Connected Components of Regular Fibers of Differentiable Maps

Osamu Saeki (Kyushu University, Japan)
Joint work with Jorge T. Hiratuka (University of São Paulo, Brazil)

January 8, 2011

§1. Introduction

Quotient space

§1. Introduction

Quotient space

Stein factorization
Example
Triangulation of a map
Today's topic
§2. Triangulation of Stein Factorization
§3. Application

$$
\begin{aligned}
& M, N: \text { smooth }\left(=C^{\infty}\right) \text { manifolds } \\
& f: M \rightarrow N \quad \text { a smooth map }
\end{aligned}
$$

Quotient space

§1. Introduction
Quotient space
Stein factorization
Example
Triangulation of a map
Today's topic
§2. Triangulation of Stein Factorization
§3. Application
M, N : smooth $\left(=C^{\infty}\right)$ manifolds $f: M \rightarrow N$ a smooth map

For $x, x^{\prime} \in M$, define $x \sim x^{\prime}$ if
(i) $f(x)=f\left(x^{\prime}\right)(=y)$, and
(ii) $\quad x$ and x^{\prime} belong to the same connected component of $f^{-1}(y)$.

Quotient space

§1. Introduction
Quotient space
Stein factorization
Example
Triangulation of a map
Today's topic
M, N : smooth $\left(=C^{\infty}\right)$ manifolds
$f: M \rightarrow N \quad$ a smooth map
For $x, x^{\prime} \in M$, define $x \sim x^{\prime}$ if
(i) $f(x)=f\left(x^{\prime}\right)(=y)$, and
(ii) $\quad x$ and x^{\prime} belong to the same connected component of $f^{-1}(y)$.

Note that y may not be a regular value.

Quotient space

§1. Introduction
Quotient space
Stein factorization
Example
Triangulation of a map
Today's topic
§2. Triangulation of Stein Factorization
§3. Application
M, N : smooth $\left(=C^{\infty}\right)$ manifolds
$f: M \rightarrow N \quad$ a smooth map
For $x, x^{\prime} \in M$, define $x \sim x^{\prime}$ if
(i) $f(x)=f\left(x^{\prime}\right)(=y)$, and
(ii) $\quad x$ and x^{\prime} belong to the same connected component of $f^{-1}(y)$.

Note that y may not be a regular value.
We denote by $W_{f}=M / \sim$ the quotient space, which can be regarded as the space of connected components of fibers of f.

Quotient space

§1. Introduction
Quotient space
Stein factorization
Example
Triangulation of a map
Today's topic
§2. Triangulation of Stein Factorization
§3. Application
M, N : smooth $\left(=C^{\infty}\right)$ manifolds
$f: M \rightarrow N \quad$ a smooth map
For $x, x^{\prime} \in M$, define $x \sim x^{\prime}$ if
(i) $f(x)=f\left(x^{\prime}\right)(=y)$, and
(ii) $\quad x$ and x^{\prime} belong to the same connected component of $f^{-1}(y)$.

Note that y may not be a regular value.
We denote by $W_{f}=M / \sim$ the quotient space, which can be regarded as the space of connected components of fibers of f.
W_{f} is often called the quotient space or the Reeb space (or the Reeb complex) of f.

Quotient space

§1. Introduction
Quotient space
Stein factorization
Example
Triangulation of a map
Today's topic
§2. Triangulation of Stein Factorization
§3. Application
M, N : smooth $\left(=C^{\infty}\right)$ manifolds
$f: M \rightarrow N \quad$ a smooth map
For $x, x^{\prime} \in M$, define $x \sim x^{\prime}$ if
(i) $f(x)=f\left(x^{\prime}\right)(=y)$, and
(ii) $\quad x$ and x^{\prime} belong to the same connected component of $f^{-1}(y)$.

Note that y may not be a regular value.
We denote by $W_{f}=M / \sim$ the quotient space, which can be regarded as the space of connected components of fibers of f.
W_{f} is often called the quotient space or the Reeb space (or the Reeb complex) of f.

We denote by $q_{f}: M \rightarrow W_{f}$ the quotient map.

Stein factorization

§1. Introduction
Quotient space
Stein factorization
Example
Triangulation of a map
Today's topic
§2. Triangulation of Stein Factorization
§3. Application

There exists a unique continuous map $\bar{f}: W_{f} \rightarrow N$ that makes the following diagram commutative:

Stein factorization

§1. Introduction
Quotient space
Stein factorization
Example
Triangulation of a map
Today's topic
§2. Triangulation of Stein Factorization
§3. Application

There exists a unique continuous map $\bar{f}: W_{f} \rightarrow N$ that makes the following diagram commutative:

The above diagram is called the Stein factorization of f.

Stein factorization

§1. Introduction
Quotient space
Stein factorization
Example
Triangulation of a map
Today's topic
§2. Triangulation of Stein Factorization
§3. Application

There exists a unique continuous map $\bar{f}: W_{f} \rightarrow N$ that makes the following diagram commutative:

The above diagram is called the Stein factorization of f.
Note that W_{f} is merely a topological space at this moment.

Stein factorization

§1. Introduction
Quotient space
Stein factorization
Example
Triangulation of a map
Today's topic
§2. Triangulation of Stein Factorization
§3. Application

There exists a unique continuous map $\bar{f}: W_{f} \rightarrow N$ that makes the following diagram commutative:

The above diagram is called the Stein factorization of f.
Note that W_{f} is merely a topological space at this moment.
Note also that each fiber of q_{f} corresponds to a connected component of a fiber of f.

Example

Figure 1: Stein factorization

Triangulation of a map

§1. Introduction
Let $g: X \rightarrow Y$ be a continuous map between topological spaces.

Triangulation of a map

§1. Introduction
Quotient space
Stein factorization
Example
Triangulation of a map
Today's topic
§2. Triangulation of Stein Factorization

Let $g: X \rightarrow Y$ be a continuous map between topological spaces. Then, g is said to be triangulable if

Triangulation of a map

§1. Introduction
Quotient space
Stein factorization
Example
Triangulation of a map
Today's topic
§2. Triangulation of Stein Factorization

Let $g: X \rightarrow Y$ be a continuous map between topological spaces.
Then, g is said to be triangulable if there exist simplicial complexes K and L, a simplicial map $s: K \rightarrow L$, and homeomorphisms $\lambda:|K| \rightarrow X$ and $\mu:|L| \rightarrow Y$ such that the following diagram is commutative:

where $|K|$ and $|L|$ are polyhedrons associated with K and L, respectively, and $|s|$ is the continuous map associated with s.

Today's topic

Remark 1.1 The notion of the Stein factorization can be similarly defined for any continuous map $g: X \rightarrow Y$.

Today's topic

§1. Introduction
Quotient space
Stein factorization
Example
Triangulation of a map
Today's topic
§2. Triangulation of Stein Factorization
§3. Application

Remark 1.1 The notion of the Stein factorization can be similarly defined for any continuous map $g: X \rightarrow Y$.

Then, again the quotient space W_{g} is merely a topological space.

Today's topic

Remark 1.1 The notion of the Stein factorization can be similarly defined for any continuous map $g: X \rightarrow Y$.

Then, again the quotient space W_{g} is merely a topological space.
Today's first topic: If g is triangulable, then so is its Stein factorization?

Today's topic

§1. Introduction
Quotient space
Stein factorization
Example
Triangulation of a map Today's topic

Remark 1.1 The notion of the Stein factorization can be similarly defined for any continuous map $g: X \rightarrow Y$.

Then, again the quotient space W_{g} is merely a topological space.
Today's first topic: If g is triangulable, then so is its Stein factorization?

We will show that the answer is "Yes" under certain mild conditions.

Today's topic

§1. Introduction
Quotient space
Stein factorization
Example
Triangulation of a map Today's topic

Remark 1.1 The notion of the Stein factorization can be similarly defined for any continuous map $g: X \rightarrow Y$.

Then, again the quotient space W_{g} is merely a topological space.
Today's first topic: If g is triangulable, then so is its Stein factorization?

We will show that the answer is "Yes" under certain mild conditions.
In the second part, we will apply the result for studying components of regular fibers of generic smooth maps.
§2. Triangulation of Stein Factorization

§2. Triangulation of Stein Factorization

Barycentric subdivision

§1. Introduction
§2. Triangulation of Stein Factorization

Barycentric subdivision
Triangulation of a Stein
factorization
Why barycentric
subdivision?
Case of generic maps §3. Application

Lemma 2.1 Let $s: K \rightarrow L$ be a simplicial map.
We denote by L^{\prime} the barycentric subdivision of L.
Then, there exists a subdivision K^{\prime} of K and a simplicial map $s^{\prime}: K^{\prime} \rightarrow L^{\prime}$ such that $|s|:|K| \rightarrow|L|$ coincides with $\left|s^{\prime}\right|:\left|K^{\prime}\right| \rightarrow\left|L^{\prime}\right|$.

Barycentric subdivision

§1. Introduction
§2. Triangulation of Stein Factorization

Barycentric subdivision
Triangulation of a Stein
factorization
Why barycentric
subdivision?
Case of generic maps §3. Application

Lemma 2.1 Let $s: K \rightarrow L$ be a simplicial map.
We denote by L^{\prime} the barycentric subdivision of L.
Then, there exists a subdivision K^{\prime} of K and a simplicial map $s^{\prime}: K^{\prime} \rightarrow L^{\prime}$ such that $|s|:|K| \rightarrow|L|$ coincides with
$\left|s^{\prime}\right|:\left|K^{\prime}\right| \rightarrow\left|L^{\prime}\right|$.

Triangulation of a Stein factorization

§1. Introduction
§2. Triangulation of Stein Factorization

Barycentric subdivision
Triangulation of a Stein factorization
Why barycentric
subdivision?
Case of generic maps
§3. Application

Theorem 2.2

Suppose X is locally compact and g is proper. If $g: X \rightarrow Y$ is triangulable, then so is its Stein factorization.

Triangulation of a Stein factorization

Theorem 2.2

Suppose X is locally compact and g is proper.
If $g: X \rightarrow Y$ is triangulable, then so is its Stein factorization.
That is, we have the commutative diagram

for some simplicial complex V, simplicial maps $\varphi: K^{\prime} \rightarrow V$, $\psi: V \rightarrow L^{\prime}$, and a homeomorphism Θ, where K^{\prime}, L^{\prime}, s^{\prime}, etc. are as before.

Why barycentric subdivision?

§1. Introduction
§2. Triangulation of Stein Factorization

Barycentric subdivision
Triangulation of a Stein
factorization
Why barycentric
subdivision?
Case of generic maps

No Good!

Why barycentric subdivision?

§1. Introduction
§2. Triangulation of Stein Factorization

Barycentric subdivision
Triangulation of a Stein
factorization
Why barycentric
subdivision?
Case of generic maps

OK!

Case of generic maps

§1. Introduction
§2. Triangulation of Stein Factorization

Barycentric subdivision
Triangulation of a Stein
factorization
Why barycentric
subdivision?
Case of generic maps
§3. Application

Theorem 2.3 (Shiota, 2000)

Proper Thom maps between smooth manifolds are always triangulable.

Case of generic maps

§1. Introduction
§2. Triangulation of Stein Factorization

Barycentric subdivision
Triangulation of a Stein
factorization
Why barycentric
subdivision?
Case of generic maps
§3. Application

Theorem 2.3 (Shiota, 2000)

Proper Thom maps between smooth manifolds are always triangulable. In particular, topologically stable proper maps are triangulable.

Case of generic maps

§1. Introduction
§2. Triangulation of Stein Factorization

Barycentric subdivision
Triangulation of a Stein
factorization
Why barycentric
subdivision?
Case of generic maps
§3. Application

Theorem 2.3 (Shiota, 2000)

Proper Thom maps between smooth manifolds are always triangulable. In particular, topologically stable proper maps are triangulable.

Corollary 2.4

For smooth manifolds M and N, the set of smooth maps $M \rightarrow N$ whose Stein factorization is triangulable contains an open and dense subset of the set of all proper smooth maps $C^{\infty}(M, N)_{\text {prop }}$ endowed with the Whitney C^{∞}-topology.
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of manifolds

Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem

§3. Application

Cobordism of manifolds

§1. Introduction

§2. Triangulation of Stein Factorization
M_{0}, M_{1} : closed oriented manifolds with $\operatorname{dim} M_{0}=\operatorname{dim} M_{1}=m$. We say that M_{0} and M_{1} are oriented cobordant if \exists compact oriented $(m+1)$-dimensional manifold W such that $\partial W=\left(-M_{0}\right) \cup M_{1}$, where $-M_{0}$ denotes the manifold M_{0} with the orientation reversed.

Cobordism of manifolds

§1. Introduction

§2. Triangulation of Stein Factorization

Cobordism group
Cobordism groups

Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
$M_{0}, M_{1}:$ closed oriented manifolds with $\operatorname{dim} M_{0}=\operatorname{dim} M_{1}=m$. We say that M_{0} and M_{1} are oriented cobordant if \exists compact oriented $(m+1)$-dimensional manifold W such that $\partial W=\left(-M_{0}\right) \cup M_{1}$, where $-M_{0}$ denotes the manifold M_{0} with the orientation reversed.

Cobordism group

§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem

The relation "oriented cobordant" defines an equivalence relation. The equivalence class of a manifold M will be denoted by $[M]$.

Cobordism group

§1. Introduction

§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem

The relation "oriented cobordant" defines an equivalence relation. The equivalence class of a manifold M will be denoted by $[M]$.

We can define $[M]+\left[M^{\prime}\right]=\left[M \cup M^{\prime}\right]$, so that

$$
\Omega_{m}=\{[M] \mid M \text { is a closed oriented } m \text {-dim. manifold }\}
$$

forms an additive group. This is called the m-dim. oriented cobordism group.

Cobordism groups Ω_{m} and \mathfrak{N}_{m}

§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem

If we ignore the orientations, then we get the m-dim. (unoriented) cobordism group, denoted by \mathfrak{N}_{m}.

Cobordism groups Ω_{m} and \mathfrak{N}_{m}

§1. Introduction

§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3

If we ignore the orientations, then we get the m-dim. (unoriented) cobordism group, denoted by \mathfrak{N}_{m}.

The groups Ω_{m} and \mathfrak{N}_{m} have been extensively studied and their structures have been completely determined.

- Ω_{m} is a finitely generated abelian group.
- \mathfrak{N}_{m} is a finitely generated Z_{2}-module.
- Ω_{m} is a finite group unless m is a multiple of four.

Cobordism groups Ω_{m} and \mathfrak{N}_{m}

§2. Triangulation of Stein Factorization
§3. Application
Cobordism of manifolds

Cobordism group
Cobordism groups Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of

If we ignore the orientations, then we get the m-dim. (unoriented) cobordism group, denoted by \mathfrak{N}_{m}.

The groups Ω_{m} and \mathfrak{N}_{m} have been extensively studied and their structures have been completely determined.

- Ω_{m} is a finitely generated abelian group.
- \mathfrak{N}_{m} is a finitely generated Z_{2}-module.
- Ω_{m} is a finite group unless m is a multiple of four.

dim.	0	1	2	3	4	5	\cdots
Ω_{*}	Z	0	0	0	Z	Z_{2}	\cdots
\mathfrak{N}_{*}	Z_{2}	0	Z_{2}	0	Z_{2}^{2}	Z_{2}	\cdots

Cobordism groups Ω_{m} and \mathfrak{N}_{m}

§2. Triangulation of Stein Factorization
§3. Application
Cobordism of manifolds

Cobordism group
Cobordism groups Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of

If we ignore the orientations, then we get the m-dim. (unoriented) cobordism group, denoted by \mathfrak{N}_{m}.

The groups Ω_{m} and \mathfrak{N}_{m} have been extensively studied and their structures have been completely determined.

- Ω_{m} is a finitely generated abelian group.
- \mathfrak{N}_{m} is a finitely generated Z_{2}-module.
- Ω_{m} is a finite group unless m is a multiple of four.

dim.	0	1	2	3	4	5	\cdots
Ω_{*}	Z	0	0	0	Z	Z_{2}	\cdots
\mathfrak{N}_{*}	Z_{2}	0	Z_{2}	0	Z_{2}^{2}	Z_{2}	\cdots

A closed manifold M with $[M]=0$ is said to be (oriented) null-cobordant.

Cobordism classes of regular fiber components

§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem
M : closed manifold (compact and $\partial M=\emptyset$) $f: M \rightarrow N \quad$ a smooth map with $m=\operatorname{dim} M \geq \operatorname{dim} N=n$. Assume that f is triangulable (e.g. a topologically stable proper map).

Cobordism classes of regular fiber components

§1. Introduction

§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of regular fiber components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem
M : closed manifold (compact and $\partial M=\emptyset$) $f: M \rightarrow N \quad$ a smooth map with $m=\operatorname{dim} M \geq \operatorname{dim} N=n$. Assume that f is triangulable (e.g. a topologically stable proper map).
$\Longrightarrow W_{f}$ is an n-dim. polyhedron.

Cobordism classes of regular fiber components

§1. Introduction

§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of regular fiber components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of

Example 1
Example 2
Example 3
Remark
Problem
M : closed manifold (compact and $\partial M=\emptyset$) $f: M \rightarrow N \quad$ a smooth map with $m=\operatorname{dim} M \geq \operatorname{dim} N=n$. Assume that f is triangulable (e.g. a topologically stable proper map).
$\Longrightarrow W_{f}$ is an n-dim. polyhedron.

Theorem 3.1

(1) If a component of a regular fiber of f is not null-cobordant, then $H_{n}\left(W_{f} ; \mathbf{Z}_{2}\right) \neq 0$.

Cobordism classes of regular fiber components

§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of manifolds

Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of regular fiber components
Corollary
Proof of Theorem 3.1
An n-cycle of the quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
M : closed manifold (compact and $\partial M=\emptyset$)
$f: M \rightarrow N \quad$ a smooth map with $m=\operatorname{dim} M \geq \operatorname{dim} N=n$.
Assume that f is triangulable (e.g. a topologically stable proper map).
$\Longrightarrow W_{f}$ is an n-dim. polyhedron.

Theorem 3.1

(1) If a component of a regular fiber of f is not null-cobordant, then $H_{n}\left(W_{f} ; \mathbf{Z}_{2}\right) \neq 0$.
(2) Suppose f is an oriented map (i.e. the regular fibers are consistently oriented). If a component of a regular fiber of f is not oriented null-cobordant, then $H_{n}\left(W_{f} ; \Omega_{m-n}\right) \neq 0$.

Corollary

§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components

Corollary

Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem

Corollary 3.2

(1) If $H_{n}\left(W_{f} ; \mathbf{Z}_{2}\right)=0$, then every component of every regular fiber of f is null-cobordant.

Corollary

§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components

Corollary

Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem

Corollary 3.2

(1) If $H_{n}\left(W_{f} ; \mathbf{Z}_{2}\right)=0$, then every component of every regular fiber of f is null-cobordant.
(2) If f is an oriented map and $H_{n}\left(W_{f} ; \Omega_{m-n}\right)=0$, then every component of every regular fiber of f is oriented null-cobordant.

Proof of Theorem 3.1

§1. Introduction

§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem

Let $s: K \rightarrow L$ be a triangulation of $f: M \rightarrow N$.
By Theorem 2.2, we have a triangulation of the Stein factorization:

Proof of Theorem 3.1

§1. Introduction

§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of

Example 1
Example 2
Example 3
Remark
Problem

Let $s: K \rightarrow L$ be a triangulation of $f: M \rightarrow N$.
By Theorem 2.2, we have a triangulation of the Stein factorization:

For each n-simplex $\sigma \in V$, define

$$
\omega_{\sigma}:=\left[|\varphi|^{-1}\left(b_{\sigma}\right)\right] \in \mathfrak{N}_{m-n},
$$

where $b_{\sigma} \in \sigma$ is the barycenter of σ.

Proof of Theorem 3.1

§1. Introduction

§2. Triangulation of Stein Factorization

Proof of Theorem 3.1
An n-cycle of the quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3

Let $s: K \rightarrow L$ be a triangulation of $f: M \rightarrow N$.
By Theorem 2.2, we have a triangulation of the Stein factorization:

For each n-simplex $\sigma \in V$, define

$$
\omega_{\sigma}:=\left[|\varphi|^{-1}\left(b_{\sigma}\right)\right] \in \mathfrak{N}_{m-n},
$$

where $b_{\sigma} \in \sigma$ is the barycenter of σ.
$\omega_{\sigma}:$ cobordism class of the regular fiber component corresponding to $\sigma \subset|V|=W_{f}$.

An n-cycle of the quotient space

Set

$$
c_{f}=\sum_{\sigma} \omega_{\sigma} \sigma \in C_{n}\left(V ; \mathfrak{N}_{m-n}\right),
$$

An n-cycle of the quotient space

§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem

Set

$$
c_{f}=\sum_{\sigma} \omega_{\sigma} \sigma \in C_{n}\left(V ; \mathfrak{N}_{m-n}\right),
$$

where σ runs over all n-simplices of V, and

An n-cycle of the quotient space

§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the quotient space

Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem

Set

$$
c_{f}=\sum_{\sigma} \omega_{\sigma} \sigma \in C_{n}\left(V ; \mathfrak{N}_{m-n}\right),
$$

where σ runs over all n-simplices of V, and $C_{n}\left(V ; \mathfrak{N}_{m-n}\right)$ denotes the n-th chain group of V with coefficients in \mathfrak{N}_{m-n}.

An n-cycle of the quotient space

§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the quotient space

Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem

Set

$$
c_{f}=\sum_{\sigma} \omega_{\sigma} \sigma \in C_{n}\left(V ; \mathfrak{N}_{m-n}\right),
$$

where σ runs over all n-simplices of V, and $C_{n}\left(V ; \mathfrak{N}_{m-n}\right)$ denotes the n-th chain group of V with coefficients in \mathfrak{N}_{m-n}.

Lemma $3.3 \partial c_{f}=0$, i.e. c_{f} is an n-cycle.

Proof of Lemma 3.3

§1. Introduction

§2. Triangulation of Stein Factorization
§3. Application

Cobordism of

manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
Example 1
Example 2
Example 3
Remark
Problem

Proof of Lemma 3.3.
Let τ be an arbitrary $(n-1)$-simplex of V, and let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}$ be the n-simplices of V containing τ as a face.
We have only to show

$$
\sum_{j=1}^{r} \omega_{\sigma_{j}}=0
$$

(The coefficient of τ in ∂c_{f}.)

Proof of Lemma 3.3

§2. Triangulation of Stein Factorization

Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the quotient space

Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of

Then, $\left|s^{\prime}\right|^{-1}(\alpha)$ is an $(m-n+1)$-dim. compact manifold and

$$
\partial\left(\left|s^{\prime}\right|^{-1}(\alpha)\right)=\left|s^{\prime}\right|^{-1}\left(b_{\bar{\sigma}_{1}}\right) \cup\left|s^{\prime}\right|^{-1}\left(b_{\bar{\sigma}_{2}}\right)=\bigcup_{j=1}^{r}|\varphi|^{-1}\left(b_{\sigma_{j}}\right) .
$$

Therefore, we have $\sum_{j=1}^{r} \omega_{\sigma_{j}}=\sum_{j=1}^{r}\left[|\varphi|^{-1}\left(b_{\sigma_{j}}\right)\right]=0$ in \mathfrak{N}_{m-n}.

A homology class of W_{f}

§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of W_{f}
Example 1
Example 2
Example 3
Remark
Problem

Thus, c_{f} defines a homology class $\gamma_{f} \in H_{n}\left(W_{f} ; \mathfrak{N}_{m-n}\right)$.

A homology class of W_{f}

§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of W_{f}
Example 1
Example 2
Example 3
Remark
Problem

Thus, c_{f} defines a homology class $\gamma_{f} \in H_{n}\left(W_{f} ; \mathfrak{N}_{m-n}\right)$.
Since $\operatorname{dim} W_{f}=n$, we have
$\gamma_{f} \neq 0 \Longleftrightarrow c_{f} \neq 0$

A homology class of W_{f}

§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of W_{f}
Example 1
Example 2
Example 3
Remark
Problem

Thus, c_{f} defines a homology class $\gamma_{f} \in H_{n}\left(W_{f} ; \mathfrak{N}_{m-n}\right)$.
Since $\operatorname{dim} W_{f}=n$, we have
$\gamma_{f} \neq 0 \Longleftrightarrow c_{f} \neq 0$
Furthermore, $c_{f} \neq 0$ iff there exists a component of a regular fiber which is not null-cobordant.

A homology class of W_{f}

§1. Introduction

§2. Triangulation of Stein Factorization

Thus, c_{f} defines a homology class $\gamma_{f} \in H_{n}\left(W_{f} ; \mathfrak{N}_{m-n}\right)$.
Since $\operatorname{dim} W_{f}=n$, we have
$\gamma_{f} \neq 0 \Longleftrightarrow c_{f} \neq 0$
Furthermore, $c_{f} \neq 0$ iff there exists a component of a regular fiber which is not null-cobordant.

Therefore, if such a regular fiber component exists, we have $H_{n}\left(W_{f} ; \mathbf{Z}_{2}\right) \neq 0$, since $\mathfrak{N}_{m-n} \cong \mathbf{Z}_{2} \oplus \cdots \oplus \mathbf{Z}_{2}$.

The case of an oriented map can be treated similarly.

Example 1

§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem
(1) Let us consider a tree T.

Example 1

§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem
(1) Let us consider a tree T.

Then, since $H_{1}(T)=0$, there exists no Morse function $f_{1}: M_{1}^{5} \rightarrow \mathbf{R}$ whose quotient space is homeomorphic to T and which has $\mathbf{C} P^{2}$ as a component of a regular fiber.

Example 2

§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of manifolds

Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of

Example 1
Example 2
Example 3
Remark
Problem
(2) \exists Morse function $f_{2}: M_{2}^{5} \rightarrow \mathbf{R}$ whose quotient space is:

The integer at each vertex denotes the index of the corresponding critical point, and the 4 -manifold attached to each edge denotes the corresponding regular fiber component.
§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of manifolds

Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
(2) \exists Morse function $f_{2}: M_{2}^{5} \rightarrow \mathbf{R}$ whose quotient space is:

The integer at each vertex denotes the index of the corresponding critical point, and the 4 -manifold attached to each edge denotes the corresponding regular fiber component.
Note that $H_{1}\left(W_{f_{2}} ; \mathbf{Z}\right) \cong H_{1}\left(W_{f_{2}} ; \Omega_{4}\right) \cong \mathbf{Z}$ is generated by $\gamma_{f_{2}}$.

Example 3

§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem
(3) \exists Morse function $f_{3}: M_{3}^{5} \rightarrow \mathbf{R}$ whose quotient space is:

Example 3

§1. Introduction

§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of

Example 1
Example 2
Example 3
(3) \exists Morse function $f_{3}: M_{3}^{5} \rightarrow \mathbf{R}$ whose quotient space is:

Note that $W_{f_{3}} \cong W_{f_{2}}$, but $\gamma_{f_{3}}=0$ in $H_{1}\left(W_{f_{3}} ; \mathbf{Z}\right) \cong \mathbf{Z}$, while $\gamma_{f_{2}} \neq 0$ in $H_{1}\left(W_{f_{2}} ; \mathbf{Z}\right)$.
§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem

Even if every component of every regular fiber is null-cobordant, the source manifold may not be null-cobordant.
§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem

Even if every component of every regular fiber is null-cobordant, the source manifold may not be null-cobordant. For example, consider a stable map $f: \mathbf{C} P^{2} \rightarrow \mathbf{R}^{3}$. Every component of every regular fiber is diffeomorphic to S^{1}, which is null-cobordant. However, $\mathbf{C} P^{2}$ is not null-cobordant.
§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of

Example 1
Example 2
Example 3
Remark
Problem

Even if every component of every regular fiber is null-cobordant, the source manifold may not be null-cobordant.
For example, consider a stable map $f: \mathbf{C} P^{2} \rightarrow \mathbf{R}^{3}$.
Every component of every regular fiber is diffeomorphic to S^{1}, which is null-cobordant. However, $\mathbf{C} P^{2}$ is not null-cobordant.

In fact, for a stable map $f: M^{4} \rightarrow \mathbf{R}^{3}$, the cobordism class of M^{4} is determined by singular fibers.

Problem

§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem

By associating an "invariant" of a (regular or singular) fiber component corresponding to certain dimensional simplices of W_{f}, we may be able to define a homology class of W_{f}.

Problem

§1. Introduction
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of
manifolds
Cobordism group
Cobordism groups
Ω_{m} and \mathfrak{N}_{m}
Cobordism classes of
regular fiber
components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem

By associating an "invariant" of a (regular or singular) fiber component corresponding to certain dimensional simplices of W_{f}, we may be able to define a homology class of W_{f}.

Problem 3.4

Study such kind of homology classes and their relations to the geometry and topology of the manifolds and the map.
§2. Triangulation of Stein Factorization
§3. Application
Cobordism of manifolds

Cobordism group
Cobordism groups Ω_{m} and \mathfrak{N}_{m} Cobordism classes of regular fiber components
Corollary
Proof of Theorem 3.1
An n-cycle of the
quotient space
Proof of Lemma 3.3
Proof of Lemma 3.3
A homology class of
W_{f}
Example 1
Example 2
Example 3
Remark
Problem

Thank you!

