The Many Faces of Modal Logic Day 3: Algebraic Semantics

Dirk Pattinson

Australian National University, Canberra

(Slides based on a NASSLLI 2014 Tutorial and are joint work with Lutz Schröder)

LAC 2018

Detour Through Algebraic Semantics

Goal. Coherence Conditions for Completeness, i.e. $Log(T) \subseteq Log(R)$, or: 'enough' rules to generate all semantically valid formulae.

Cheap Trick. Use algebraic semantics (first)

- ▶ logical connectives $\land, \lor, \Box, \ldots$ are like term-constructors $+, *, \ldots$ in algebra
- ▶ obey algebraic rules, e.g. $a \land b = b \land a$
- algebraic semantics has cheap completeness theorem.

Duality. Use *algebraic completeness* to establish *coalgebraic* (or frame) completeness.

Algebraic Semantics

Given: modal similarity type Λ .

Modal Algebras = tuples $A = (A, [\cdot])$ where

- ► A Boolean algebra
- ▶ $\llbracket \heartsuit \rrbracket : A^n \to A \text{ for } \heartsuit \in \Lambda \text{ n-ary.}$

Algebraic Interpretation over Λ -algebra A, valuation $\theta: \mathcal{V} \to A$

$$\llbracket \rho \rrbracket \theta = \theta(\rho) \qquad \llbracket \heartsuit(\phi_1, \ldots, \phi_n) \rrbracket \theta = \llbracket \heartsuit \rrbracket (\llbracket \phi_1 \rrbracket \theta, \ldots, \llbracket \phi_n \rrbracket \theta)$$

and propositional connectives via Boolean algebra structure.

For
$$\phi \in \mathcal{F}(\mathcal{V})$$
 write $A, \theta \models \phi$ if $\llbracket \phi \rrbracket \theta = \top$.

Coalgebras Induce Algebras

Given: Λ -structure T and $(C, \gamma) \in \text{Coalg}(T)$.

Induced Λ -algebra $(\mathcal{P}(C), [\![\cdot]\!])$ where

$$\llbracket \heartsuit \rrbracket (A_1, \ldots, A_n) = \gamma^{-1} \circ \llbracket \heartsuit \rrbracket_{\mathcal{C}} (A_1, \ldots, A_n)$$

Alignment Lemma. Let $(C, \gamma) \in \text{Coalg}(T)$, $\theta : V \to \mathcal{P}(C)$. Then

$$C, c, \theta \models \phi \iff c \in \llbracket \phi \rrbracket \theta$$

where $(\mathcal{P}(C), [\cdot])$ is the induced Λ -algebra.

Slogan. Every T-coalgebra is a Λ -algebra, in a way that preserves logical validity. *How about the other way around?*

Algebraic Completeness

Logic of a class of Algebras. For A class of Λ -algebras,

$$\mathsf{Log}(\mathcal{A}) = \{ \phi \in \mathcal{F}(\Lambda) \mid \llbracket \phi \rrbracket \theta = \top \text{ for all } A \in \mathcal{A}, \theta : \mathcal{V} \to A \}$$

Soundness of \mathcal{R} with respect to \mathcal{A} : Log(\mathcal{R}) \subseteq Log(\mathcal{A})

Completeness of \mathcal{R} with respect to \mathcal{A} : Log(\mathcal{A}) \subseteq Log(\mathcal{R})

Valid Rules. ϕ/ψ (not necessarily rank-1) *valid* over Λ -algebra $(A, \llbracket \cdot \rrbracket)$ if

$$\llbracket \psi
rbracket \theta = op$$
 whenever $\llbracket \phi
rbracket \theta = op$

for all $\theta: \mathcal{V} \to A$.

Algebras determined by a set of rules.

$$Alg(\mathcal{R}) = \{A \land -algebra \mid all \phi/\psi \in \mathcal{R} \text{ valid over } A\}$$

Algebraic vs Coalgebraic Semantics

Syntactic derivability

coalgebraic soundness

Coalgebraic validity

Algebraic validity

Coalgebraic Soundness.

follows from one-step soundness (already done)

Algebraic Completeness.

is easy: Lindenbaum Construction (our next step)

Duality.

show contrapositive: model construction (later today)

Lindenbaum Says: Algebraic Completeness is Easy

Given. Set \mathcal{R} of Λ -Rules determining class $\mathcal{A} = \text{Alg}(\mathcal{R})$ of algebras.

Lindenbaum Algebra. Let $\phi \sim \psi \iff \phi \leftrightarrow \psi \in Log(\mathcal{R})$ and

$$A = (\mathcal{F}(\Lambda)/\sim, [\![\cdot]\!])$$
 with $[\![\heartsuit]\!]([\phi]_\sim) = [\![\heartsuit\phi]\!]_\sim$

Then A is a well-defined Λ -algebra.

Trivial Lemma. $\mathcal{R} \vdash \phi \iff \llbracket \phi \rrbracket \theta = \top$ where $\theta(p) = [p]$.

Algebraic Completeness. $Log(A) \subseteq Log(R)$.

Proof. The Lindenbaum algebra A lies in A.

Aside: From Axioms to Rules

Easy: e.g.

$$(K)$$
 $\Box(a \rightarrow b) \rightarrow \Box a \rightarrow \Box b$

is already a rule \top/ψ .

Normalize to $\psi \in \text{Prop}(\Lambda(V))$:

$$\frac{c \leftrightarrow (a \to b)}{\Box c \to \Box a \to \Box b}.$$

Transform to CNF / Clause:

$$\frac{c \land a \rightarrow b \quad c \lor a \quad b \rightarrow c}{\Box c \land \Box a \rightarrow \Box b}$$

Aside: From Rules to Axioms

Boolean unification: Given ϕ/ψ rank 1, $\kappa \models \phi$ put

$$\sigma(a) = egin{cases} a \wedge \phi, & ext{if } \kappa(a) = \bot; \\ \phi o a & ext{otherwise}. \end{cases}$$

Then

$$\models \phi \rightarrow (a \leftrightarrow \sigma(a)) \qquad \models \phi \sigma$$

(2nd claim: case distinction over whether $\tau \models \phi$ for valuation τ) so

$$\psi\sigma$$
 replaces $\frac{\phi}{\psi}$

(given the congruence rule!)

From Rules to Axioms: Example

Monotonicity rule

$$\frac{a \to b}{\Box a \to \Box b}$$

κ(a)	κ(b)	$\sigma(a)$	$\sigma(b)$	ψσ
Т	Т	а	a∨b	$\Box a \rightarrow \Box (a \lor b)$
\perp		a∧b	b	$\Box(a \land b) \rightarrow \Box b$
\perp	Т	a∧b	a∨b	$\square(a \land b) \rightarrow \square(a \lor b)$

The Hard Part: Duality and Model Constructions

Goal. If ϕ is valid in Alg(\mathcal{R}) then ϕ is valid in Coalg(\mathcal{T}) (subject to coherence $\mathcal{R} \leftrightarrow \mathcal{T}$).

Dually:

- ightharpoonup if ϕ is satisfiable in some algebra
- then ϕ is satisfiable in some *finite* algebra (*filtration*)
- ▶ then ϕ is satisfiable in some *T*-coalgebra (*model construction*)

First Question. Given Λ -algebra A, what is the carrier C of a model?

Interlude: Stone Duality

First Goal. From a Boolean algebra A construct a set of "points" Uf(A) such that $A \subseteq \mathcal{P}(Uf(A))$ subalgebra

Second Goal. equip Uf(A) with a T-structure γ : Uf(A) $\to T$ Uf(A)

Heuristics.

Suppose that we have already constructed Uf(A) such that $A \subseteq \mathcal{P}(Uf(A))$ is a sub-algebra.

- ▶ every $u \in Uf(A)$ determines a subset $\{a \in A \mid u \in a\} \subseteq A$
 - the set of propositions true at u
- ▶ these sets are "saturated" in a way that we will make precise

Ultrafilters

Let A be a Boolean algebra.

Partial Order on A

$$a \le b \iff a \land b = a$$

Filters are subsets $F \subseteq A$ that are

- ▶ up-closed: $a \in F$ and a < b implies $b \in F$
- ▶ meet-closed: $a, b \in F$ implies $a \land b \in F$

Ultrafilters are filters $F \subseteq A$ that are

- ▶ proper, i.e. $\bot \notin F$; and
- ▶ $a \lor b \in F$ implies $a \in F$ or $b \in F$.
- ▶ Equivalently: for each a, exactly one of a, $\neg a$ is in F
- ► Equivalently: *F* is a maximal proper filter

Handy Things About Ultrafilters

Ultrafilters exist. Let A be a Boolean algebra, $F \subseteq A$ such that

$$a_1 \wedge \cdots \wedge a_n \neq \bot$$

for all (finitely many) $a_1, \ldots, a_n \in F$. Then there exists an ultrafilter $u \subseteq A$ with $F \subseteq u$.

Proof. Extend F to a (proper) filter, use Zorn's lemma (!).

Ultrafilters Determine Truth. Let A be a Boolean algebra and $a \in A$. Then $a = \top$ iff $a \in u$ for all $u \in Uf(A)$.

Proof. If not, $\neg a \neq \bot$ extends to an ultrafilter u with $a \notin u$.

From Boolean Algebras to Powerset Algebras

Let A be a Boolean algebra and Uf(A) the set of ultrafilters on A. Define

$$j: A \to \mathcal{P}(\mathsf{Uf}(A))$$

 $a \mapsto \hat{a} = \{u \in \mathsf{Uf}(A) \mid a \in u\}.$

This is clearly a Boolean algebra morphism.

Stone's Theorem. *j* is injective

From Boolean Algebras to Powerset Algebras

Let A be a Boolean algebra and Uf(A) the set of ultrafilters on A. Define

$$j: A \to \mathcal{P}(\mathsf{Uf}(A))$$

 $a \mapsto \hat{a} = \{u \in \mathsf{Uf}(A) \mid a \in u\}.$

This is clearly a Boolean algebra morphism.

Stone's Theorem. j is injective (and hence makes A a subalgebra of $\mathcal{P}(Uf(A))$)

Stone Duality in the Finite

...is much more harmless:

- ▶ *Atoms* in a BA are minimal elements $\neq \bot$.
- ▶ A finite, $u \in Uf(A)$: $\land u$ atom, $u = \{b \in A \mid b \ge \land u\}$
- ▶ So Uf(A) \cong atoms in A
- ▶ $j : A \cong \mathcal{P}(Uf(A))$, i.e. j is also surjective:
 - ▶ **Proof:** $\{a_1, ..., a_n\} = j(a_1 \lor \cdots \lor a_n).$

Roadmap for Completeness

Goal.

 ϕ coalgebraically *valid* implies ϕ *derivable*.

Contrapositive.

If ϕ is *not derivable*, then $\neg \phi$ is coalgebraically *satisfiable*.

Algebraic Completeness.

If ϕ is *not derivable*, then $\neg \phi$ is *algebraically* satisfiable.

Need to show.

Algebraic satisfiability implies coalgebraic satisfiability.

Coherent Structures

Goal. Given finite Λ -algebra A, construct $\gamma : Uf(A) \to TUf(A)$ with

$$\mathsf{Uf}(A), u \models \phi \iff \llbracket \phi \rrbracket_A \in U$$

viewing $A \cong \mathcal{P}(Uf(A))$ as a powerset algebra.

Definition. γ : Uf(A) \rightarrow TUf(A) *coherent* if

$$[\![\circlearrowleft]\!]_A a \in u \iff \gamma(u) \in [\![\circlearrowleft]\!]_{\mathsf{Uf}(A)} \hat{a}$$

where for $a \in A$ we put $\hat{a} = \{u \in Uf(A) \mid a \in u\}$.

The Truth Lemma

Truth Lemma. Let $\gamma: Uf(A) \to TUf(A)$ be coherent. Then

$$\mathsf{Uf}(A), u \models \phi \iff \llbracket \phi \rrbracket_A \in u \iff u \in \widehat{\llbracket \phi \rrbracket_A}$$

(i.e.
$$\llbracket \phi \rrbracket_{\mathsf{Uf}(A)} = \widehat{\llbracket \phi \rrbracket_A}$$
)

Proof. Induction on formulae using coherence for modal operators:

$$\mathsf{Uf}(A), u \models \heartsuit \phi \iff \gamma(u) \in \llbracket \heartsuit \rrbracket_{\mathsf{Uf}(A)}(\llbracket \phi \rrbracket_{\mathsf{Uf}(A)}) \stackrel{\mathsf{IH}}{=} \llbracket \heartsuit \rrbracket_{\mathsf{Uf}(A)}\widehat{\llbracket \phi \rrbracket_{A}}$$

$$\stackrel{\mathsf{coherence}}{\iff} \underbrace{\llbracket \heartsuit \rrbracket_{A} \llbracket \phi \rrbracket_{A}} \in u$$

$$= \llbracket \heartsuit \phi \rrbracket_{A}$$

Do Coherent Structures Exist?

Approach. Let ϕ be satisfiable in Alg(\mathcal{R})

- ▶ i.e. $\llbracket \phi \rrbracket_A \neq \bot$ for some Λ -algebra A
- ▶ construct coherent structure γ : Uf(A) \rightarrow TUf(A)
- ▶ then there is $u \in Uf(A)$ so that $Uf(A), u \models \phi$
- this shows that algebraic satisfiability implies coalgebraic satisfiability.

Next Step. Coherent structures exist on finite Uf(A).

Recall. \mathcal{R} is one-step sound if $Log_1(\mathcal{R}) \subseteq Log_1(\mathcal{T})$.

One-Step Completeness. \mathcal{R} is one-step complete with respect to \mathcal{T} if $Log_1(\mathcal{T}) \subseteq Log_1(\mathcal{R})$.

One-Step Completeness: Intuition

Idea. \mathcal{R} is one-step complete if \mathcal{R} is strong enough to derive all one-step validities $\phi \in \text{Prop}(\Lambda(\text{Prop}(\mathcal{V})))$.

Equivalent Characterisation. \mathcal{R} is one-step complete, if:

- ▶ for all sets X and all valuations $\theta: \mathcal{V} \to \mathcal{P}(X)$
- ▶ for all $\rho \in \mathsf{Prop}(\Lambda(\mathcal{V}))$ with $\llbracket \rho \rrbracket \theta = TX$

we have that ρ is derivable

- from all $\psi\sigma$ where $\phi/\psi\in\mathcal{R}$ and $[\![\phi\sigma]\!]\theta=\top$
- using only propositional reasoning.

One-Step Completeness: Examples

Example. Take the modal logic K and the set of rules comprising

$$\frac{a_1,\ldots,a_n\to a_0}{\Box a_1\wedge\cdots\wedge\Box a_n\to\Box a_0}$$

for each $n \ge 0$ (clearly derivable in K). If

$$TX, \sigma \models \bigwedge_i \Box p_i \rightarrow \bigvee_j \Box q_j$$

then

$$\bigcap_i \sigma(p_i) \in \bigcap_i \llbracket \Box \rrbracket_X(\sigma(p_i)) \subseteq \bigcup_i \llbracket \Box \rrbracket_X(\sigma(q_i))$$

- i.e. there is j such that

$$\bigcap_i \sigma(p_i) \subseteq \sigma(q_j)$$

which we use as rule premiss in a one-step deduction.

More Examples

The rule sets seen previously (graded / probabilistic / coalition / conditional logic) are one-step complete.

(Not always as easily.)

Coherent Structures on Finite Algebras

Existence Lemma. Let $A \in Alg(\mathcal{R})$ *finite*, \mathcal{R} one-step complete for T. Then there is a coherent structure $\gamma : Uf(A) \to TUf(A)$.

Proof. For $u \in Uf(A)$ we just need to pick $\gamma(u)$ from the set

$$\bigcap_{\|\heartsuit\|_{a\in U}} \|\heartsuit\|_{\mathsf{Uf}(A)} \hat{a} \cap \bigcap_{\|\heartsuit\|_{a\notin U}} (T\mathsf{Uf}(A) - \|\heartsuit\|_{\mathsf{Uf}(A)} \hat{a}).$$

If this set were empty, the (finite!) clause

$$\chi = \bigvee_{\llbracket \heartsuit \rrbracket a \in u} \neg \heartsuit p_a \lor \bigvee_{\llbracket \heartsuit \rrbracket a \notin u} \heartsuit p_a$$

would be valid over TX under $\hat{\theta}(p_a) = \hat{a}$.

Existence Lemma (cont'd)

One-step completeness: $\chi = \bigvee_{\llbracket \heartsuit \rrbracket a \in u} \neg \heartsuit p_a \lor \bigvee_{\llbracket \heartsuit \rrbracket a \notin u} \heartsuit p_a$ valid under $\hat{\theta}$, hence propositionally derivable from

$$\psi\sigma$$
 $(\phi/\psi \in \mathcal{R}, \qquad [\![\phi\sigma]\!]\hat{\theta} = \top = X$ $\iff \theta(\phi\sigma) = \top \text{ in } A \text{ where } \theta(p_a) = a$

Copy this derivation to show $\theta(\chi) = \top$ in A, hence $\theta(\neg \chi) = \bot$ but by construction $\theta(\neg \chi) \in u$, contradiction to u proper.

Filtrations, or: chopping off the infinite

Last Step. If $[\![\phi]\!]\theta \neq \bot$ in some Λ -algebra A, then A can be chosen finite.

Filtrations. Let A be a Λ -algebra, $B \subseteq A$ a finite Boolean sub-algebra, and $u \subseteq E(u) \in Uf(A)$ for all $u \in Uf(B)$. Define $[\![\heartsuit]\!]_B : B \to B$ by

$$\llbracket \heartsuit \rrbracket_B b = \bigvee \{ \bigwedge u \mid u \in \mathsf{Uf}(B), \llbracket \heartsuit \rrbracket_A b \in E(u) \}$$

Then $(B, \lceil \cdot \rceil)$ is a *filtration* of A. We have

$$\llbracket \phi \rrbracket_B \theta = \llbracket \phi \rrbracket_A \theta$$

whenever $\llbracket \rho \rrbracket_A \theta \in B$ for all subformulae ρ of ϕ .

Proof. Induction on formulae, and using properties of ultrafilters.

Filtrations Preserve Rules

Non-Iterative Rules are of the form ϕ/ψ where $\mathrm{rk}(\phi)=0$ and $\mathrm{rk}(\psi)\leq 1$ (and $\mathrm{rk}(\rho)$ is the nesting depth of modal operators). (Generalizes rank-1)

Filtrations preserve non-iterative rules. (cf. Lewis 1974) Let A be a Λ -algebra, $B \subseteq A$ a filtration and ϕ/ψ a non-iterative rule. If ϕ/ψ is valid on A, then ϕ/ψ is valid on B.

Proof. We may assume that ψ is a clause over literals $\heartsuit p$ and variables $p \in \mathcal{V}$. If $B, \theta \models \phi$, then $A, \theta \models \phi$ whence $A, \theta \models \psi$. For $u \in \mathsf{Uf}(B)$, at least one disjunct I of ψ lies in E(u)

- ▶ $l = \pm p$: $\theta(p) \in u \iff \theta(p) \in E(u)$, since $\theta(p) \in B$.
- $I = \pm \heartsuit p : \llbracket \heartsuit \rrbracket_B \theta(p) \in u \iff \bigwedge u \leq \llbracket \heartsuit \rrbracket_B \theta(p) \iff \llbracket \heartsuit \rrbracket_A \theta(p) \in E(u)$

Putting Things Together

Let \mathcal{R} be one-step sound and complete with respect to \mathcal{T} .

Main Theorem. The following are equivalent for $\phi \in \mathcal{F}(\Lambda)$

- 1. $\phi \in \mathsf{Log}(\mathcal{R})$
- 2. $\phi \in \text{Log}(T)$
- 3. $\llbracket \phi \rrbracket \theta = \top$ in all finite $A \in \mathsf{Alg}(\mathcal{R})$
- 4. $\llbracket \phi \rrbracket \theta = \top$ in all $A \in \mathsf{Alg}(\mathcal{R})$

Proof. Using coalgebraic soundness, finite model construction, filtration, and Lindenbaum algebra.

Dissecting Things Further: the FMP

Observation. Turning finite algebras into models gives *finite* models.

Small Model Property. If $\phi \in \mathcal{F}(\Lambda)$ is satisfiable, then ϕ is satisfiable on a frame (C, γ) with $|C| \leq 2^{|\phi|}$

Proof. If ϕ is satisfiable, then ϕ is satisfiable in Lindenbaum algebra, hence in the filtration on the Boolean subalgebra B generated by the subformulae of ϕ . By Duality, ϕ satisfiable in Uf(B), which has the claimed size (atoms can be written as finite conjunctions of subformulas of ϕ).

Dissecting Even Further: Non-Iterative Logics

Preservation Lemma. Let *A* be a finite Λ-algebra, and ϕ/ψ a non-iterative rule valid on *A*. Then

$$\mathsf{Uf}(\mathsf{A}), u, \theta \models \psi \text{ whenever } \mathsf{Uf}(\mathsf{A}), u, \theta \models \phi$$

for all $u \in Uf(A)$ where $Uf(A) = (Uf(A), \gamma)$ is the coherent structure on Uf(A).

Proof. Extending the truth lemma we have

$$\mathsf{Uf}(A), u, \hat{\theta} \models \phi \iff u \in \theta(\phi)$$

for all valuations $\theta: \mathcal{V} \to A$. The claim follows as every valuation $\mathcal{V} \to \mathcal{P}(\mathsf{Uf}(A))$ arises as $\hat{\theta}$ for some $\theta: \mathcal{V} \to A$ as A is *finite*, hence $\mathcal{P}(\mathsf{Uf}(A)) \cong A$..

Non-Iterative Completeness

The *model class* of a set \mathcal{R}_1 of non-iterative rules

$$\mathsf{Frm}(\mathcal{R}_1) = \{ \textit{C} \in \mathsf{Coalg}(\textit{T}) \mid \textit{C}, \sigma \models \psi \text{ whenever } \textit{C}, \sigma \models \phi \ (\sigma : \mathcal{V} \rightarrow \mathcal{P}(\textit{C})) \}$$

is the set of frames that validate all rules in \mathcal{R}_1 .

Completeness for restricted Frame Classes. Let \mathcal{R}_0 be one-step sound and complete, and \mathcal{R}_1 be non-iterative. Then

$$Log(\mathcal{R}_0 \cup \mathcal{R}_1) = Log(Frm(\mathcal{R}_1))$$

that is, $\mathcal{R}_0 \cup \mathcal{R}_1$ is sound and complete with respect to the class of frames that validate \mathcal{R}_1 .

Final Question for Today

Q. We get completeness from one-step completeness. But do one-step complete rule sets even exist?

Proposition. The set of all one-step sound rank-1 rules is one-step complete.

Proof. Let
$$\llbracket \psi \rrbracket \theta = TX$$
 for $\theta : \mathcal{V}_0 \to \mathcal{P}(X)$ and finite $\mathcal{V}_0 \subseteq \mathcal{V}$. Put $\phi = \bigwedge \{ \chi \in \mathsf{Prop}(\mathcal{V}_0) \mid \llbracket \chi \rrbracket \theta = \top \}$. Then ϕ/ψ is one-step sound.

Summary for Today. Coalgebraic Logics can always be axiomatised by rank-1 rules / axioms. Tomorrow, we'll do this (more) efficiently!