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2 = ε2}, 0 < ε << 1
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K is a knot in S3 !
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∃!r1, r2 > 0 s.t. r2
1 = r3

2, r2
1 + r2

2 = ε2

K = {(z1, z2) ∈ S3

ε | z
2

1 = z3

2}

= {(r1e
3πit, r2e

2πit) ∈ C
2 | t ∈ R} ⊂ S1

r1
× S1

r2
⊂ S3

ε

This is a trefoil knot!

Trefoil knot is a fibered knot.
f/|f | : S3

ε \ K → S1 ⊂ C locally trivial fibration
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s.t. 0 is an isolated critical point of f , i.e.,
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f = f(z1, z2, . . . , zn+1) complex polynomial with f(0) = 0
s.t. 0 is an isolated critical point of f , i.e.,

∂f

∂z1

(z) = · · · =
∂f

∂zn+1

(z) = 0 ⇐⇒ z = 0

in a neighborhood of 0.
V = f−1(0) ⊂ C

n+1: complex hypersurface
Kf = f−1(0) ∩ S2n+1

ε ⊂ S2n+1
ε : algebraic knot associated with f ,

0 < ε << 1.

Kf is a (2n − 1)-dim. smooth closed manifold embedded in S2n+1
ε .

In the following, we always assume that ε > 0 is sufficiently small.
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S2n+1
ε

f−1(0)

0
Kf

Theorem 2.1 (Milnor, 1968)
(D2n+2

ε , f−1(0) ∩ D2n+2
ε ) ≈ Cone(S2n+1

ε , Kf ) (homeo.)
Furthermore, (S2n+1

ε , Kf ), or the isotopy class of Kf in S2n+1
ε ,

does not depend on 0 < ε << 1.
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Theorem 2.2 (Milnor, 1968)

(1) ϕf = f/|f | : S2n+1
ε \ Kf → S1 is a locally trivial fibration.
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Theorem 2.2 (Milnor, 1968)

(1) ϕf = f/|f | : S2n+1
ε \ Kf → S1 is a locally trivial fibration.

(2) Kf is (n − 2)-connected, i.e., πi(Kf ) = 0 ∀i ≤ n − 2.

(3) Fibers of ϕf are (n − 1)-connected.

S1

ϕf

Kf

Kf is a fibered knot, but Kf may not be a sphere.
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Kf ⊂ S2n+1
ε is called the algebraic knot associated with f .

We put Ff = ϕ−1

f (1) = ϕ−1

f (1) ∪ Kf , which is called the Milnor fiber.
∂Ff = Kf : Ff is a Seifert manifold for Kf .
dim Kf = 2n − 1, dim Ff = 2n.

Algebraic knots are odd dim. fibered knots that are “highly connected”.
H̃i(Kf ;Z) = 0 for i 6= n − 1, n.
Ff ≃ ∨µSn: homotopy equivalent to a bouquet of n-spheres.
The number µ is called the Milnor number.

n = 1: fibered link in S3

n = 2: connected 3-manifold in S5 with simply connected fibers
n = 3: simply connected 5-manifold in S7 with 2-connected fibers

...
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Case of n = 1: Kf is a classical link in S3
ε .

Suppose f is irreducible at 0. Then Kf is a knot.
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Case of n = 1: Kf is a classical link in S3
ε .

Suppose f is irreducible at 0. Then Kf is a knot.
f(z1, z2) = 0 ⇐ We can “solve” z2 as a function of z1 (polynomial with
rational exponents), which is called a Puiseux expansion.

Proposition 3.1 Kf is a certain iterated torus knot, i.e., it is a

cable of a cable of a · · · of a torus knot.

In particular, Kf is a prime knot.

However, in higher dimensions, this is no longer true.

Theorem 3.2 (Michel–Weber, 1982 (n ≥ 3); S, 1987 (n = 2))
There exist decomposable algebraic (2n − 1)-knots.
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Let us consider the general case where f may not be irreducible at 0.
According to Zariski’s theory of resolution of curve singularities, we have

Proposition 3.3 The isotopy class of the link Kf is completely

determined by the components and their linking numbers.

We also have the following

Theorem 3.4 (Yamamoto, 1984)
Two algebraic links are isotopic iff they have the same multi-variable

Alexander polynomials.
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Case of n = 2: Kf is a 3-manifold.

Theorem 3.5 (Mumford)
Kf is simply connected iff V = f−1(0) is non-singular at 0.
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Case of n = 2: Kf is a 3-manifold.

Theorem 3.5 (Mumford)
Kf is simply connected iff V = f−1(0) is non-singular at 0.

In fact, according to the theory of resolution of surface singularities,
Kf is a so-called graph manifold; i.e., it is a union of circle bundles
over surfaces attached along their torus boundaries.
Mumford’s result corresponds to the solution to the Poincaré Conjecture
for algebraic 3-knots.

Furthermore, Kf is always irreducible as a 3-manifold.
(But, as a 3-knot, it can be decomposable.)



Exotic spheres
§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

14 / 23

Milnor (1956) discovered exotic smooth structures on S7.



Exotic spheres
§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

14 / 23

Milnor (1956) discovered exotic smooth structures on S7.

Kervaire–Milnor (1963)
For dimension j ≥ 5, the smooth structures on the sphere Sj form
an additive group Θj under connected sum.
Furthermore, Θj is a finite abelian group.



Exotic spheres
§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

14 / 23

Milnor (1956) discovered exotic smooth structures on S7.

Kervaire–Milnor (1963)
For dimension j ≥ 5, the smooth structures on the sphere Sj form
an additive group Θj under connected sum.
Furthermore, Θj is a finite abelian group.

We have an important subgroup bPj+1, which consists of smooth
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For dimension j ≥ 5, the smooth structures on the sphere Sj form
an additive group Θj under connected sum.
Furthermore, Θj is a finite abelian group.

We have an important subgroup bPj+1, which consists of smooth
structures that bound a compact parallelizable (j + 1)-dim. manifold.
For k ≥ 1 and m ≥ 2, set

f = z2

1 + · · · + z2

2m−1 + z3

2m + z6k−1

2m+1



Exotic spheres
§1. An Example §2. General Results §3. Algebraic Knots §4. Classification

14 / 23

Milnor (1956) discovered exotic smooth structures on S7.

Kervaire–Milnor (1963)
For dimension j ≥ 5, the smooth structures on the sphere Sj form
an additive group Θj under connected sum.
Furthermore, Θj is a finite abelian group.

We have an important subgroup bPj+1, which consists of smooth
structures that bound a compact parallelizable (j + 1)-dim. manifold.
For k ≥ 1 and m ≥ 2, set

f = z2

1 + · · · + z2

2m−1 + z3

2m + z6k−1

2m+1

Theorem 3.6 (Brieskorn–Hirzebruch, 1966)
The (4m−1)-dimensional manifold Kf is homeomorphic to a sphere.

Furthermore, they exhaust all the differentiable structures in bP4m.
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In general, ϕf : S2n+1
ε \ Kf → S1 is a smooth fibration with fiber Int Ff .
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In general, ϕf : S2n+1
ε \ Kf → S1 is a smooth fibration with fiber Int Ff .

Let h : Int Ff
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−→ Int Ff be the geometric monodromy.

We denote by ∆f (t) the characteristic polynomial of
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In general, ϕf : S2n+1
ε \ Kf → S1 is a smooth fibration with fiber Int Ff .

Let h : Int Ff

∼=
−→ Int Ff be the geometric monodromy.

We denote by ∆f (t) the characteristic polynomial of

h∗ : Hn(Int Ff ;Z) → Hn(Int Ff ;Z).

It is known that ∆f (t) coincides with the Alexander polynomial of Kf .

Theorem 3.7 (Milnor, 1968) For n 6= 2, Kf is homeomorphic to

S2n−1 if and only of ∆f (1) = ±1.

When Kf ≈ S2n−1 (homeo.), the diffeomorphism type of Kf is
determined by
(1) the signature of Ff if n is even, and
(2) ∆f (−1) (mod 8) if n is odd.
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The Seifert form associated with f is the bilinear form

Lf : Hn(Ff ;Z) × Hn(Ff ;Z) → Z define by

Lf (α, β) = lk(a+, b), where
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The Seifert form associated with f is the bilinear form

Lf : Hn(Ff ;Z) × Hn(Ff ;Z) → Z define by

Lf (α, β) = lk(a+, b), where

■ a and b are n-cycles representing α, β ∈ Hn(Ff ;Z),
■ a+ is obtained by pushing a into the positive normal direction of

Ff ⊂ S2n+1
ε ,

■ lk is the linking number in S2n+1
ε .

Theorem 4.1 (Durfee, Kato, 1974) For n ≥ 3,

two algebraic knots Kf and Kg are isotopic

⇐⇒ the Seifert forms Lf and Lg are isomorphic.
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A (2n − 1)-dim. fibered knot K in S2n+1 is simple if
(1) K is (n − 2)-connected, and (2) the fibers are (n − 1)-connected.
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A (2n − 1)-dim. fibered knot K in S2n+1 is simple if
(1) K is (n − 2)-connected, and (2) the fibers are (n − 1)-connected.

In fact, we have the following.

Theorem 4.2 (Durfee, Kato, 1974) For n ≥ 3, (2n − 1)-dim.

simple fibered knots are in one-to-one correspondence with the

isomorphism classes of integral unimodular bilinear forms.
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A (2n − 1)-dim. fibered knot K in S2n+1 is simple if
(1) K is (n − 2)-connected, and (2) the fibers are (n − 1)-connected.

In fact, we have the following.

Theorem 4.2 (Durfee, Kato, 1974) For n ≥ 3, (2n − 1)-dim.

simple fibered knots are in one-to-one correspondence with the

isomorphism classes of integral unimodular bilinear forms.

For n = 1, 2, the above theorem does not hold.

Theorem 4.3 (S, 1999) For every k ≥ 2, there exist simple fibered

3-knots K1, K2, . . . , Kk s.t.

(1) they are all diffeomorphic as abstract 3-manifolds,

(2) their Seifert forms are all isomorphic,

(3) Ki and Kj are not isotopic if i 6= j.
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ft(z1, z2, . . . , zn+1), t ∈ (−δ, δ).
A family of complex polynomials with isolated critical points at 0.
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We say that ft defines a µ-constant deformation if the Milnor number
µ(ft) is constant for t.
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ft(z1, z2, . . . , zn+1), t ∈ (−δ, δ).
A family of complex polynomials with isolated critical points at 0.
We say that ft defines a µ-constant deformation if the Milnor number
µ(ft) is constant for t.

Theorem 4.4 (Lê–Ramanujam, 1976)
For n 6= 2, µ-constant deformation is topologically constant, i.e.,

Kft
are all isotopic.

For n = 2, this is still an open problem.
(Mainly due to the failure of the h-cobordism theorem in low
dimensions.)
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For a1, a2, . . . , an+1 ≥ 2, set

f(z1, z2, . . . , zn+1) = za1

1 + za2

2 + · · · + z
an+1

n+1 ,

which is called a Brieskorn–Pham type polynomial.
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For a1, a2, . . . , an+1 ≥ 2, set

f(z1, z2, . . . , zn+1) = za1

1 + za2

2 + · · · + z
an+1

n+1 ,

which is called a Brieskorn–Pham type polynomial.
The integers a1, a2, . . . , an+1 are called the exponents.
Seifert forms for algebraic knots associated with Brieskorn–Pham type
polynomials are known.
In fact, we have the following.

Theorem 4.5 (Yoshinaga–Suzuki, 1978)
For two Brieskorn–Pham type polynomials f and g, the following

three are equivanent.

(1) Kf and Kg are isotopic.

(2) f and g have the same set of exponents.

(3) ∆f (t) = ∆g(t).
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However, in general, it is extremely difficult to calculate the Seifert form
of a given algebraic knot.
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However, in general, it is extremely difficult to calculate the Seifert form
of a given algebraic knot.
The following is still an important open problem.

Problem 4.6 For a given f , compute the Seifert form of the associated

algebraic knot Kf .
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■ Complex polynomial f(z1, z2, . . . , zn+1) with an isolated critical
point at 0 gives rise to a fibered knot Kf ⊂ S2n+1, called the
algebraic knot associated with f .

■ For n = 1, Kf is an iterated torus knot, or a link whose
components are iterated torus knots. They are easily classified.

■ For n ≥ 3, Kf is completely determined by its Seifert form, but
its explicit calculation is unknown in general.

■ For n = 2, the situation is difficult and it is much harder to
understand algebraic 3-knots in S5.

■ Exotic spheres arise around singularities associated with simple
polynomials, called Brieskorn–Pham type polynomials.
They are sources of interesting examples of high dimensional knots.
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Thank you!
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