

Osamu Saeki Kyushu University

January 18, 2010

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

$\S1$. Introduction

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 1.1 M^n , N^p : smooth manifolds $(n \ge p)$ A singularity of a smooth map $M^n \to N^p$ that has the normal form

$$(x_1, x_2, \dots, x_n) \mapsto (x_1, x_2, \dots, x_{p-1}, x_p^2 + x_{p+1}^2 + \dots + x_n^2)$$
 (1)

is called a **definite fold singularity**.

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 1.1 M^n , N^p : smooth manifolds $(n \ge p)$ A singularity of a smooth map $M^n \to N^p$ that has the normal form

$$(x_1, x_2, \dots, x_n) \mapsto (x_1, x_2, \dots, x_{p-1}, x_p^2 + x_{p+1}^2 + \dots + x_n^2)$$
 (1)

is called a **definite fold singularity**.

A smooth map $f: M^n \to N^p$ is a **special generic map** (**SGM**, for short) if it has only definite fold singularities.

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 1.1 M^n , N^p : smooth manifolds $(n \ge p)$ A singularity of a smooth map $M^n \to N^p$ that has the normal form

$$(x_1, x_2, \dots, x_n) \mapsto (x_1, x_2, \dots, x_{p-1}, x_p^2 + x_{p+1}^2 + \dots + x_n^2)$$
 (1)

is called a **definite fold singularity**.

A smooth map $f: M^n \to N^p$ is a **special generic map** (**SGM**, for short) if it has only definite fold singularities.

Then, S(f), the set of singular points of f, is a submanifold of M^n of dimension p-1.

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 1.1 M^n , N^p : smooth manifolds $(n \ge p)$ A singularity of a smooth map $M^n \to N^p$ that has the normal form

$$(x_1, x_2, \dots, x_n) \mapsto (x_1, x_2, \dots, x_{p-1}, x_p^2 + x_{p+1}^2 + \dots + x_n^2)$$
 (1)

is called a **definite fold singularity**. A smooth map $f: M^n \to N^p$ is a **special generic map** (**SGM**, for short) if it has only definite fold singularities. Then, S(f), the set of singular points of f, is a submanifold of M^n of dimension p-1.

Example 1.2 The map $f : \mathbb{R}^n \to \mathbb{R}^p$ defined by (1) is a proper special generic map.

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 1.1 M^n , N^p : smooth manifolds $(n \ge p)$ A singularity of a smooth map $M^n \to N^p$ that has the normal form

$$(x_1, x_2, \dots, x_n) \mapsto (x_1, x_2, \dots, x_{p-1}, x_p^2 + x_{p+1}^2 + \dots + x_n^2)$$
 (1)

is called a **definite fold singularity**. A smooth map $f: M^n \to N^p$ is a **special generic map** (**SGM**, for short) if it has only definite fold singularities. Then, S(f), the set of singular points of f, is a submanifold of M^n of dimension p-1.

Example 1.2 The map $f : \mathbb{R}^n \to \mathbb{R}^p$ defined by (1) is a proper special generic map. $S(f) = \mathbb{R}^{p-1} \times \{0\}$

Example

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

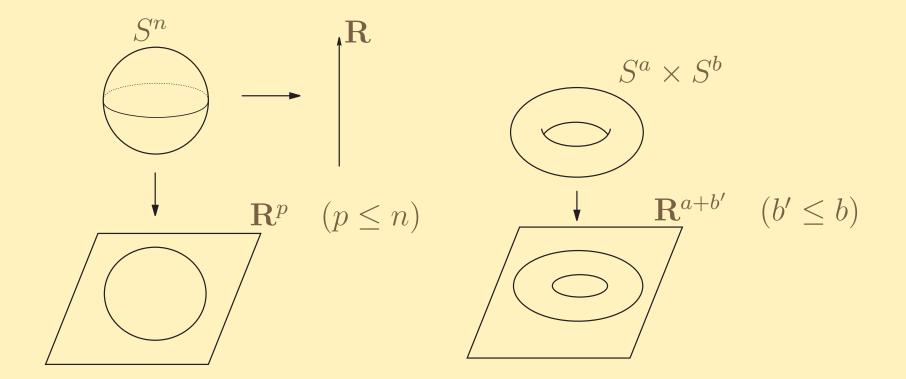


Figure 1: Example of special generic maps

SGM and smooth structures

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Special generic maps are strongly related to **smooth structures** of manifolds.

SGM and smooth structures

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Special generic maps are strongly related to **smooth structures** of manifolds.

 M^n : closed connected manifold of dimension n

Theorem 1.3 (Reeb, Smale) $n \ge 5$ M^n is a homotopy *n*-sphere ($\iff M^n \approx S^n$ (homeomorphic)) $\iff \exists f: M^n \to \mathbf{R}$ special generic function

SGM and smooth structures

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Special generic maps are strongly related to **smooth structures** of manifolds.

 M^n : closed connected manifold of dimension n

Theorem 1.3 (Reeb, Smale) $n \ge 5$ M^n is a homotopy *n*-sphere ($\iff M^n \approx S^n$ (homeomorphic)) $\iff \exists f: M^n \to \mathbf{R}$ special generic function

Theorem 1.4 (S, 1993) $M^n \cong S^n$ (diffeomorphic) $\iff 1 \le \forall p \le n, \exists f : M^n \to \mathbf{R}^p$ special generic map

4-Dimensional case

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Theorem 1.5 (Sakuma-S, 1990's) $\exists (M_1^4, M_2^4)$ such that $M_1^4 \approx M_2^4$ (homeomorphic) $\exists f_1 : M_1^4 \to \mathbf{R}^3$ special generic map $\nexists f_2 : M_2^4 \to \mathbf{R}^3$ special generic map In fact, there are infinitely many such pairs.

4-Dimensional case

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Theorem 1.5 (Sakuma-S, 1990's) $\exists (M_1^4, M_2^4)$ such that $M_1^4 \approx M_2^4$ (homeomorphic) $\exists f_1 : M_1^4 \to \mathbf{R}^3$ special generic map $\not\exists f_2 : M_2^4 \to \mathbf{R}^3$ special generic map In fact, there are infinitely many such pairs.

Theorem 1.6 (S (1993) + 3-dim. Poincaré Conj.) M^4 : closed 1-connected 4-manifold $\exists f: M^4 \to \mathbf{R}^3$ special generic map $\iff M^4 \cong \sharp^k(S^2 \times S^2)$ or $\sharp^k(S^2 \times S^2)$ (diffeomorphic)

4-Dimensional case

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Theorem 1.5 (Sakuma-S, 1990's) $\exists (M_1^4, M_2^4)$ such that $M_1^4 \approx M_2^4$ (homeomorphic) $\exists f_1 : M_1^4 \to \mathbf{R}^3$ special generic map $\not\exists f_2 : M_2^4 \to \mathbf{R}^3$ special generic map In fact, there are infinitely many such pairs.

Theorem 1.6 (S (1993) + 3-dim. Poincaré Conj.) M^4 : closed 1-connected 4-manifold $\exists f: M^4 \to \mathbf{R}^3$ special generic map $\iff M^4 \cong \sharp^k(S^2 \times S^2)$ or $\sharp^k(S^2 \times S^2)$ (diffeomorphic)

Corollary 1.7 $M^4 \approx \sharp^k(S^2 \times S^2) \text{ or } \sharp^k(S^2 \times S^2) \text{ (homeomorphic)}$ $\exists f: M^4 \to \mathbf{R}^3 \text{ special generic map}$ $\iff M^4 \cong \sharp^k(S^2 \times S^2) \text{ or } \sharp^k(S^2 \times S^2) \text{ (diffeomorphic)}$

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Remark 1.8 Smooth structures on $\sharp^k(S^2 \times S^2)$ are not unique. In fact, there are *infinitely many* such structures if k is a sufficiently big odd integer (J. Park, 2003).

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Remark 1.8 Smooth structures on $\sharp^k(S^2 \times S^2)$ are not unique. In fact, there are *infinitely many* such structures if k is a sufficiently big odd integer (J. Park, 2003).

Remark 1.9 M_1^4 , M_2^4 : closed orientable 4-manifolds If $M_1^4 \approx M_2^4$ (homeomorphic), then $\exists f_1 : M_1^4 \to \mathbf{R}^3$ smooth map with only fold singularities (= **fold map**) $\iff \exists f_2 : M_2^4 \to \mathbf{R}^3$ fold map

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Remark 1.8 Smooth structures on $\sharp^k(S^2 \times S^2)$ are not unique. In fact, there are *infinitely many* such structures if k is a sufficiently big odd integer (J. Park, 2003).

Remark 1.9 M_1^4 , M_2^4 : closed orientable 4-manifolds If $M_1^4 \approx M_2^4$ (homeomorphic), then $\exists f_1 : M_1^4 \to \mathbf{R}^3$ smooth map with only fold singularities (= **fold map**) $\iff \exists f_2 : M_2^4 \to \mathbf{R}^3$ fold map

Today's topic: How about SGM on **non-compact** 4-manifolds?

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Remark 1.8 Smooth structures on $\sharp^k(S^2 \times S^2)$ are not unique. In fact, there are *infinitely many* such structures if k is a sufficiently big odd integer (J. Park, 2003).

Remark 1.9 M_1^4 , M_2^4 : closed orientable 4-manifolds If $M_1^4 \approx M_2^4$ (homeomorphic), then $\exists f_1 : M_1^4 \to \mathbf{R}^3$ smooth map with only fold singularities (= fold map) $\iff \exists f_2 : M_2^4 \to \mathbf{R}^3$ fold map

Today's topic: How about SGM on **non-compact** 4-manifolds?

Note. Usually an open 4-manifold admits *uncountably many* smooth structures.

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

\S **2. Main Results**

Open 1-connected 4-manifolds

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Theorem 2.1 M^4 : open 1-connected 4-manifold of "finite type" $\exists f: M^4 \to N^3$ proper special generic map for some 3-manifold N^3 with $S(f) \neq \emptyset$ $\iff M^4$ is diffeomorphic to the connected sum of a finite number of copies of the following manifolds: $\mathbf{R}^4 (= S^4 \setminus \{\text{point}\}), \text{ Int } (\natural^k (S^2 \times D^2)) = S^4 \setminus (\lor^k S^1),$ \mathbf{R}^2 -bundle over $S^2, S^2 \times S^2, S^2 \times S^2$

Open 1-connected 4-manifolds

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Theorem 2.1

$$M^4$$
: open 1-connected 4-manifold of "finite type"
 $\exists f: M^4 \to N^3$ proper special generic map
for some 3-manifold N^3 with $S(f) \neq \emptyset$
 $\iff M^4$ is diffeomorphic to the connected sum
of a finite number of copies of the following manifolds:
 $\mathbf{R}^4 (= S^4 \setminus \{\text{point}\}), \text{ Int } (\natural^k (S^2 \times D^2)) = S^4 \setminus (\lor^k S^1),$
 \mathbf{R}^2 -bundle over $S^2, S^2 \times S^2, S^2 \times S^2$

Corollary 2.2 $M^4 \approx \mathbf{R}^4$ (homeomorphic) $\exists f: M^4 \to \mathbf{R}^p$ proper special generic map for $1 \leq \exists p \leq 3$ $\iff M^4 \cong \mathbf{R}^4$ (diffeomorphic)

Manifolds homeomorphic to $L^3 imes \mathbf{R}$

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Theorem 2.3
$$L^3$$
 : closed orientable 3-manifold
 $M^4 \approx L^3 \times \mathbf{R}$ (homeomorphic)
 $\exists f: M^4 \to \mathbf{R}^3$ proper special generic map
 $\iff M^4 \cong L^3 \times \mathbf{R}$ (diffeomorphic) and
 $\exists g: L^3 \to \mathbf{R}^2$ special generic map

Manifolds homeomorphic to $L^3 imes {f R}$

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Theorem 2.3
$$L^3$$
 : closed orientable 3-manifold
 $M^4 \approx L^3 \times \mathbf{R}$ (homeomorphic)
 $\exists f: M^4 \to \mathbf{R}^3$ proper special generic map
 $\iff M^4 \cong L^3 \times \mathbf{R}$ (diffeomorphic) and
 $\exists g: L^3 \to \mathbf{R}^2$ special generic map

Remark 2.4 " \Leftarrow " is easy. Consider $f = g \times id_{\mathbf{R}} : L^3 \times \mathbf{R} \to \mathbf{R}^2 \times \mathbf{R}$. §1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

\S **3. Ends of Open Manifolds**

End of a topological space

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 3.1 (Siebenmann, 1965) X: Hausdorff space ε : collection of subsets of X such that

- (i) Each G ∈ ε is a connected open non-empty set with compact frontier G G,
 (ii) G, G' ∈ ε ⇒ ∃G'' ∈ ε with G'' ⊂ G ∩ G',
 (iii) ⋂ G = Ø.
 - $G \in \varepsilon$

End of a topological space

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 3.1 (Siebenmann, 1965) X: Hausdorff space ε : collection of subsets of X such that

- (i) Each $G \in \varepsilon$ is a connected open non-empty set with compact frontier $\overline{G} G$,
- (ii) $G, G' \in \varepsilon \Longrightarrow \exists G'' \in \varepsilon \text{ with } G'' \subset G \cap G',$

(iii) $\bigcap_{G \in \varepsilon} \overline{G} = \emptyset.$

A maximal such collection ε is called an **end** of X.

End of a topological space

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 3.1 (Siebenmann, 1965) X: Hausdorff space ε : collection of subsets of X such that

- (i) Each $G \in \varepsilon$ is a connected open non-empty set with compact frontier $\overline{G} G$,
- (ii) $G, G' \in \varepsilon \Longrightarrow \exists G'' \in \varepsilon \text{ with } G'' \subset G \cap G'$,

iii)
$$\bigcap_{G \in \varepsilon} \overline{G} = \emptyset.$$

A maximal such collection ε is called an **end** of X.

A neighborhood of an end ε is any set $N \subset X$ that contains some member of ε .

Example

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

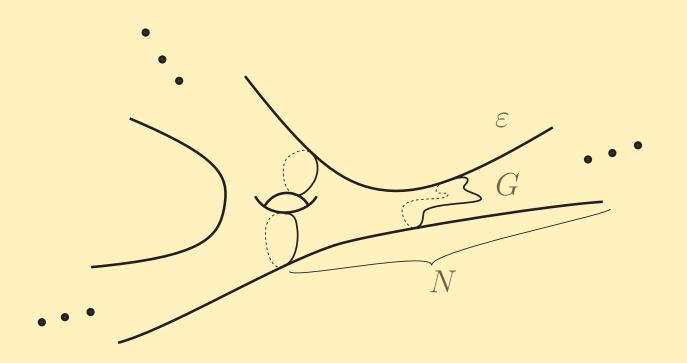


Figure 2: Ends of a manifold

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 3.2 ε : an end of a topological manifold X π_1 is **stable** at ε

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 3.2 ε : an end of a topological manifold X π_1 is **stable** at ε

 \iff

 $\exists X_1 \supset X_2 \supset \cdots$ a sequence of path connected neighborhoods of ε such that $\bigcap \overline{X}_i = \emptyset$ and the sequence

$$\mathcal{G}: \qquad \pi_1(X_1) \xleftarrow{f_1} \pi_1(X_2) \xleftarrow{f_2} \cdots$$

induced by the inclusions induces isomorphisms

$$\operatorname{Im}(f_1) \xleftarrow{\cong} \operatorname{Im}(f_2) \xleftarrow{\cong} \cdots$$

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 3.2 ε : an end of a topological manifold X π_1 is **stable** at ε

 \iff

 $\exists X_1 \supset X_2 \supset \cdots$ a sequence of path connected neighborhoods of ε such that $\bigcap \overline{X}_i = \emptyset$ and the sequence

$$\mathcal{G}: \qquad \pi_1(X_1) \xleftarrow{f_1} \pi_1(X_2) \xleftarrow{f_2} \cdots$$

induced by the inclusions induces isomorphisms

$$\operatorname{Im}(f_1) \xleftarrow{\cong} \operatorname{Im}(f_2) \xleftarrow{\cong} \cdots$$

Definition 3.3 Suppose π_1 is stable at an end ε . Define $\pi_1(\varepsilon)$ to be the projective limit $\lim \mathcal{G}$ for some \mathcal{G} as above.

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 3.2 ε : an end of a topological manifold X π_1 is **stable** at ε

 \iff

 $\exists X_1 \supset X_2 \supset \cdots$ a sequence of path connected neighborhoods of ε such that $\bigcap \overline{X}_i = \emptyset$ and the sequence

$$\mathcal{G}: \qquad \pi_1(X_1) \xleftarrow{f_1} \pi_1(X_2) \xleftarrow{f_2} \cdots$$

induced by the inclusions induces isomorphisms

$$\operatorname{Im}(f_1) \xleftarrow{\cong} \operatorname{Im}(f_2) \xleftarrow{\cong} \cdots$$

Definition 3.3 Suppose π_1 is stable at an end ε . Define $\pi_1(\varepsilon)$ to be the projective limit $\lim_{\leftarrow} \mathcal{G}$ for some \mathcal{G} as above. According to Siebenmann, $\pi_1(\varepsilon)$ is well defined up to isomorphism.

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 3.4 An open manifold M is of **finite type** if

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 3.4 An open manifold M is of **finite type** if(i) M has finitely many ends,

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 3.4 An open manifold M is of **finite type** if

- (i) M has finitely many ends,
- (ii) for each end ε , $\pi_1(\varepsilon)$ is finitely presentable,

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 3.4 An open manifold M is of **finite type** if

- (i) M has finitely many ends,
- (ii) for each end ε , $\pi_1(\varepsilon)$ is finitely presentable,
- (iii) $H_*(M; \mathbb{Z}_2)$ is finitely generated.

Open manifolds of finite type

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 3.4 An open manifold M is of **finite type** if

- (i) M has finitely many ends,
- (ii) for each end ε , $\pi_1(\varepsilon)$ is finitely presentable,
- (iii) $H_*(M; \mathbb{Z}_2)$ is finitely generated.

Lemma 3.5 (Husch–Price, 1970) W^3 : open orientable 3-manifold of finite type $\implies \exists \widetilde{W}^3 \quad compact \text{ orientable } 3\text{-manifold and}$ $\exists h: W^3 \rightarrow \widetilde{W}^3 \quad embedding$ such that $h(\operatorname{Int} W^3) = \operatorname{Int} \widetilde{W}^3$.

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

\S 4. Stein Factorization

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 4.1 $f: M \to N$ smooth map For $x, x' \in M$, define $x \sim_f x'$ if (i) f(x) = f(x')(=y), and (ii) x and x' belong to the same connected component of $f^{-1}(y)$.

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 4.1 $f: M \to N$ smooth map For $x, x' \in M$, define $x \sim_f x'$ if (i) f(x) = f(x')(=y), and (ii) x and x' belong to the same connected component of $f^{-1}(y)$. $W_f = M/\sim_f$ quotient space $q_f: M \to W_f$ quotient map

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 4.1 $f: M \to N$ smooth map For $x, x' \in M$, define $x \sim_f x'$ if (i) f(x) = f(x')(=y), and (ii) x and x' belong to the same connected component of $f^{-1}(y)$. $W_f = M / \sim_f$ quotient space $q_f: M \to W_f$ quotient map $\exists ! f : W_f \to N$ that makes the diagram commutative: $M \xrightarrow{f} N$

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Definition 4.1 $f: M \to N$ smooth map For $x, x' \in M$, define $x \sim_f x'$ if (i) f(x) = f(x')(=y), and (ii) x and x' belong to the same connected component of $f^{-1}(y)$. $W_f = M / \sim_f$ quotient space $q_f: M \to W_f$ quotient map $\exists ! \overline{f} : W_f \to N$ that makes the diagram commutative: $M \xrightarrow{f} N$ $q_f \searrow \qquad \qquad \nearrow_{\bar{f}}$ W_{f} The above diagram is called the **Stein factorization** of f.

Example

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

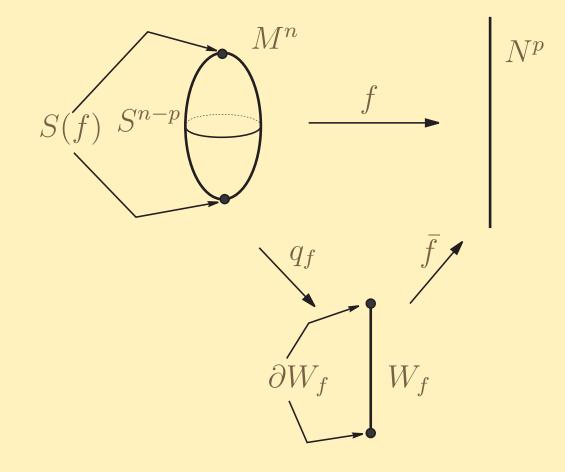


Figure 3: Stein factorization of a SGM

Disk Bundle Theorem

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

If f is a special generic map, then W_f has the structure of a smooth p-dim. manifold possibly with boundary.

Disk Bundle Theorem

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

If f is a special generic map, then W_f has the structure of a smooth p-dim. manifold possibly with boundary.

Theorem 4.2 (S, 1993)

 \Longrightarrow

 $f: M^n \to N^p$ proper special generic map with n - p = 1, 2, 3s.t. $S(f) \neq \emptyset$

 M^n is diffeomorphic to the boundary of a D^{n-p+1} -bundle over W_f .

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

$\S 5.$ Proofs of Theorems

Theorem 2.1

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Let us prove the following.

Theorem 2.1: M^4 : open 1-connected 4-manifold of "finite type" $\exists f: M^4 \to N^3$ proper special generic map for some 3-manifold N^3 with $S(f) \neq \emptyset$ $\iff M^4$ is diffeomorphic to the connected sum of a finite number of copies of the following manifolds: \mathbf{R}^4 , Int $(\natural^k(S^2 \times D^2))$, \mathbf{R}^2 -bundle over S^2 , $S^2 \times S^2$, $S^2 \times S^2$

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Proof of Theorem 2.1:

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Proof of Theorem 2.1: M^4 : open 4-manifold of finite type N^3 : orientable 3-manifold $f: M^4 \rightarrow N^3$ proper special generic map

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Proof of Theorem 2.1: M^4 : open 4-manifold of finite type N^3 : orientable 3-manifold $f: M^4 \rightarrow N^3$ proper special generic map \Longrightarrow W_f is an open 3-manifold of finite type

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Proof of Theorem 2.1: M^4 : open 4-manifold of finite type N^3 : orientable 3-manifold $f: M^4 \to N^3$ proper special generic map \Longrightarrow W_f is an open 3-manifold of finite type $\pi_1(M^4) = 1 \Rightarrow \pi_1(W_f) = 1$

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Proof of Theorem 2.1: M^4 : open 4-manifold of finite type N^3 : orientable 3-manifold $f: M^4 \to N^3$ proper special generic map \implies W_f is an open 3-manifold of finite type $\pi_1(M^4) = 1 \Rightarrow \pi_1(W_f) = 1$ By the solution to the Poincaré Conjecture + Husch-Price Lemma, $W_f \cong D^3 \setminus F$ or $\natural^k(S^2 \times [0, 1]) \setminus F$, where F is a compact surface (possibly with boundary) contained in the boundary.

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Proof of Theorem 2.1: M^4 : open 4-manifold of finite type N^3 : orientable 3-manifold $f: M^4 \to N^3$ proper special generic map \implies W_f is an open 3-manifold of finite type $\pi_1(M^4) = 1 \Rightarrow \pi_1(W_f) = 1$ By the solution to the Poincaré Conjecture + Husch-Price Lemma, $W_f \cong D^3 \setminus F$ or $\natural^k (S^2 \times [0,1]) \setminus F$, where F is a compact surface (possibly with boundary) contained in the boundary. On the other hand, M^4 is diffeomorphic to the boundary of a D^2 -bundle over W_f (by the Disk Bundle Theorem).

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Proof of Theorem 2.1: M^4 : open 4-manifold of finite type N^3 : orientable 3-manifold $f: M^4 \to N^3$ proper special generic map \implies W_f is an open 3-manifold of finite type $\pi_1(M^4) = 1 \Rightarrow \pi_1(W_f) = 1$ By the solution to the Poincaré Conjecture + Husch-Price Lemma, $W_f \cong D^3 \setminus F$ or $\natural^k (S^2 \times [0,1]) \setminus F$, where F is a compact surface (possibly with boundary) contained in the boundary. On the other hand, M^4 is diffeomorphic to the boundary of a D^2 -bundle over W_f (by the Disk Bundle Theorem). Then we easily get the desired conclusion.

Remark

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Remark 5.1 Every 4-manifold as in Theorem 2.1 admits infinitely many (or uncountably many) distinct smooth structures. Theorem 2.1 implies that among them there is exactly one structure that allows the existence of a proper special generic map into an orientable 3-manifold.

Theorem 2.3

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Let us now prove the following.

Theorem 2.3

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Let us now prove the following.

Theorem 2.3: L^3 : closed orientable 3-manifold $M^4 \approx L^3 \times \mathbf{R}$ (homeomorphic) $\exists f: M^4 \to \mathbf{R}^3$ proper special generic map $\iff M^4 \cong L^3 \times \mathbf{R}$ (diffeomorphic) and $\exists g: L^3 \to \mathbf{R}^2$ special generic map

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Proof of Theorem 2.3:

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Proof of Theorem 2.3: $M^4 \approx L^3 \times \mathbf{R}, f: M^4 \rightarrow N^3$ proper special generic map

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Proof of Theorem 2.3: $M^4 \approx L^3 \times \mathbf{R}, f: M^4 \rightarrow N^3$ proper special generic map \Longrightarrow W_f is of "finite type" and has exactly two ends $F_i \times [0, \infty), i = 1, 2$

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Proof of Theorem 2.3: $M^4 \approx L^3 \times \mathbf{R}, f : M^4 \to N^3$ proper special generic map \Longrightarrow W_2 is of "finite type" and has exactly two ends $E \times [0, \infty)$

 W_f is of "finite type" and has exactly two ends $F_i \times [0, \infty)$, i = 1, 2 $F_i \times \{0\} \hookrightarrow W_f$ induce isomorphisms of fundamental groups

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Proof of Theorem 2.3: $M^4 \approx L^3 \times \mathbf{R}, f : M^4 \to N^3$ proper special generic map \implies W_f is of "finite type" and has exactly two ends $F_i \times [0, \infty), i = 1, 2$ $F_i \times \{0\} \hookrightarrow W_f$ induce isomorphisms of fundamental groups

 $W_f \cong (F_1 \times \mathbf{R}) \sharp (\sharp^k D^3)$

25 / 27

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Proof of Theorem 2.3: $M^4 \approx L^3 \times \mathbf{R}, f : M^4 \to N^3$ proper special generic map \Longrightarrow W_f is of "finite type" and has exactly two ends $F_i \times [0, \infty), i = 1, 2$ $F_i \times \{0\} \hookrightarrow W_f$ induce isomorphisms of fundamental groups $W_f \cong (F_1 \times \mathbf{R}) \sharp (\sharp^k D^3)$ $G = M^4 \leftrightarrow L^3 \leftrightarrow \mathbf{P}$

Since $M^4 \approx L^3 \times \mathbf{R}$, we see $W_f \cong F_1 \times \mathbf{R}$.

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Proof of Theorem 2.3: $M^4 \approx L^3 \times \mathbf{R}, f : M^4 \to N^3$ proper special generic map \implies W_f is of "finite type" and has exactly two ends $F_i \times [0, \infty), i = 1, 2$ $F_i \times \{0\} \hookrightarrow W_f$ induce isomorphisms of fundamental groups $W_f \cong (F_1 \times \mathbf{R}) \sharp (\sharp^k D^3)$ Since $M^4 \approx L^3 \times \mathbf{R}$, we see $W_f \cong F_1 \times \mathbf{R}$. $\implies M^4 \cong L' \times \mathbf{R}$ for some 3-manifold L'

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Proof of Theorem 2.3: $M^4 \approx L^3 \times \mathbf{R}, f : M^4 \to N^3$ proper special generic map \implies W_f is of "finite type" and has exactly two ends $F_i \times [0, \infty), i = 1, 2$ $F_i \times \{0\} \hookrightarrow W_f$ induce isomorphisms of fundamental groups $W_f \cong (F_1 \times \mathbf{R}) \sharp (\sharp^k D^3)$ Since $M^4 \approx L^3 \times \mathbf{R}$, we see $W_f \cong F_1 \times \mathbf{R}$. $\implies M^4 \cong L' \times \mathbf{R}$ for some 3-manifold L' $\pi_1(L') \cong \pi_1(L^3)$ is free

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Proof of Theorem 2.3: $M^4 \approx L^3 \times \mathbf{R}, f: M^4 \to N^3$ proper special generic map \Longrightarrow W_f is of "finite type" and has exactly two ends $F_i \times [0,\infty)$, i=1,2 $F_i \times \{0\} \hookrightarrow W_f$ induce isomorphisms of fundamental groups $W_f \cong (F_1 \times \mathbf{R}) \sharp (\sharp^k D^3)$ Since $M^4 \approx L^3 \times \mathbf{R}$, we see $W_f \cong F_1 \times \mathbf{R}$. $\implies M^4 \cong L' \times \mathbf{R}$ for some 3-manifold L' $\pi_1(L') \cong \pi_1(L^3)$ is free $L' \cong L^3 \cong \sharp^{\ell}(S^1 \times S^2)$, and hence $\exists q: L^3 \rightarrow \mathbf{R}^2$ special generic map (Burlet-de Rham, 1974)

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Conjecture 5.2

- M^4 : topological 4-manifold
- \implies There exists at most one smooth structure on M^4 that allows the existence of a proper special generic map into \mathbf{R}^3 .

§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

Thank you!