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M , N : smooth (= C∞) manifolds
f : M → N a smooth map

For x, x′ ∈M , define x ∼ x′ if
(i) f(x) = f(x′)(= y), and
(ii) x and x′ belong to the same connected component of f−1(y).
Note that y may not be a regular value.

We denote by Wf = M/∼ the quotient space, which can be
regarded as the space of connected components of fibers of f .

Wf is often called the quotient space or the Reeb space (or the
Reeb complex) of f .

We denote by qf : M →Wf the quotient map.
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There exists a unique continuous map f̄ : Wf → N that makes
the following diagram commutative:

M
f

−−−−→ N

qf↘ ↗f̄

Wf

The above diagram is called the Stein factorization of f .

Note that Wf is merely a topological space at this moment.

Note also that each fiber of qf corresponds to a connected
component of a fiber of f .
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Figure 1: Stein factorization
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Let g : X → Y be a continuous map between topological spaces.

Then, g is said to be triangulable if
there exist simplicial complexes K and L,
a simplicial map s : K → L, and
homeomorphisms λ : |K| → X and µ : |L| → Y
such that the following diagram is commutative:

X
g

−−−→ Y

λ

x





x





µ

|K|
|s|

−−−→ |L|,

where |K| and |L| are polyhedrons associated with K and L,
respectively, and |s| is the continuous map associated with s.
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Remark 1.1 The notion of the Stein factorization can be similarly
defined for any continuous map g : X → Y .

Then, again the quotient space Wg is merely a topological space.

Today’s first topic: If g is triangulable, then so is its Stein
factorization?

We will show that the answer is “Yes” under certain mild conditions.

In the second part, we will apply the result for studying components
of regular fibers of generic smooth maps.
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Lemma 2.1 Let s : K → L be a simplicial map.
We denote by L′ the barycentric subdivision of L.
Then, there exists a subdivision K ′ of K and a simplicial map
s′ : K ′ → L′ such that |s| : |K| → |L| coincides with
|s′| : |K ′| → |L′|.

PSfrag replacements
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Theorem 2.2
Suppose X is locally compact and g is proper.
If g : X → Y is triangulable, then so is its Stein factorization.

That is, we have the commutative diagram
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Theorem 2.3 (Shiota, 2000)
Proper Thom maps between smooth manifolds are always
triangulable.

In particular, topologically stable proper maps are triangulable.

Corollary 2.4
For smooth manifolds M and N , the set of smooth maps M → N
whose Stein factorization is triangulable contains an open and
dense subset of the set of all proper smooth maps C∞(M,N)prop

endowed with the Whitney C∞-topology.
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M0, M1 : closed oriented manifolds with dimM0 = dimM1 = m.
We say that M0 and M1 are oriented cobordant
if ∃ compact oriented (m+ 1)-dimensional manifold W
such that ∂W = (−M0) ∪M1,
where −M0 denotes the manifold M0 with the orientation reversed.
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The relation “oriented cobordant” defines an equivalence relation.
The equivalence class of a manifold M will be denoted by [M ].

We can define [M ] + [M ′] = [M ∪M ′], so that

Ωm = {[M ] |M is a closed oriented m-dim. manifold}

forms an additive group. This is called the m-dim. oriented
cobordism group.
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If we ignore the orientations, then we get the m-dim. (unoriented)
cobordism group, denoted by Nm.

The groups Ωm and Nm have been extensively studied and their
structures have been completely determined.

� Ωm is a finitely generated abelian group.
� Nm is a finitely generated Z2-module.
� Ωm is a finite group unless m is a multiple of four.

dim. 0 1 2 3 4 5 · · ·

Ω∗ Z 0 0 0 Z Z2 · · ·
N∗ Z2 0 Z2 0 Z

2
2 Z2 · · ·

A closed manifold M with [M ] = 0 is said to be (oriented)
null-cobordant.
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M : closed manifold (compact and ∂M = ∅)
f : M → N a smooth map with m = dimM ≥ dimN = n.
Assume that f is triangulable (e.g. a topologically stable proper
map).

=⇒Wf is an n-dim. polyhedron.

Theorem 3.1
(1) If a component of a regular fiber of f is not null-cobordant,
then Hn(Wf ;Z2) 6= 0.
(2) Suppose f is an oriented map (i.e. the regular fibers are
consistently oriented). If a component of a regular fiber of f is not
oriented null-cobordant, then Hn(Wf ; Ωm−n) 6= 0.
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Corollary 3.2
(1) If Hn(Wf ;Z2) = 0, then every component of every regular
fiber of f is null-cobordant.

(2) If f is an oriented map and Hn(Wf ; Ωm−n) = 0, then every
component of every regular fiber of f is oriented null-cobordant.
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Let s : K → L be a triangulation of f : M → N .
By Theorem 2.2, we have a triangulation of the Stein factorization:

|K ′|
|s′|

−−−−→ |L′|

|ϕ|↘ ↗|ψ|

|V |
⇐⇒

M
f

−−−−→ N

qf↘ ↗f̄

Wf

For each n-simplex σ ∈ V , define

ωσ := [|ϕ|−1(bσ)] ∈ Nm−n,

where bσ ∈ σ is the barycenter of σ.

ωσ : cobordism class of the regular fiber component corresponding
to σ ⊂ |V | = Wf .
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Set
cf =

∑

σ

ωσσ ∈ Cn(V ; Nm−n),

where σ runs over all n-simplices of V , and
Cn(V ; Nm−n) denotes the n-th chain group of V with coefficients
in Nm−n.

Lemma 3.3 ∂cf = 0, i.e. cf is an n-cycle.
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Proof of Lemma 3.3.
Let τ be an arbitrary (n− 1)-simplex of V , and let σ1, σ2, . . . , σr
be the n-simplices of V containing τ as a face.
We have only to show

r
∑

j=1

ωσj
= 0.

(The coefficient of τ in ∂cf .)

PSfrag replacements
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α

Then, |s′|−1(α) is an (m− n+ 1)-dim. compact manifold and

∂(|s′|−1(α)) = |s′|−1(bσ̄1
) ∪ |s′|−1(bσ̄2

) =
r

⋃

j=1

|ϕ|−1(bσj
).

Therefore, we have
∑r

j=1 ωσj
=

∑r

j=1

[

|ϕ|−1(bσj
)
]

= 0
in Nm−n. �
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Thus, cf defines a homology class γf ∈ Hn(Wf ; Nm−n).

Since dimWf = n, we have
γf 6= 0 ⇐⇒ cf 6= 0

Furthermore, cf 6= 0 iff there exists a component of a regular fiber
which is not null-cobordant.

Therefore, if such a regular fiber component exists, we have
Hn(Wf ;Z2) 6= 0, since Nm−n

∼= Z2 ⊕ · · · ⊕ Z2.

The case of an oriented map can be treated similarly. �
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(1) Let us consider a tree T .

Then, since H1(T ) = 0, there exists no Morse function
f1 : M5

1 → R whose quotient space is homeomorphic to T and
which has CP 2 as a component of a regular fiber.
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(2) ∃Morse function f2 : M5
2 → R whose quotient space is:

PSfrag replacements

S4

S4

CP 2

CP 2

CP 2]CP 2CP 2]CP 2

0 12 34 5

The integer at each vertex denotes the index of the corresponding
critical point, and the 4-manifold attached to each edge denotes the
corresponding regular fiber component.

Note that H1(Wf2;Z) ∼= H1(Wf2; Ω4) ∼= Z is generated by γf2 .
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(3) ∃Morse function f3 : M5
3 → R whose quotient space is:
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S4

S4

S2 × S2

S4

S2 × S2S2 × S2

0 12 34 5

Note that Wf3
∼= Wf2 , but γf3 = 0 in H1(Wf3 ;Z) ∼= Z, while

γf2 6= 0 in H1(Wf2;Z).
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Even if every component of every regular fiber is null-cobordant, the
source manifold may not be null-cobordant.

For example, consider a stable map f : CP 2 → R
3.

Every component of every regular fiber is diffeomorphic to S1,
which is null-cobordant.
However, CP 2 is not null-cobordant.

In fact, for a stable map f : M 4 → R
3, the cobordism class of M 4

is determined by singular fibers.
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By associating an “invariant” of a (regular or singular) fiber
component corresponding to certain dimensional simplices of Wf ,
we may be able to define a homology class of Wf .

Problem 3.4
Study such kind of homology classes and their relations to the
geometry and topology of the manifolds and the map.
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Thank you!
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