The Many Faces of Modal Logic Day 2: Unifying Semantics

Dirk Pattinson

Australian National University, Canberra

(Slides based on a NASSLLI 2014 Tutorial and are joint work with Lutz Schröder)

LAC 2018

Modal Logics are Coalgebraic

Why Coalgebras?

 because they provide a *uniform* semantics for a large class of modal logics

So which logics are amenable to colgebraic semantics?

► Of course, K. But also: neighbourhood logic, coalition logic, probabilistic logic, graded logic, conditional logic . . .

And what can you do at this level of generality?

► The usual stuff: completeness, complexity, Hennessy-Milner, interpolation – but *generically* and *compositionally*

Yesterday's Cook's Tour Through Modal Logics

Kripke Modal Logic

- $\triangleright \Diamond \phi$
- $ightharpoonup \phi$ can be true

Conditional Logic

- $\bullet \phi \Rightarrow \psi$
- \blacktriangleright ψ if ϕ

Coalition Logic

- ► [C] *\phi*
- \triangleright C can force ϕ

Graded Modal Logic

- $\triangleright \Diamond_k \phi$
- ϕ in > k successors

Probabilistic Modal Logic

- $ightharpoonup L_p \phi$
- ϕ holds with probability $\geq p$

Yesterday's Cook's Tour Through Modal Logics

Kripke Modal Logic

Conditional Logic

Coalition Logic

 $\triangleright \Diamond \phi$

 $\bullet \phi \Rightarrow \psi$

 \triangleright $[C]\phi$

 \triangleright ϕ can be true

 \triangleright ψ if ϕ

 \triangleright C can force ϕ

Similarities

- same questions: Completeness, decidability, complexity, . . .
- combinations: probabilities and non-determinism, uncertainty in games

Graded Modal Logic

- $\triangleright \Diamond_k \phi$
- \blacktriangleright ϕ in > k successors

Probabilistic Modal Logic

- $ightharpoonup L_{D}\phi$
- \triangleright ϕ holds with probability > p

A Cook's Tour Through Modal Semantics

Kripke Frames.

$$C \to \mathcal{P}(C)$$

Multigraph Frames.

$$C o \mathcal{B}(C)$$

$$\mathcal{B}(X) = \{f : X \to \mathbb{N} \mid \text{supp}(f) \text{ finite}\}\$$

Probabilistic Frames.

$$C \to \mathcal{D}(C)$$

$$\mathcal{D}(X) = \{ \mu : X \to [0,1] \mid \sum_{x \in X} \mu(x) = 1 \}$$

More Examples Neighbourhood Frames.

$$C \rightarrow \mathcal{PP}(C) = \mathcal{N}(C)$$

mapping each world $c \in C$ to a set of neighbourhoods

Game Frames over a set N of agents

$$C \to \{((S_n)_{n \in \mathbb{N}}, f) \mid f : \prod_n S_n \to C\} = \mathcal{G}(C)$$

associating to each state $c \in C$ a *strategic game* with strategy sets S_n and outcome function f

Conditional Frames.

$$C \rightarrow \{f : \mathcal{P}(C) \rightarrow \mathcal{P}(C) \mid f \text{ a function}\} = \mathcal{C}(C)$$

where every state yields a *selection function* that assigns successor sets to conditions

Coalgebras and Modalites: A Non-Definition

Coalgebras are about *successors*. *T*-coalgebras are pairs (C, γ) where

$$\gamma: C \to TC$$

maps states to successors. Coalg(T) is the class of T-coalgebras.

states: elts
$$c \in C$$

succ's: elts $\gamma(c) \in TC$

prop's of states: subsets
$$P \subseteq C$$
 prop's of successors: subsets $[\![\heartsuit]\!](P) \subseteq TC$

Modalities are about properties of successors: predicate liftings

$$\llbracket \heartsuit \rrbracket_{\mathcal{C}} : \mathcal{P}(\mathcal{C}) \to \mathcal{P}(\mathcal{TC})$$

Intended use:

$$c \models \heartsuit \phi$$
 iff $\gamma(c) \in \llbracket \heartsuit \rrbracket_C(\llbracket \phi \rrbracket_C)$

Example: Kripke Frames

Intuition. In $\gamma: C \to \mathcal{P}(C)$ think of $\gamma(c)$ as "the" successor. Then:

$$\begin{array}{l} c \models \Box \phi \iff \text{ all elements of "the" successor } \gamma(c) \text{ of } c \text{ satisfy } \phi \\ \iff \text{"the" successor } \gamma(c) \text{ of } c \text{ is a subset of } \llbracket \phi \rrbracket \\ \iff \gamma(c) \in \{B \subseteq C \mid B \subseteq \llbracket \phi \rrbracket \} \end{array}$$

→ Predicate lifting

$$\llbracket\Box\rrbracket_C:\mathcal{P}(C)\to\mathcal{P}\mathcal{P}(C)$$

$$A\mapsto\{B\subseteq C\mid B\subseteq A\}.$$

→ Satisfaction

$$c \models \Box \phi \iff \gamma(c) \in \llbracket \Box \rrbracket_{C}(\llbracket \phi \rrbracket)$$

Another Example: Neighbourhood Frames

Intuition. In $\gamma: C \to \mathcal{PP}(C)$, $\gamma(c)$ contains the *neighbourhoods* of c

$$c \models \Box \phi \iff \llbracket \phi \rrbracket \in \gamma(c)$$
$$\iff \gamma(c) \in \{ N \in \mathcal{N}(C) \mid \llbracket \phi \rrbracket \in N \}.$$

→ Predicate lifting

$$\llbracket \Box \rrbracket_{\mathcal{C}} : \mathcal{P}(\mathcal{C}) \to \mathcal{P}(\mathcal{N}(\mathcal{C})), \quad A \mapsto \{N \in \mathcal{N}(\mathcal{C}) \mid A \in N\}$$

→ Satisfaction

$$c \models \Box \phi \iff \gamma(c) \in \llbracket \Box \rrbracket_C(\llbracket \phi \rrbracket_C)$$

(Recall the definition for Kripke Frames?)

Probabilistic Frames

Intuition. In $\gamma: C \to \mathcal{D}(C)$, $\gamma(c)$ is a *random successor* of *c*.

$$c \models L_{p}\phi \iff \gamma(c)(\llbracket \phi \rrbracket) \geq p$$

$$\iff \gamma(c) \in \{\mu \in \mathcal{D}(C) \mid \mu(\llbracket \phi \rrbracket) \geq p\}.$$

→ Predicate lifting

$$[\![L_p]\!]_{\mathcal{C}}: \mathcal{P}(\mathcal{C}) \to \mathcal{P}(\mathcal{D}\mathcal{C}), \quad A \mapsto \{\mu \in \mathcal{D}(\mathcal{C}) \mid \mu(A) \geq p\}$$

→ Satisfaction

$$c \models L_p \phi \iff \gamma(c) \in \llbracket L_p \rrbracket_C(\llbracket \phi \rrbracket_C)$$

(Recall Kripke frames and neighbourhood frames?)

Conditional Frames

Intuition. In $\gamma: C \to (\mathcal{P}(C) \to \mathcal{P}(C))$, $\gamma(c)(A)$ are the most typical alternatives to c under (non-monotonic) condition A

$$c \models \phi \Rightarrow \psi \iff \gamma(c)(\llbracket \phi \rrbracket) \subseteq \llbracket \psi \rrbracket \\ \iff \gamma(c) \in \{ f \in \mathcal{C}W \mid f(\llbracket \phi \rrbracket) \subseteq \llbracket \psi \rrbracket \}.$$

→ Binary predicate lifting

$$[\![\Rightarrow]\!]_W : \mathcal{P}(W) \times \mathcal{P}(W) \to \mathcal{P}(\mathcal{C}W), \quad (A,B) \mapsto \{f \in \mathcal{C}W \mid f(A) \subseteq B\}$$

→ Satisfaction

$$c \models \phi \Rightarrow \psi \iff \gamma(c) \in \llbracket \Rightarrow \rrbracket_C(\llbracket \phi \rrbracket_C, \llbracket \psi \rrbracket_C)$$

More Examples

Graded Modal Logic over multigraph frames

$$\gamma: C \to \mathcal{B}C = \{f: C \to \mathbb{N} \mid \text{supp}(f) \text{ finite}\}$$

Predicate lifting for "more than k successors validate ..."

$$\llbracket \lozenge_k \rrbracket_C(A) = \{ f : C \to \mathbb{N} \mid \sum_{a \in A} f(a) \ge k \}$$

Coalition Logic over game frames

$$\gamma: C \to \mathcal{G}C = \{(f, (S_n)_{n \in N} \mid f: \prod_n S_n \to C\}$$

Predicate lifting for "coalition $K \subseteq N$ can force ..."

$$\mathbb{I}[K]]_{\mathcal{C}}(A) = \{ (f, (S_n)) \in \mathcal{GC} \mid
\exists \sigma_K \in \prod_K S_i. \forall \sigma_{N-K} \in \prod_{N-K} S_k. (f(\sigma_K, \sigma_{N-K}) \in A) \}$$

Satisfaction in either case:

$$c \models \heartsuit \phi \iff \gamma(c) \in \llbracket \heartsuit \rrbracket_C(\llbracket \phi \rrbracket_C)$$

Kripke Frames: Bisimilarity

$$S \subseteq C \times D$$
 simulation if for all *cSd*

- $ightharpoonup c \in \pi(p) \Longrightarrow d \in \pi(p)$
- $\qquad \qquad \forall \, c' \in \gamma(c). \, \exists \, d' \in \gamma(d). \, c' S d'$

S bisimulation \iff *S*, S^- simulations

c, d bisimilar \iff cSd for some bisimulation S.

Lemma: Bisimilar states satisfy the same modal formulae

Kripke Frames: p-Morphisms and Bisimilarity

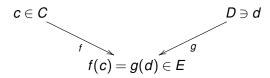
p-morphisms = functions f : C → D s.t.

$$C \xrightarrow{f} D \downarrow \delta$$

$$\mathcal{P}(C) \xrightarrow{\mathcal{P}(f)} \mathcal{P}(D)$$

where $\mathcal{P}(f)(A) = f[A] = \{f(a) \mid a \in A\}.$

Lemma: Two states are bisimilar if and only if they can be identified by *p*-morphisms:



Behavioural Equivalence, Coalgebraically **Defn.** $f:(C,\gamma) \to (D,\delta)$ (coalgebra homo-)morphism if

 $\begin{array}{ccc}
C & \xrightarrow{f} & D \\
\gamma \downarrow & & \downarrow \delta \\
TC & \xrightarrow{Tf} & TD
\end{array}$

States c,d are behaviourally equivalent ($c \simeq d$) if they can be identified by a morphism.

Ooops! How is T(f) defined in general?

Answer: Require *T* to be a *functor*, i.e. $Tf : TA \rightarrow TB$ if $f : A \rightarrow B$ and

$$T(id_A) = id_{TA} \quad T(g \circ f) = Tg \circ Tf$$

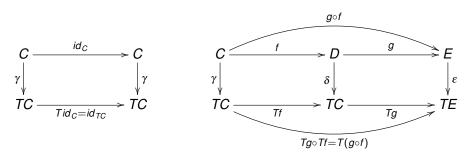
for $A \in \mathbf{Set}$ and composable functions f, g.

Good for us. The action of *T* on functions is usually canonical.

A Wee Bit of Structure Theory

Abstract Coalgebra: Prove statements about T-coalgebras without knowing T.

Simple Stuff: The identity is a morphism and morphisms compose.



Harder Stuff Behavioural equivalence is transitive and preserved by morphisms. (Try to prove it!)

Modalities and Behavioural Equivalence

"Good" Modalities are compatible. This one is from hell:

$$\llbracket \Box \rrbracket_{C}(A) = \begin{cases} \emptyset & C = \mathbb{N} \\ TC & \text{o/w} \end{cases}$$

Defn. An *n-ary predicate lifting* for $T: \mathbf{Set} \to \mathbf{Set}$ is a family $(\lambda_X)_{X \in \mathbf{Set}}$ of functions $\lambda_X : \mathcal{P}(X)^n \to \mathcal{P}(TX)$ such that

$$(\mathcal{P}X)^{n} \xrightarrow{\lambda_{X}} \mathcal{P}(TX)$$

$$(f^{-1})^{n} \downarrow \qquad \qquad \uparrow (Tf)^{-1}$$

$$(\mathcal{P}Y)^{n} \xrightarrow{\lambda_{X}} \mathcal{P}(TY)$$

commutes for all $f: X \to Y$.

 $(\lambda: \mathcal{Q}^n \to \mathcal{Q} \circ T^{op} \text{ is } \textit{natural} \text{ for } \mathcal{Q}: \mathbf{Set}^{op} \to \mathbf{Set} \text{ contravariant powerset)}$

Naturality: Examples

► Kripke frames / K:

$$\mathcal{P}(f)(A) \in \llbracket\Box\rrbracket(B) \iff f[A] \subseteq B$$
$$\iff A \subseteq f^{-1}[B] \iff A \in \llbracket\Box\rrbracket(f^{-1}[B]).$$

► Kripke frames / Graded Modal Logic: $f: \{0,1\} \rightarrow \{0\}$:

$$\mathcal{P}(f)(\{0,1\}) \notin [\![\lozenge_1]\!](\{0\})$$
 but $\{0,1\} \in [\![\lozenge_1]\!](f^{-1}[\{0\}])$

but

$$\mathcal{B}(f)(\mu) \in \llbracket \lozenge_k \rrbracket(B) \iff \mathcal{B}(f)(\mu)(B) = \mu(f^{-1}[B]) > k$$
$$\iff \mu \in \llbracket \lozenge_k \rrbracket(f^{-1}[B])$$

Finally: Proper Definitions

Defn. (Modal) signature Λ = set of finitary modal operators (for readability: unary). Λ -formulas:

$$\mathcal{F}(\Lambda)\ni\phi,\psi::=\rho\mid\bot\mid\neg\phi\mid\phi\wedge\psi\mid\heartsuit(\phi_1,\ldots,\phi_n)\qquad(\rho\in V,\heartsuit\in\Lambda\;\textit{n-}\mathsf{ary})$$

∧-structure:

- ▶ Functor $T : \mathbf{Set} \to \mathbf{Set}$
- ▶ *n*-ary predicate lifting $\llbracket \heartsuit \rrbracket$ for $\heartsuit \in \Lambda$ *n*-ary

Modal Semantics over $\gamma: C \to TC$, $\sigma: \mathcal{V} \to \mathcal{P}(C)$:

$$C, c, \sigma \models \rho \text{ iff } c \in \sigma(\rho)$$

$$C, c, \sigma \models \heartsuit(\phi_1, \dots, \phi_n) \text{ iff } \gamma(c) \in \llbracket \heartsuit \rrbracket_C(\llbracket \phi_1 \rrbracket_{C,\sigma}, \dots, \llbracket \phi_n \rrbracket_{C,\sigma})$$

$$C, \sigma \models \phi \text{ iff } C, c\sigma \models \phi \text{ for all } c \in C$$

$$C \models \phi \text{ iff } C, \sigma \models \phi \text{ for all } \sigma : \mathcal{V} \to \mathcal{P}(C)$$

where
$$\llbracket \phi \rrbracket_{C,\sigma} = \{ c \in C \mid C,c,\sigma \models \phi \}$$

Logical Equivalence vs Behavioural Equivalence

Defn. States c, d logically equivalent if

$$c \models \phi \iff d \models \phi$$
 for all $\phi \in \mathcal{F}(\Lambda)$

Lemma. Morphisms f preserve semantics: c, f(c) logically equivalent **Proof**:

$$f(c) \models \heartsuit \phi \iff \delta(f(c)) = Tf(\gamma(c)) \in \llbracket \heartsuit \rrbracket_D \llbracket \phi \rrbracket_D$$
$$\iff \gamma(c) \in \llbracket \heartsuit \rrbracket_D f^{-1} \llbracket \llbracket \phi \rrbracket_D \rrbracket \stackrel{\mathsf{IH}}{=} \llbracket \heartsuit \rrbracket_D \llbracket \phi \rrbracket_C \iff c \models \heartsuit \phi$$

Cor. Modal logic is invariant under behavioural equivalence:

$$c \simeq d \Longrightarrow c, d$$
 logically equivalent

(*Converse*, i.e. the *Hennessy-Milner property*, holds over *finitely branching* systems if there are *enough* modalities)

E.g. graded modalities are invariant over \mathcal{B} (but not over \mathcal{P} !)

Coalgebras and Their Logics

What are the laws for reasoning about probabilities / strategic games / non-monotonic conditionals . . . ?

Defn. A *logic* over a signature Λ is a set $L \subseteq \mathcal{F}(\Lambda)$ of formulae that

- contains all propositional tautologies
- ▶ is closed under modus ponens, uniform substitution, and *congruence*

$$\frac{\phi \leftrightarrow \psi \in L}{\heartsuit \phi \leftrightarrow \heartsuit \psi \in L}$$

$$\mathsf{Log}(T) = \{ \phi \in \mathcal{F}(\Lambda) \mid C \models \phi \text{ for all } T\text{-coalgebras } C \}$$
 is a logic. Write $T \models \phi \text{ for } \phi \in \mathsf{Log}(T)$.

Logics, Syntactically Defined

Defn. A Λ-*rule* is a pair ϕ/ψ of Λ-formulae, and ϕ/ψ is *admissible* in a logic L if $\psi\sigma \in L$ whenever $\phi\sigma \in L$ and σ is a substitution.

$$\mathsf{Log}(\mathcal{R}) = \bigcap \{L \subseteq \mathcal{F}(\mathsf{\Lambda}) \mid L \text{ a logic}, \phi/\psi \text{ admissible in } L \text{ for all } \phi/\psi \in \mathcal{R}\}$$

is the logic generated by the set \mathcal{R} of rules. Write $\mathcal{R} \vdash \phi$ if $\phi \in Log(\mathcal{R})$.

Goal. Given a Λ -structure T, find rules \mathcal{R} such that $Log(T) = Log(\mathcal{R})$.

Roadmap.

- ▶ solve this *generically*, i.e. without looking into *T*
- ▶ instead, postulate *coherence conditions* linking \mathcal{R} and \mathcal{T} .

Soundness

 \mathcal{R} *sound* : \iff Everything that is provable is true: $Log(\mathcal{R}) \subseteq Log(\mathcal{T})$

Lemma. \mathcal{R} is sound if

$$C, \sigma \models \psi$$
 whenever $C, \sigma \models \phi$ for all $\phi/\psi \in \mathcal{R}, \sigma : \mathcal{V} \rightarrow \mathcal{P}(C)$

Slogan. The system is sound if each rule is sound

Aside on Log(\mathcal{R}). Log(\mathcal{R}) = *provable* formulae, inductively:

- all instances of propositional tautologies are provable.
- if $\mathcal{R} \vdash \phi \sigma$, then $\mathcal{R} \vdash \psi \sigma$ for all $\phi/\psi \in \mathcal{R}$
- ▶ if $\mathcal{R} \vdash \phi \rightarrow \psi$, $\mathcal{R} \vdash \phi$, then $\mathcal{R} \vdash \psi$
- ▶ if $\mathcal{R} \vdash \phi \leftrightarrow \psi$ then $\mathcal{R} \vdash \heartsuit \phi \leftrightarrow \heartsuit \psi$

Examples

Modal Logic K

Neighbourhood Frames

$$\frac{p}{\Box p} \qquad \frac{p \land q \to r}{\Box p \land \Box q \to \Box r}$$

$$\dfrac{ extit{p} \leftrightarrow extit{q}}{\Box extit{p}
ightarrow \Box extit{q}}$$

Probabilistic Modal Logic

$$\frac{p}{L_{0}p} \qquad \frac{\neg p \lor \neg q}{\neg L_{u}p \lor \neg L_{v}q} (u+v>1) \qquad \frac{p \lor q}{L_{u}p \lor L_{v}q} (u+v=1)
\frac{\sum_{i=1}^{r} 1_{p_{i}} = \sum_{j=1}^{s} 1_{\bar{q}_{j}}}{\bigwedge_{i=1}^{r} L_{u_{i}}p_{i} \land \bigwedge_{j=2}^{s} L_{(1-v_{j})}q_{j} \to L_{v_{1}}q_{1}} (\sum_{j=1}^{s} v_{j} = \sum_{i=1}^{r} u_{i})$$

where $\bar{d}_1 = d_1$ and $\bar{d}_j = \neg d_j$ for $j \ge 2$.

Observation. Propositional premiss, modal conclusion.

More Examples

Coalition Logic for pairwise disjoint sets C_i of coalitions:

$$\frac{\bigvee_{i=1,\dots,n}\neg p_i}{\bigvee_{i=1,\dots,n}\neg [C_i]p_i} \qquad \frac{p}{[C]p} \qquad \frac{p\vee q}{[\emptyset]p\vee [N]q} \qquad \frac{\bigwedge_{i=1,\dots,n}p_i\to q}{\bigwedge_{i=1,\dots,n}[C_i]p_i\to [\bigcup C_i]q}$$

Graded Modal Logic

$$\frac{\rho \to q}{\diamondsuit_{n+1} \rho \to \diamondsuit_n q} \quad \frac{r \to \rho \lor q}{\diamondsuit_{n+k} r \to \diamondsuit_n \rho \lor \diamondsuit_k q} \quad \frac{\rho \leftrightarrow q}{\diamondsuit_k \rho \to \diamondsuit_k q}$$
$$\frac{(\rho \lor q \to r) \land (\rho \land q \to s)}{\diamondsuit_n \rho \land \diamondsuit_k q \to \diamondsuit_{n+k} r \lor \diamondsuit_0 s} \quad \frac{\neg \rho}{\neg \diamondsuit_0 \rho}$$

Conditional Logic

$$rac{q}{p \Rightarrow q} \qquad rac{q_1 \wedge q_2 o q_0}{(p \Rightarrow q_1) \wedge (p \Rightarrow q_2) o (p \Rightarrow q_0)} \qquad rac{p_1 \leftrightarrow p_2}{(p_1 \Rightarrow q) o (p_2 \Rightarrow q)}$$

Observation. Again, propositional premiss, modal conclusion

Examples: Soundness

Propn. All above rule sets are sound, i.e. $Log(\mathcal{R}) \subseteq Log(\mathcal{T})$.

Observation. All rules have the form ϕ/ψ where $\phi \in \text{Prop}(\mathcal{V})$ and $\psi \in \text{Prop}(\Lambda(\mathcal{V}))$ where

- ▶ Prop(F) are propositional combinations of elements of $F \subseteq \mathcal{F}(\Lambda)$
- $\land (F) = \{ \heartsuit \phi \mid \heartsuit \in \land, \phi \in F \}$

Defn. Rules of the above form are *one-step rules*.

Coherence Conditions 1: Soundness

Goal. Using the form of the rules, can we find a simpler condition that ensures soundness?

One-Step Logics = sets $L \subseteq \text{Prop}(\Lambda(\text{Prop}(V)))$ that

- contain all instances of propositional tautologies
- are closed under modus ponens
- ▶ contain $\heartsuit \phi \leftrightarrow \heartsuit \psi$ whenever $\phi \leftrightarrow \psi$ is a propositional tautology

One-Step Semantics. Given $\sigma: \mathcal{V} \to \mathcal{P}(X)$ we have

- ▶ $\llbracket \phi \rrbracket \sigma \subseteq X \text{ for } \phi \in \mathsf{Prop}(\mathcal{V})$
- ▶ $\llbracket \psi \rrbracket \sigma \subseteq TX$ for $\psi \in \mathsf{Prop}(\Lambda(\mathsf{Prop}(\mathcal{V})))$ where

$$\llbracket \heartsuit \phi \rrbracket \sigma = \llbracket \heartsuit \rrbracket_{X} (\llbracket \phi \rrbracket \sigma)$$

(NB: one-step semantics doesn't refer to models)

One-Step Soundness

$$\mathsf{Log_1}(T) = \{ \psi \in \mathsf{Prop}(\Lambda(\mathsf{Prop}(\mathcal{V}))) \mid \llbracket \psi \rrbracket \sigma = TX \text{ for all } \sigma : \mathcal{V} \to \mathcal{P}(X) \}$$
 is a one-step logic.

Coherence for Soundness. One-step rule ϕ/ψ admissible in one-step logic L if

$$\phi\sigma$$
 tautology $\Longrightarrow \psi\sigma\in L$.

For R set of one-step rules,

$$\mathsf{Log_1}(\mathcal{R}) := \bigcap \{ L \text{ one-step logic } | \phi/\psi \text{ admissible in } L \text{ for all } \phi/\psi \in \mathcal{R} \}$$

 \mathcal{R} one-step sound if $Log_1(\mathcal{R}) \subseteq Log_1(\mathcal{T})$.

Soundness Theorem. One-step soundness implies soundness, that is $Log(\mathcal{R}) \subseteq Log(\mathcal{T})$ whenever $Log_1(\mathcal{R}) \subseteq Log_1(\mathcal{T})$.

One-Step Soundness: Examples

Equivalent Characterisation. \mathcal{R} one-step sound iff

$$\llbracket \phi \rrbracket \sigma = X \Longrightarrow \llbracket \psi \rrbracket \sigma = TX$$

for all $\phi/\psi \in \mathcal{R}$, $\sigma : \mathcal{V} \to \mathcal{P}(X)$.

Example. For $T = \mathcal{P}$, the rule $p/\Box p$ is one-step sound: pick $\sigma : \mathcal{V} \to \mathcal{P}(X)$ such that $\sigma(p) = \top = X$. Then

$$\llbracket \Box \rho \rrbracket \sigma = \{ Y \subseteq X \mid Y \subseteq \llbracket \rho \rrbracket \sigma \} = \top = \mathcal{P}(X)$$

Observations.

- all rules that we have presented are one-step sound
- one-step soundness (a little) easier to check than soundness

Tomorrow

Key Question. Do we have enough rules to axiomatise *all* valid formulae?

Tomorrow: Completeness

- algebraic semantics: completeness is easy
- duality: from algebraic to coalgebraic models
- coherence conditions for completeness