The Many Faces of Modal Logic Day 5: Compositionality

Dirk Pattinson

Australian National University, Canberra

(Slides based on a NASSLLI 2014 Tutorial and are joint work with Lutz Schröder)

LAC 2018

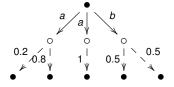
The Plan for Today

Expanding the scope

- ► Fusion / modularity
- Global assumptions
- Nominals
- Fixpoints
- ► First-order logic

Example: Modal Logic of Segala Systems

Functor $TX = \mathcal{P}(A \times \mathcal{D}X)$:



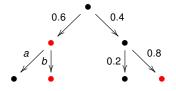
- ► Sorts *u* ('uncertain'), *n* ('non-deterministic')
- ▶ Operators $\Box_a : u \to n, L_p : n \to u$

$$\mathcal{L}_{n} \ni \phi ::= \top \mid \phi_{1} \land \phi_{2} \mid \neg \phi \mid \square_{a} \psi$$

$$\mathcal{L}_{u} \ni \psi ::= \top \mid \psi_{1} \land \psi_{2} \mid \neg \psi \mid L_{n} \phi.$$

Example: Modal Logic of Alternating Systems

Functor $TX = \mathcal{P}(A \times X) + \mathcal{D}X$:



- ► Sorts *u* ('uncertain'), *n* ('non-deterministic'), *c* ('choice')
- Operators

$$L_p: c \to u \qquad \Box_a: c \to n \qquad +: u, n \to c$$

Example: Conditional Logic CK

Functor

$$CX = (2^X \to \mathcal{P}(X))$$

SO

$$C = G \circ \langle id, \mathcal{P} \rangle$$
 where $G(X, Y) = 2^X \to Y$.

- → Embed into two-sorted logic:
- ► Sorts *c* ('conditional'), *n* ('non-deterministic')
- ▶ Operators \Rightarrow : $c, n \rightarrow c$ \square : $c \rightarrow n$

Then

$$\alpha \Rightarrow \beta \rightsquigarrow \alpha \Rightarrow \Box \beta$$
.

Logical Features

An *n*-ary feature (Λ, \mathcal{R}) consists of

A set Λ of modal operators with profiles

$$L: i_1, \ldots, i_k \to *$$
 $(1 \le i_j \le n)$

ightharpoonup A set $\mathcal R$ of one-step rules

$$\frac{\phi_1; \dots; \phi_n}{\psi} \qquad \qquad \text{(rank 0)}$$

$$\text{(rank 1)}$$

Logical Features: Examples

Non-Determinism: unary feature N, $\square: 1 \to *$

Uncertainty: unary feature U, operators $L_p: 1 \to *, p \in [0,1] \cap \mathbb{Q}$.

Choice: binary feature S, operator $+: 1,2 \rightarrow *$.

Fusion: binary feature P, operators $[\pi_i]: i \to *, i = 1, 2$.

Conditionality: binary feature C, operator \Rightarrow : 1,2 \rightarrow *.

Logical Features: Semantics

Structure for *n*-ary feature $F = (\Lambda, \mathcal{R})$:

▶ functor $\llbracket F \rrbracket : \mathbf{Set}^n \to \mathbf{Set}$

• for $L: i_1, \ldots, i_k \to *$, predicate lifting

$$\llbracket L \rrbracket : (\mathcal{Q} \circ P_{i_1}^{op}) \times \cdots \times (\mathcal{Q} \circ P_{i_k}^{op}) \to \mathcal{Q} \circ \llbracket F \rrbracket^{op}$$

(Q contravariant powerset, P_i projection) such that R is (one-step) sound.

Semantics: Examples

Choice:
$$[S](X, Y) = X + Y$$

$$\llbracket + \rrbracket_{X,Y}(A,B) = A + B \subseteq X + Y.$$

Fusion:
$$\llbracket P \rrbracket (X, Y) = X \times Y;$$

$$[\![\pi_1]\!]_{X,Y}A = \{(x,y) \mid x \in A\}.$$

Conditionality:
$$[\![C]\!](X,Y) = QX \rightarrow Y;$$

$$\llbracket \Rightarrow \rrbracket_{X,Y}(A,B) = \{f : QX \to Y \mid f(A) \in B\}.$$

Feature Combination: Gluings

▶ Feature expressions t over set S of sorts:

$$t ::= a \mid F(t_1, ..., t_n)$$
 $a \in S$, F *n*-ary feature.

- ▶ Gluing: family $G = (t_a)_{a \in S}$ of feature expressions.
- ▶ G flat iff all t_a have the form $F(a_1,...,a_n)$.

The Modal Logic of a Gluing

- types: proper subexpressions of the t_a
- obvious operator/rule profiles modulo $t_a \sim a$
- ▶ feature expression s induces composite functor $[\![s]\!]$: $\mathbf{Set}^{\mathcal{S}} \to \mathbf{Set}$, hence $[\![G]\!]$: $\mathbf{Set}^{\mathcal{S}} \to \mathbf{Set}^{\mathcal{S}}$
- ▶ Semantics over $\llbracket G \rrbracket$ -coalgebra $(X, \xi) = ((X_a)_{a \in \mathcal{S}}, (\xi_a)_{a \in \mathcal{S}})$: $\llbracket \phi : s \rrbracket \subseteq \llbracket s \rrbracket X$,

Gluings: Examples

```
Segala Systems: (n \rightarrow N(U(n)))
```

Alternating Systems: $(c \rightarrow S(U(c),N(c)))$

Conditional Logic CK: $(c \rightarrow C(c, K(c)))$

Alternatively: flat gluings, e.g.

Segala Systems: $(u \rightarrow U(n), n \rightarrow N(u))$

Generally: G has flattening G^b inducing the same syntax:

Turn all types into sorts (above: n and u := U(n)).

Reduction to Flat Gluings

Theorem: ϕ satisfiable in G iff ϕ satisfiable in G^{ϕ}. **Proof of 'if' by Example:**

$$\begin{array}{c} (X,Y) \xrightarrow{(id,\xi_u)} & (X,[\![N]\!]Y) \\ (\xi_n,\xi_u) \downarrow & & \downarrow (([\![N]\!]\xi_u)\xi_n,id) \\ ([\![N]\!]Y,[\![U]\!]X) \xrightarrow{([\![N]\!]\xi_n,id)} & ([\![N]\!][\![U]\!]X,[\![N]\!]Y) \end{array}$$

Coalgebra morphisms preserve satisfaction.

Everything is Compositional

- Reduce to flat gluings
- Coalgebraic meta-theorems generalize straightforwardly to flat gluings
 - Completeness
 - Complexity

Description Logics

Notational variant of modal logic

Recall:
$$\exists R = \Diamond_R \qquad \forall R = \Box_R$$

- Reasoning with terminologies and assertions:
 - ► TBoxes: global assumptions imposed to hold everywhere in a model

 \exists studies. coalgebraicProblem $\sqsubseteq \exists$ hasCondition. headache

ABoxes: knowledge about individuals

 $studies(Alice, stream Problem 1) \\ coalgebraic Problem (stream Problem 1)$

Global Consequence

$$C \phi$$
-model if $\forall x \in C. x \models \phi$

 ψ ϕ -satisfiable if there exist a ϕ -model C and $x \in C$ such that $x \models \psi$.

Without blocking, tableaux fail to terminate : for $\phi = \Diamond p$, $\psi = p$:

$$\frac{\rho,\Diamond\rho}{\rho,\Diamond\rho}$$

Branches can be exponentially long before blocking (implement binary counter via ϕ)

Global consequence in *K* is EXPTIME-complete

Models for TBoxes

as in previous completeness proof

▶ Closed set $\Sigma \ni \phi, \psi$

States:

$$S = \{\Gamma \subseteq \Sigma \mid \Gamma \text{ MCS}, \phi \in \Gamma\}$$

► Find coherent structure on S by one-step completeness

Type Elimination

Take $S_0 = \{ \Gamma \subseteq \Sigma \mid \Gamma \text{ Hintikka} \}$, and put

$$FS = \{ \Gamma \in S \mid \exists t \in TS. \ t \models \emptyset \quad \hat{\rho} \iff \emptyset \rho \in \Gamma \}$$
Coherence

→ solve a one-step satisfiability (OSS) problem:

$$(\theta, \chi) : (\text{rank 0, rank 1})$$
$$(X, \tau, t) \models (\theta, \chi) \iff X, \tau \models \theta \land t \models_{\tau} \chi.$$

For OSS, need upper bound

- **•** polynomial in θ and exponential in χ
- that is, exponential in χ . So:

Theorem OSS EXPTIME in $\chi \Longrightarrow$ TBox reasoning in EXPTIME

Example: Presburger Constraints

(Following Demri/Lugiez)

$$\sum a_i \#(\psi_i) \geq b$$

- OSS: Solve system of integer linear inequalities.
- ▶ ILP (Papadimitriou 1981): Binary size of solutions
 - polynomial in number of inequalities, times
 - logarithmic in number of variables
- ► Hence, here: polynomial in rank-1 part.
- NPSPACE (in χ) Algorithm:
 - ▶ Guess multiplicities for $s \in S$ successively
 - Keep track of the $\#\psi_i$ only.
- ► NPSPACE ⊆ EXPTIME:
 - ▶ Depth-first search in exponentially large state space.

Hybrid Logic

- Nominals = designators i, j, ... for individual states
- ▶ Hybrid valuations π :

$$|\pi(i)| = 1$$
 $c, \pi \models i \iff c \in \pi(i) \ (\iff \pi(i) = \{c\})$

Satisfaction operators @_i (jump to i)

$$c, \pi \models \mathbb{Q}_i \phi \iff \pi(i), \pi \models \phi$$

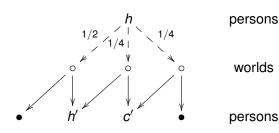
E.g.

$$\models L_p i \wedge L_q j \to L_q i \vee L_1(\neg(i \wedge j))$$

in probabilistic hybrid logic

The Uncertain Progeny of Henry VIII

h = Henry VIIIh' = Henry Careyc' = Catherine Carey

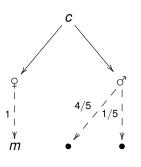


Combined TBox and ABox e.g.

king ightarrow $L_{4/5} \exists$ child. illegitimate $@_h L_{3/4} \exists$ child. h'

The Uncertain Progeny of Catherine of Aragon

c = Catherine of Aragonm = Queen Mary



concrete

persons of unknown identity

> concrete persons

queen $\rightarrow \forall$ child. $\neg L_1$ illegitimate $\bigcirc_c \exists$ child. L_1 queen

Axiomatizing Coalgebraic Hybrid Logic

- ▶ @ commutes with propositional connectives, e.g. $\neg @_i \phi \leftrightarrow @_i \neg \phi$
- ▶ $i \sim j :\equiv @_i j$ is an equivalence, e.g. $@_i j \wedge @_i k \rightarrow @_i k$
- ▶ Agreement: $@_i@_i\phi \leftrightarrow @_i\phi$
- @-generalization: $\phi/@_i\phi$
- @-introduction: $i \land \phi \rightarrow @_i \phi$
- ▶ make-or-break: $@_i \phi \rightarrow (\heartsuit \psi \leftrightarrow \heartsuit (@_i \phi \land \psi))$
- And, of course, the one-step rules.

Relativized Congruence

$$\frac{\phi \to (\psi \leftrightarrow \chi)}{\phi \to (\heartsuit \psi \leftrightarrow \heartsuit \chi)} \quad (\phi \text{ @-formula})$$

is derivable: Under ϕ ,

Fixing an ABox

- Σ = closure of ϕ under subformulas, negation and @
 - normalize to stay finite
- ▶ Fix maximally consistent $K \subseteq @\Sigma = \{ \psi \in \Sigma \mid \psi \text{ @-formula} \}$
- ▶ Put $S_K = \{\Gamma \subseteq \Sigma \mid \Gamma \text{ MCS}, K \subseteq \Gamma\}$
- ▶ Put $\pi(a) = \{\Gamma \in S_K \mid a \in \Gamma\}$
 - ▶ Modality-free axioms imply that π is hybrid

The Relativized Existence Lemma

There exists a coherent coalgebra on S_K

Proof:

- ▶ Top-level decomposition $\phi = \phi_0 \sigma$
- ▶ Non-existence is S_K , $\tau \models \neg \phi_0$ where

$$\tau(a) = \{ \Gamma \in \mathcal{S}_K \mid \sigma(a) \in \Gamma \}$$

- $ightharpoonup
 eg \phi_0$ one-step derivable from propositional χ valid over S_K, au
- ▶ For these, $\vdash \land K \rightarrow \chi \sigma$
- ▶ Then $\vdash \bigwedge K \to \neg \phi_0 \sigma$ by relativized congruence, contradiction.

Further Results on Coalgebraic Hybrid Logic

- EXPTIME with TBox by Type Elimination
- PSPACE via forest models
- ▶ In some cases: strong completeness via named models
 - with pure axioms (e.g. $\Diamond \Diamond i \rightarrow \Diamond i$)
 - with ↓:

$$c, \pi \models \downarrow i. \phi \iff c, \pi[i \mapsto c] \models \phi$$

Axiom:

(DA)
$$\mathbb{Q}_i((\downarrow j. \phi) \leftrightarrow \phi[i/j]).$$