The Distributed Ontology, Model and Specification Language (DOL) —Basic Structuring with DOL—

Oliver Kutz¹
Till Mossakowski and Fabian Neuhaus²

¹Free University of Bozen-Bolzano, Italy ²University of Magdeburg, Germany

FAKULTÄT FÜR INFORMATIK

Tutorial at LAC 2018, Melbourne, February 12–16 based on a course given with Till Mossakowski at ESSLLI 2016

Interpretations

Summary of Part 1

Intended Consequences

In Part 1 we have:

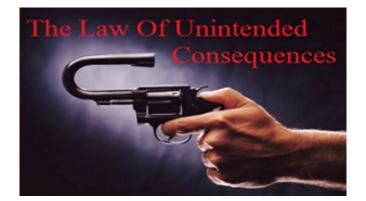
- Explored the motivation behind DOL looking at several use-cases from ontology engineering
- Introduced the basic ideas and features of DOL
- Introduced some logics we will use during the week
- Introduced the tools to be used. Ontohub and HETS.

Today

We will focus today on discussing in parallel use cases for all three logics and giving DOL syntax and semantics for:

- intended consequences (competency questions)
- model finding and refutation of lemmas
- extensions and conservative extensions
- signature morphisms and the satisfaction condition
- refinements / theory interpretations

Intended Consequences



Logical Consequence in Prop. FOL and OWL

Logic deals with what follows from what.

J.A. Robinson: Logic, Form and Function.

Logical consequence = Satisfaction in a model is preserved:

$$\varphi_1,\ldots,\varphi_n\models\psi$$

All models of the premises $\varphi_1, \ldots, \varphi_n$ are models of the conclusion ψ .

Formally: $M \models \varphi_1$ and ... and $M \models \varphi_n$ together imply $M \models \psi$.

More general form:

$$\Phi \models \psi$$
 (Φ may be infinite)

 $M \models \varphi$ for all $\varphi \in \Phi$ implies $M \models \psi$.

Intended Consequences

Countermodels in Prop, FOL and OWL

Given a question about logical consequence over Σ -sentences,

$$\Phi \stackrel{?}{\models} \psi$$

a countermodel is a Σ -model M with

$$M \models \Phi$$
 and $M \not\models \psi$

A countermodel shows that $\Phi \models \psi$ does not hold.

Intended Consequences in Propositional Logic

```
logic Propositional
spec JohnMary =
props sunny, weekend, john_tennis, mary_shopping,
       saturday %% declaration of signature
 . sunny /\ weekend => john_tennis %(when_tennis)%
  john_tennis => mary_shopping %(when_shopping)%
  saturday
                        %(it_is_saturday)%
                        %(it_is_sunny)%
  sunny
  mary_shopping %(mary_goes_shopping)% %implied
```

```
Full specification at
https://ontohub.org/esslli-2016/Propositional/
leisure_structured.dol
```

end

A Countermodel

logic Propositional spec Countermodel = props sunny, weekend, john_tennis, mary_shopping, saturday %% declaration of signature

- sunny
- **not** weekend
- . **not** john_tennis
- not mary_shopping
- . saturday

end

This specification has exactly one model, and hence can be seen as a syntactic description of this model.

Repaired Specification

```
logic Propositional
spec JohnMary =
props sunny, weekend, john_tennis, mary_shopping,
       saturday %% declaration of signature
 . sunny /\ weekend => john_tennis %(when_tennis)%
  john_tennis => mary_shopping %(when_shopping)%
                        %(it_is_saturday)%
  saturday
                        %(it_is_sunny)%
  sunny
  saturday => weekend %(sat_weekend)%
 . mary_shopping %(mary_goes_shopping)% %implied
```

end

Intended Consequences in FOL

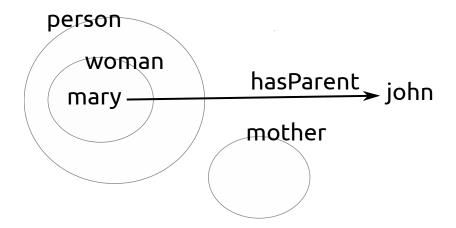
```
logic CASL.FOL=
spec BooleanAlgebra =
 sort Flem
 ops 0,1 : Elem;
     __ cap __ : Elem * Elem -> Elem, assoc, comm, unit 1;
     __ cup __ : Elem * Elem -> Elem, assoc, comm, unit 0;
 forall x,y,z:Elem
  . x cap (x cup y) = x %(absorption_def1)%
  . x cup (x cap y) = x %(absorption_def2)%
  . \times cap 0 = 0
                       %(zeroAndCap)%
  x cup 1 = 1 %(oneAndCup)%
  x = (x = y) = (x = y) = (x = z)
                         %(distr1_BooleanAlgebra)%
  x = (x = y) = (x = y) = (x = y)
                         %(distr2_BooleanAlgebra)%
  . exists x': Elem . x cup x' = 1 / x cap x' = 0
                         %(inverse_BooleanAlgebra)%
                         %(idem_cup)% %implied
  x = x = x
  x = x
                         %(idem_cap)% %implied
end
```

https://ontohub.org/esslli-2016/FOL/OrderTheory_structured.dol

Intended Consequences in OWL

```
logic OWL
ontology Family1 =
 Class: Person
  Class: Woman SubClassOf: Person
 ObjectProperty: hasChild
 Class: Mother
         EquivalentTo: Woman and hasChild some Person
  Individual: mary Types: Woman Facts: hasChild
  Individual: john
  Individual: mary
       Types: Annotations: Implied "true"^^xsd:boolean
              Mother
end
https:
//ontohub.org/esslli-2016/OWL/Family_structured.dol
```

A Countermodel



Repaired Ontology

Intended Consequences

```
logic OWL
ontology Family2 =
  Class: Person
```

Class: Woman SubClassOf: Person

ObjectProperty: hasChild

Class: Mother

EquivalentTo: Woman and hasChild some Person Individual: mary Types: Woman Facts: hasChild john

Individual: john Types: Person

Individual: mary

Types: Annotations: Implied "true"^^xsd:boolean

Mother

end

Intended Consequences

```
logic Propositional
spec JohnMary_TBox = %% general rules
 props sunny, weekend, john_tennis, mary_shopping,
        saturday %% declaration of signature
```

- . sunny /\ weekend => john_tennis %(when_tennis)%
- . john_tennis => mary_shopping %(when_shopping)%
- . saturday => weekend %(sat_weekend)%

end

```
spec JohnMary_ABox = %% specific facts
  JohnMary_TBox then
```

- %(it_is_saturday)% . saturday
- %(it_is_sunny)% . sunny
- %(mary_goes_shopping)% %implied . mary_shopping end

Implied Extensions in Prop

```
logic Propositional
spec JohnMary_variant =
  props sunny, weekend, john_tennis, mary_shopping,
        saturday %% declaration of signature
  . sunny /\ weekend => john_tennis %(when_tennis)%
  . john_tennis => mary_shopping %(when_shopping)%
  . saturdav => weekend %(sat_weekend)%
then
                         %(it_is_saturday)%
  . saturday
                         %(it_is_sunny)%
  . sunny
then %implies
  . mary_shopping
                     %(marv_goes_shopping)%
end
```

```
ontology Family1 =
Class: Person
```

Class: Woman SubClassOf: Person

ObjectProperty: hasChild

Class: Mother

EquivalentTo: Woman and hasChild some Person

Individual: john Types: Person

Individual: mary Types: Woman Facts: hasChild john

then %implies

Individual: mary Types: Mother

end

Conservative Extensions in Prop

```
logic Propositional
spec Animals =
 props bird, penguin, living
```

- . penguin => bird
- . bird => living

then %cons

prop animal

- . bird => animal
- . animal => living

end

In the extension, no "new" facts about the "old" signature follow.

Interpretations

```
spec Animals =
  props bird, penguin, living
  . penguin => bird
then % not a conservative extension
  prop animal
  . bird => animal
```

- . animal => living

end

In the extension, "new" facts about the "old" signature follow, namely

. bird => living

A Conservative Extension in FOL

```
logic CASL.F0L=
spec PartialOrder =
  sort Elem
  pred __leq__ : Elem * Elem
  . forall x:Elem. x leg x %(refl)%
  . forall x,y:Elem. x leq y /\ y leq x => x = y (antisym)
  . forall x,y,z:Elem. x \text{ leq } y / y \text{ leq } z \Rightarrow x \text{ leq } z
                                                          %(trans)%
end
spec TotalOrder = PartialOrder then
  . forall x,y:Elem. x leg y \/ y leg x
                                                     %(dichotomy)%
then %cons
  pred __ < __ : Elem * Elem</pre>
  . forall x,y:Elem. x < y \iff (x \text{ leq } y / \text{ not } x = y)
                                                          %(<-def)%
end
```

Semantics of Extensions

A Conservative Extension in OWL

```
logic OWL
ontology Animals1 =
  Class: LivingBeing
```

Class: Bird SubClassOf: LivingBeing

Class: Penguin SubClassOf: Bird

then %cons

Class: Animal SubClassOf: LivingBeing

Class: Bird SubClassOf: Animal

end

Intended Consequences

A Nonconservative Extension in OWL

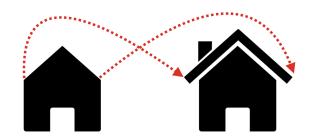
```
logic OWL
ontology Animals2 =
  Class: LivingBeing
  Class: Bird
  Class: Penguin SubClassOf: Bird
```

then %% not a conservative extension
Class: Animal SubClassOf: LivingBeing

Class: Bird SubClassOf: Animal

end

Intended Consequences



Signature morphisms in propositional logic

Definition

Given two propositional signatures Σ_1, Σ_2 a signature morphism is a function $\sigma: \Sigma_1 \to \Sigma_2$. (Note that signatures are sets.)

Definition

A signature morphism $\sigma: \Sigma_1 \to \Sigma_2$ induces a sentence translation $Sen(\Sigma_1) \rightarrow Sen(\Sigma_2)$, by abuse of notation also denoted by σ , defined inductively by

- \bullet $\sigma(p) = \sigma(p)$ (the two σ s are different...)
- \bullet $\sigma(\bot) = \bot$
- \bullet $\sigma(\top) = \top$
- \bullet $\sigma(\phi_1 \wedge \phi_2) = \sigma(\phi_1) \wedge \sigma(\phi_2)$
- etc.

Model reduction in propositional logic

Definition

Intended Consequences

A signature morphism $\sigma: \Sigma_1 \to \Sigma_2$ induces a model reduction function

Signature Morphisms

$$_|_{\sigma}:\mathsf{Mod}(\Sigma_2) o\mathsf{Mod}(\Sigma_1).$$

Given $M \in \mathsf{Mod}(\Sigma_2)$ i.e. $M : \Sigma_2 \to \{T, F\}$, then $M|_{\sigma} \in \mathsf{Mod}(\Sigma_1)$ is defined as

$$M|_{\sigma}(p) := M(\sigma(p))$$

for all $p \in \Sigma_1$, i.e.

$$M|_{\sigma} = M \circ \sigma$$

If $M'|_{\sigma} = M$, then M' is called a σ -expansion of M.

Satisfaction condition in propositional logic

Theorem (Satisfaction condition)

Given a signature morphism $\sigma: \Sigma_1 \to \Sigma_2$, $M_2 \in Mod(\Sigma_2)$ and $\phi_1 \in Sen(\Sigma_1)$, then:

$$M_2 \models_{\Sigma_2} \sigma(\phi_1)$$
 iff $M_2|_{\sigma} \models_{\Sigma_1} \phi_1$

("truth is invariant under change of notation.")

Proof

By induction on ϕ_1 .

Interpretations

Signature Morphisms in FOL

Definition

Given signatures $\Sigma = (S, F, P), \Sigma' = (S', F', P')$ a signature morphism $\sigma: \Sigma \to \Sigma'$ consists of

- ightharpoonup a map $\sigma^S:S\to S'$
- ▶ a map $\sigma_{w,s}^F: F_{w,s} \to F'_{\sigma^S(w),\sigma^S(s)}$ for each $w \in S^*$ and each $s \in S$
- ▶ a map $\sigma_w^P: P_w \to P'_{\sigma^S(w)}$ for each $w \in S^*$

Model Reduction in FOL

Definition

Given a signature morphism $\sigma: \Sigma \to \Sigma'$ and a Σ' -model M', define $M = M'|_{\sigma}$ as

- $M_s = M'_{\sigma^S(s)}$

Definition

Intended Consequences

Given a signature morphism $\sigma: \Sigma \to \Sigma'$ and $\phi \in Sen(\Sigma)$ the translation $\sigma(\phi)$ is defined inductively by:

Signature Morphisms

$$\sigma(f_{w,s}(t_1 \dots t_n)) = \sigma_{w,s}^F(f_{\sigma(w),\sigma(s))}(\sigma(t_1) \dots \sigma(t_n))$$

$$\sigma(t_1 = t_2) = \sigma(t_1) = \sigma(t_2)$$

$$\sigma(p_w(t_1 \dots t_n)) = \sigma_w^P(p)_{\sigma^S(w)}(\sigma(t_1) \dots \sigma(t_n))$$

$$\sigma(\phi_1 \wedge \phi_2) = \sigma(\phi_1) \wedge \sigma(\phi_2) \quad \text{etc.}$$

$$\sigma(\forall x : s.\phi) = \forall x : \sigma^S(s).(\sigma \uplus x)(\phi)$$

$$\sigma(\exists x : s.\phi) = \exists x : \sigma^S(s).(\sigma \uplus x)(\phi)$$

where $(\sigma \uplus x) : \Sigma \uplus \{x : s\} \to \Sigma' \uplus \{x : \sigma(s)\}$ acts like σ on Σ and maps x : s to $x : \sigma(s)$.

 $M \models t_1 = t_2 \text{ iff } M(t_1) = M(t_2)$

First-order Logic in DOL: Satisfaction Revisited

Signature Morphisms

Definition (Satisfaction of sentences)

 $M \models p_w(t_1 \dots t_n) \text{ iff } (M(t_1), \dots M(t_n)) \in p_w^M$

$$M \models \phi_1 \land \phi_2$$
 iff $M \models \phi_1$ and $M \models \phi_2$
 $M \models \forall x : s.\phi$ iff for all ι -expansions M' of M , $M' \models \phi$
where $\iota : \Sigma \hookrightarrow \Sigma \uplus \{x : s\}$ is the inclusion.
 $M \models \exists x : s.\phi$ iff there is a ι -expansion M' of M such that $M' \models \phi$

Intended Consequences

Satisfaction Condition in FOL

Theorem (satisfaction condition)

For a signature morphism

$$\sigma: \Sigma \to \Sigma', \phi \in Sen(\Sigma), M' \in Mod(\Sigma')$$
:

$$M'|_{\sigma} \models \phi \text{ iff } M' \models \sigma(\phi)$$

Proof.

Intended Consequences

For terms, prove $M'|_{\sigma}(t) = M'(\sigma(t))$. Then use induction on ϕ . For quantifiers, use a bijective correspondence between ι -expansions M_1 of $M'|_{\sigma}$ and ι' -expansions M'_1 of M'.

$$M'|_{\sigma}$$
 $\Sigma \xrightarrow{\sigma} \Sigma'$ M'
 M'
 M'
 M'
 M'
 M'
 M
 M
 $\Sigma \uplus \{x:s\} = \Sigma_1 \xrightarrow{\sigma \uplus x} \Sigma'_1 = \Sigma' \uplus \{x:\sigma(s)\}$ M'

Kutz, Mossakowski

Distributed Ontology, Model and Specification Language (DOL)

Signature Morphisms in OWL

Definition

Given two DL signatures $\Sigma_1 = (C_1, R_1, I_1)$ and $\Sigma_2 = (C_2, R_2, I_2)$ a signature morphism $\sigma : \Sigma_1 \to \Sigma_2$ consists of three functions

- \bullet $\sigma^{C}: \mathbf{C}_{1} \to \mathbf{C}_{2}$,
- $ightharpoonup \sigma^R: \mathsf{R}_1 \to \mathsf{R}_2$,
- \bullet $\sigma^I: \mathbf{I}_1 \to \mathbf{I}_2.$

Sentence Translation in OWL

Definition

Given a signature morphism $\sigma: \Sigma_1 \to \Sigma_2$ and a Σ_1 -sentence ϕ , the translation $\sigma(\phi)$ is defined by inductively replacing the symbols in ϕ along σ .

Model Reduction in OWI

Definition

Intended Consequences

Given a signature morphism $\sigma: \Sigma_1 \to \Sigma_2$ and a Σ_2 -model \mathcal{I}_2 , the σ -reduct of \mathcal{I}_2 along σ is the Σ_1 -model $\mathcal{I}_1 = \mathcal{I}_2|_{\sigma}$ defined by

- \wedge $\Lambda^{\mathcal{I}_1} = \Lambda^{\mathcal{I}_2}$
- $A^{\mathcal{I}_1} = \sigma^{\mathcal{C}}(A)^{\mathcal{I}_2}$, for $A \in \mathbf{C}_1$
- $ightharpoonup R^{\mathcal{I}_1} = \sigma^R(R)^{\mathcal{I}_2}, \text{ for } R \in \mathbf{R}_1$
- $ightharpoonup a^{\mathcal{I}_1} = \sigma^I(a)^{\mathcal{I}_2}, \text{ for } a \in \mathbf{I}_1$

Satisfaction Condition in OWL

Theorem (satisfaction condition)

Given
$$\sigma: \Sigma_1 \to \Sigma_2$$
, $\phi_1 \in \textit{Sen}(\Sigma_1)$ and $\mathcal{I}_2 \in \textit{Mod}(\Sigma_2)$,

$$\mathcal{I}_2|_{\sigma} \models \phi_1 \quad \textit{iff} \quad \mathcal{I}_2 \models \sigma(\phi_1)$$

Proof

Intended Consequences

Let $\mathcal{I}_1 = \mathcal{I}_2|_{\sigma}$. Note that \mathcal{I}_1 and \mathcal{I}_2 share the universe:

$$\Delta^{\mathcal{I}_1} = \Delta^{\mathcal{I}_2}$$
.

First prove by induction over concepts C that

$$C^{\mathcal{I}_1} = \sigma(C)^{\mathcal{I}_2}.$$

Then the satisfaction condition follows easily.

Semantics of Extensions

Theory Morphisms in Prop. FOL, OWL

Definition

Intended Consequences

A theory morphism $\sigma: (\Sigma_1, \Gamma_1) \to (\Sigma_2, \Gamma_2)$ is a signature morphism $\sigma: \Sigma_1 \to \Sigma_2$ such that

Signature Morphisms

for
$$M \in \mathsf{Mod}(\Sigma_2, \Gamma_2)$$
, we have $M|_{\sigma} \in \mathsf{Mod}(\Sigma_1, \Gamma_1)$

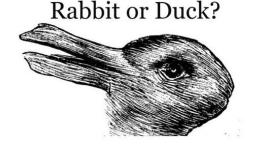
Extensions are theory morphisms:

$$(\Sigma,\Gamma)$$
 then $(\Delta_{\Sigma},\Delta_{\Gamma})$

leads to the theory morphism

$$(\Sigma,\Gamma) \xrightarrow{\iota} (\Sigma \cup \Delta_{\Sigma}, \iota(\Gamma) \cup \Delta_{\Gamma})$$

Proof: $M \models \iota(\Gamma) \cup \Delta_{\Gamma}$ implies $M|_{\iota} \models \Gamma$ by the satisfaction condition.



Interpretations (views, refinements)

- interpretation name : O_1 to $O_2 = \sigma$
- $\triangleright \sigma$ is a signature morphism (if omitted, assumed to be identity)
- expresses that σ is a theory morphism $O_1 \rightarrow O_2$

```
logic CASL.FOL=
spec RichBooleanAlgebra =
  BooleanAlgebra
then %def
  pred __ <= __ : Elem * Elem;</pre>
  forall x,y:Elem
  x <= y <=> x cap y = x %(leq_def)%
end
interpretation order_in_BA :
  PartialOrder to RichBooleanAlgebra
```

Recall Family Ontology

logic OWL ontology Family2 = Class: Person

Class: Woman SubClassOf: Person

ObjectProperty: hasChild

Class: Mother

EquivalentTo: Woman and hasChild some Person Individual: mary Types: Woman Facts: hasChild john

Individual: john Types: Person

Individual: mary

Types: Annotations: Implied "true"^^xsd:boolean

Mother

end

Interpretation in OWL

```
logic OWL
ontology Family_alt =
  Class: Human
  Class: Female
  Class: Woman EquivalentTo: Human and Female
  ObjectProperty: hasChild
  Class: Mother
         EquivalentTo: Female and hasChild some Human
end
interpretation i : Family_alt to Family2 =
  Human |-> Person, Female |-> Woman
end
```

Criterion for Theory Morphisms in Prop. FOL, $\bigcirc \bigvee I$

Theorem

A signature morphism $\sigma: \Sigma_1 \to \Sigma_2$ is a theory morphism $\sigma: (\Sigma_1, \Gamma_1) \to (\Sigma_2, \Gamma_2)$ iff

$$\Gamma_2 \models_{\Sigma_2} \sigma(\Gamma_1)$$

Proof

By the satisfaction condition.

Semantics of Extensions

Implied extensions (in Prop. FOL, OWL)

The extension must not introduce new signature symbols:

Signature Morphisms

$$(\Sigma,\Gamma)$$
 then $(\emptyset,\Delta_{\Gamma})$

This leads to the theory morphism

$$(\Sigma,\Gamma) \xrightarrow{\iota} (\Sigma,\Gamma \cup \Delta_{\Gamma})$$

The implied extension is well-formed if

$$\Gamma \models_{\Sigma} \Delta_{\Gamma}$$

That is, implied extensions are about logical consequence.

Intended Consequences

Definition

Intended Consequences

A theory morphism $\sigma: T_1 \to T_2$ is consequence-theoretically conservative (ccons), if for each $\phi_1 \in Sen(\Sigma_1)$

$$T_2 \models \sigma(\phi_1)$$
 implies $T_1 \models \phi_1$.

(no "new" facts over the "old" signature)

Definition

A theory morphism $\sigma: T_1 \to T_2$ is model-theoretically conservative (mcons), if for each $M_1 \in Mod(T_1)$, there is a σ -expansion

$$M_2 \in \mathsf{Mod}(T_2) \text{ with } (M_2)|_{\sigma} = M_1$$

A General Theorem

Theorem

Intended Consequences

In propositional logic, FOL and OWL, if $\sigma: T_1 \to T_2$ is mcons, then it is also ccons.

Proof

Assume that $\sigma: T_1 \to T_2$ is mcons. Let ϕ_1 be a formula, such that $T_2 \models_{\Sigma_2} \sigma(\phi_1)$. Let M_1 be a model $M_1 \in Mod(T_1)$. By assumption there is a model $M_2 \in Mod(T_2)$ with $M_2|_{\sigma} = M_1$. Since $T_2 \models_{\Sigma_2} \sigma(\phi_1)$, we have $M_2 \models \sigma(\phi_1)$. By the satisfaction condition $M_2|_{\sigma} \models_{\Sigma_1} \phi_1$. Hence $M_1 \models \phi_1$. Altogether $T_1 \models_{\Sigma_1} \phi_1$.

Some prerequisites

Theorem (Compactness theorem for propositional logic)

If $\Gamma \models_{\Sigma} \phi$, then $\Gamma' \models_{\Sigma} \phi$ for some finite $\Gamma' \subseteq \Gamma$

Proof

Logical consequence \models_{Σ} can be captured by provability \vdash_{Σ} . Proofs are finite.

Definition

Given a model $M \in Mod(\Sigma)$, its theory Th(M) is defined by

$$Th(M) = \{ \varphi \in Sen(\Sigma) \mid M \models_{\Sigma} \varphi \}$$

Semantics of Extensions

In Prop, the converse holds

Theorem

In propositional logic, if $\sigma: T_1 \to T_2$ is coons, then it is also mcons.

Signature Morphisms

Proof.

Assume that $\sigma: T_1 \to T_2$ is coons. Let M_1 be a model $M_1 \in Mod(T_1)$. Assume that M_1 has no σ -expansion to a T_2 -model. This means that $T_2 \cup \sigma(Th(M_1)) \models \bot$. Hence by compactness we have $T_2 \cup \sigma(\Gamma) \models \bot$ for a finite $\Gamma \subseteq Th(M_1)$. Let $\Gamma = \{\phi_1, \dots, \phi_n\}$. Thus $T_2 \cup \sigma(\{\phi_1, \dots, \phi_n\}) \models \bot$ and hence $T_2 \models \sigma(\phi_1) \land \ldots \land \sigma(\phi_n) \rightarrow \bot$. This means $T_2 \models \sigma(\phi_1 \land \ldots \land \phi_n \rightarrow \bot)$. By assumption $T_1 \models \phi_1 \land \ldots \land \phi_n \rightarrow \bot$. Since $M_1 \in Mod(T_1)$ and $M_1 \models \phi_i \ (1 < i < n)$, also $M_1 \models \bot$. Contradiction!

A Counterexample in ALC (ccons, not mcons)

```
logic OWL.ALC
ontology Service =
```

ObjectProperty: provider **ObjectProperty**: input ObjectProperty: output

Class: Webservice SubClassOf: provider some Thing and input some Thing and output some Thing

then %ccons

Class: Array

Class: Integer DisjointWith: Array

Class: Webservice SubClassOf: input some Integer

and input some Array

end

In OWL.SROIQ, this is not even ccons!

A Counterexample in FOL (ccons, not mcons)

```
logic CASL.F0L=
spec Weak_Nat =
  sort Nat ops 0:Nat succ: Nat -> Nat pred __<_ : Nat*Nat</pre>
  forall x,y,z : Nat
  x = 0 \ \text{exists} \ u : \text{Nat} \ . \ \text{succ}(u) = x
  \cdot x < succ(y) \iff (x < y \setminus / x = y)
  . not (x < 0)
  x < y \Rightarrow \text{not} (y < x)
  . (x < y / \ y < z) \Rightarrow (x < z)
  x < y \setminus x = y \setminus y < x
then %ccons
  op __ + __ : Nat * Nat -> Nat
  forall x,y : Nat
  0 + y = y
  . succ(x) + y = succ(x + y) %(+succ)%
  . y < succ(x) + y %(succ_great)% end</pre>
```

Definitional Extensions (in Prop. FOL, OWL)

Definition

Intended Consequences

A theory morphism $\sigma: T_1 \to T_2$ is definitional, if for each $M_1 \in Mod(T_1)$, there is a unique σ -expansion

$$M_2 \in \mathsf{Mod}(T_2)$$
 with $(M_2)|_{\sigma} = M_1$

```
logic Propositional
spec Person =
  props person, male, female
then %def
  props man, woman
  . man <=> person /\ male
  . woman <=> person /\ female
end
```

```
logic OWL
ontology Person =
  Class: Person
```

Class: Female

then %def

Class: Woman EquivalentTo: Person and Female

end

Intended Consequences

Interpretations

Summary of DOL Syntax for Extensions

- ▶ O_1 then %cons O_2 , O_1 then %mcons O_2 : model-conservative extension
 - each O_1 -model has an expansion to O_1 then O_2
- \triangleright O_1 then %ccons O_2 : consequence-conservative extension
 - O_1 then $O_2 \models \varphi$ implies $O_1 \models \varphi$, for φ in the language of O_1
- \triangleright O_1 then %def O_2 : definitional extension
 - each O_1 -model has a unique expansion to O_1 then O_2
- $ightharpoonup O_1$ then %implies O_2 : implied extension
 - ▶ like %mcons, but O₂ must not extend the signature

Scaling it to the Web

► OMS can be referenced directly by their URL (or IRI)

```
<http://owl.cs.manchester.ac.uk/co-ode-files/
ontologies/pizza.owl>
```

Prefixing may be used for abbreviation

```
%prefix( co-ode:
  <http://owl.cs.manchester.ac.uk/co-ode-files/ontologies/</pre>
        )%
co-ode:pizza.owl
```