- Extend these results to Unions (i.e. disjunctions) of CQs;
- Add negated atoms;
- Go beyond containment and study equivalence.