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Definition 1.1 Mn, Np: smooth manifolds (n ≥ p)
A singularity of a smooth map Mn → Np that has the normal form

(x1, x2, . . . , xn) �→ (x1, x2, . . . , xp−1, x
2
p + x2

p+1 + · · ·+ x2
n) (1)

is called a definite fold singularity.
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Definition 1.1 Mn, Np: smooth manifolds (n ≥ p)
A singularity of a smooth map Mn → Np that has the normal form

(x1, x2, . . . , xn) �→ (x1, x2, . . . , xp−1, x
2
p + x2

p+1 + · · ·+ x2
n) (1)

is called a definite fold singularity.
A smooth map f : Mn → Np is a special generic map (SGM, for
short) if it has only definite fold singularities.
Then, S(f), the set of singular points of f , is a submanifold of Mn of

dimension p− 1.

Example 1.2 The map f : Rn → Rp defined by (1) is a proper special
generic map.
S(f) = Rp−1 × {0}
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Sn R

Rp (p ≤ n)

Sa × Sb

Ra+b′ (b′ ≤ b)

Figure 1: Example of special generic maps
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⇐⇒ ∃f : Mn → R special generic function
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Special generic maps are strongly related to smooth structures of
manifolds.

Mn: closed connected manifold of dimension n

Theorem 1.3 (Reeb, Smale) n ≥ 5
Mn is a homotopy n-sphere (⇐⇒ Mn ≈ Sn (homeomorphic))
⇐⇒ ∃f : Mn → R special generic function

Theorem 1.4 (S, 1993)
Mn ∼= Sn (diffeomorphic)
⇐⇒ 1 ≤ ∀p ≤ n, ∃f : Mn → Rp special generic map
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Theorem 1.5 (Sakuma-S, 1990’s) ∃(M4
1 ,M4

2 ) such that
M4

1 ≈M4
2 (homeomorphic)

∃f1 : M4
1 → R3 special generic map

� ∃f2 : M4
2 → R3 special generic map

In fact, there are infinitely many such pairs.
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Theorem 1.6 (S (1993) + 3-dim. Poincaré Conj.)
M4: closed 1-connected 4-manifold
∃f : M4 → R3 special generic map
⇐⇒ M4 ∼= �k(S2 × S2) or �k(S2 ×̃S2) (diffeomorphic)

Corollary 1.7
M4 ≈ �k(S2 × S2) or �k(S2 ×̃S2) (homeomorphic)
∃f : M4 → R3 special generic map
⇐⇒ M4 ∼= �k(S2 × S2) or �k(S2 ×̃S2) (diffeomorphic)
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Remark 1.8 Smooth structures on �k(S2 × S2) are not unique. In fact,
there are infinitely many such structures if k is a sufficiently big odd
integer (J. Park, 2003).
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Remark 1.8 Smooth structures on �k(S2 × S2) are not unique. In fact,
there are infinitely many such structures if k is a sufficiently big odd
integer (J. Park, 2003).

Remark 1.9 M4
1 , M4

2 : closed orientable 4-manifolds
If M4

1 ≈M4
2 (homeomorphic), then

∃f1 : M4
1 → R3 smooth map with only fold singularities (= fold map)

⇐⇒ ∃f2 : M4
2 → R3 fold map

Today’s topic: How about SGM on non-compact 4-manifolds?

Note. Usually an open 4-manifold admits uncountably many smooth
structures.
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Theorem 2.1
M4: open 1-connected 4-manifold of “finite type”
∃f : M4 → N3 proper special generic map

for some 3-manifold N3 with S(f) �= ∅
⇐⇒ M4 is diffeomorphic to the connected sum

of a finite number of copies of the following manifolds:
R4(= S4 \ {point}), Int

(
�k(S2 ×D2)

)
= S4 \ (∨kS1),

R2-bundle over S2, S2 × S2, S2 ×̃S2



Open 1-connected 4-manifolds
§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

9 / 27

Theorem 2.1
M4: open 1-connected 4-manifold of “finite type”
∃f : M4 → N3 proper special generic map

for some 3-manifold N3 with S(f) �= ∅
⇐⇒ M4 is diffeomorphic to the connected sum

of a finite number of copies of the following manifolds:
R4(= S4 \ {point}), Int

(
�k(S2 ×D2)

)
= S4 \ (∨kS1),

R2-bundle over S2, S2 × S2, S2 ×̃S2

Corollary 2.2 M4 ≈ R4 (homeomorphic)
∃f : M4 → Rp proper special generic map for 1 ≤ ∃p ≤ 3
⇐⇒ M4 ∼= R4 (diffeomorphic)
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Theorem 2.3 L3 : closed orientable 3-manifold
M4 ≈ L3 ×R (homeomorphic)
∃f : M4 → R3 proper special generic map
⇐⇒ M4 ∼= L3 ×R (diffeomorphic) and
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Theorem 2.3 L3 : closed orientable 3-manifold
M4 ≈ L3 ×R (homeomorphic)
∃f : M4 → R3 proper special generic map
⇐⇒ M4 ∼= L3 ×R (diffeomorphic) and
∃g : L3 → R2 special generic map

Remark 2.4 “⇐=” is easy.
Consider f = g × idR : L3 ×R→ R2 ×R.
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Definition 3.1 (Siebenmann, 1965) X: Hausdorff space
ε: collection of subsets of X such that

(i) Each G ∈ ε is a connected open non-empty set with compact
frontier G−G,

(ii) G,G′ ∈ ε =⇒ ∃G′′ ∈ ε with G′′ ⊂ G ∩G′,
(iii)

⋂
G∈ε

G = ∅.
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Definition 3.1 (Siebenmann, 1965) X: Hausdorff space
ε: collection of subsets of X such that

(i) Each G ∈ ε is a connected open non-empty set with compact
frontier G−G,

(ii) G,G′ ∈ ε =⇒ ∃G′′ ∈ ε with G′′ ⊂ G ∩G′,
(iii)

⋂
G∈ε

G = ∅.

A maximal such collection ε is called an end of X.
A neighborhood of an end ε is any set N ⊂ X that contains some

member of ε.
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ε

G

N

Figure 2: Ends of a manifold
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π1 is stable at ε
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Definition 3.2 ε: an end of a topological manifold X
π1 is stable at ε
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∃X1 ⊃ X2 ⊃ · · · a sequence of path connected neighborhoods of ε
such that

⋂
X i = ∅ and the sequence

G : π1(X1)
f1←−−−−π1(X2)

f2←−−−− · · ·

induced by the inclusions induces isomorphisms

Im(f1)
∼=←−−−−Im(f2)

∼=←−−−− · · · .
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Definition 3.2 ε: an end of a topological manifold X
π1 is stable at ε
⇐⇒
∃X1 ⊃ X2 ⊃ · · · a sequence of path connected neighborhoods of ε
such that

⋂
X i = ∅ and the sequence

G : π1(X1)
f1←−−−−π1(X2)

f2←−−−− · · ·

induced by the inclusions induces isomorphisms

Im(f1)
∼=←−−−−Im(f2)

∼=←−−−− · · · .

Definition 3.3 Suppose π1 is stable at an end ε.
Define π1(ε) to be the projective limit lim

←−
G for some G as above.

According to Siebenmann, π1(ε) is well defined up to isomorphism.
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Definition 3.4 An open manifold M is of finite type if

(i) M has finitely many ends,
(ii) for each end ε, π1(ε) is finitely presentable,
(iii) H∗(M ;Z2) is finitely generated.

Lemma 3.5 (Husch–Price, 1970)
W 3: open orientable 3-manifold of finite type

=⇒ ∃W̃ 3 compact orientable 3-manifold and
∃h : W 3 → W̃ 3 embedding

such that h(IntW 3) = Int W̃ 3.
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Definition 4.1 f : M → N smooth map
For x, x′ ∈M , define x ∼f x′ if
(i) f(x) = f(x′)(= y), and
(ii) x and x′ belong to the same connected component of f−1(y).
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Definition 4.1 f : M → N smooth map
For x, x′ ∈M , define x ∼f x′ if
(i) f(x) = f(x′)(= y), and
(ii) x and x′ belong to the same connected component of f−1(y).

Wf = M/∼f quotient space
qf : M → Wf quotient map

∃!f̄ : Wf → N that makes the diagram commutative:

M
f−−−−→ N

qf
↘ ↗f̄

Wf

The above diagram is called the Stein factorization of f .
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f

Mn
Np

Wf

f̄qf

∂Wf

S(f) Sn−p

Figure 3: Stein factorization of a SGM
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If f is a special generic map, then Wf has the structure of a smooth
p-dim. manifold possibly with boundary.

Theorem 4.2 (S, 1993)
f : Mn → Np proper special generic map with n− p = 1, 2, 3
s.t. S(f) �= ∅
=⇒
Mn is diffeomorphic to the boundary of a Dn−p+1-bundle over Wf .
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Let us prove the following.

Theorem 2.1:
M4: open 1-connected 4-manifold of “finite type”
∃f : M4 → N3 proper special generic map

for some 3-manifold N3 with S(f) �= ∅
⇐⇒ M4 is diffeomorphic to the connected sum

of a finite number of copies of the following manifolds:
R4, Int

(
�k(S2 ×D2)

)
, R2-bundle over S2,

S2 × S2, S2 ×̃S2
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Proof of Theorem 2.1:
M4: open 4-manifold of finite type
N3: orientable 3-manifold
f : M4 → N3 proper special generic map
=⇒
Wf is an open 3-manifold of finite type
π1(M

4) = 1 ⇒ π1(Wf ) = 1
By the solution to the Poincaré Conjecture + Husch–Price Lemma,
Wf
∼= D3 \ F or �k(S2 × [0, 1]) \ F , where F is a compact surface

(possibly with boundary) contained in the boundary.
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By the solution to the Poincaré Conjecture + Husch–Price Lemma,
Wf
∼= D3 \ F or �k(S2 × [0, 1]) \ F , where F is a compact surface

(possibly with boundary) contained in the boundary.
On the other hand, M4 is diffeomorphic to the boundary of a D2-bundle
over Wf (by the Disk Bundle Theorem).



Proof of Theorem 2.1
§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

22 / 27

Proof of Theorem 2.1:
M4: open 4-manifold of finite type
N3: orientable 3-manifold
f : M4 → N3 proper special generic map
=⇒
Wf is an open 3-manifold of finite type
π1(M

4) = 1 ⇒ π1(Wf ) = 1
By the solution to the Poincaré Conjecture + Husch–Price Lemma,
Wf
∼= D3 \ F or �k(S2 × [0, 1]) \ F , where F is a compact surface

(possibly with boundary) contained in the boundary.
On the other hand, M4 is diffeomorphic to the boundary of a D2-bundle
over Wf (by the Disk Bundle Theorem).
Then we easily get the desired conclusion.
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Remark 5.1 Every 4-manifold as in Theorem 2.1 admits infinitely many
(or uncountably many) distinct smooth structures.
Theorem 2.1 implies that among them there is exactly one structure that
allows the existence of a proper special generic map into an orientable
3-manifold.
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Let us now prove the following.

Theorem 2.3:
L3 : closed orientable 3-manifold
M4 ≈ L3 ×R (homeomorphic)
∃f : M4 → R3 proper special generic map
⇐⇒ M4 ∼= L3 ×R (diffeomorphic) and
∃g : L3 → R2 special generic map



Proof of Theorem 2.3
§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

25 / 27

Proof of Theorem 2.3:



Proof of Theorem 2.3
§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

25 / 27

Proof of Theorem 2.3:
M4 ≈ L3 ×R, f : M4 → N3 proper special generic map



Proof of Theorem 2.3
§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

25 / 27

Proof of Theorem 2.3:
M4 ≈ L3 ×R, f : M4 → N3 proper special generic map
=⇒
Wf is of “finite type” and has exactly two ends Fi × [0,∞), i = 1, 2



Proof of Theorem 2.3
§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

25 / 27

Proof of Theorem 2.3:
M4 ≈ L3 ×R, f : M4 → N3 proper special generic map
=⇒
Wf is of “finite type” and has exactly two ends Fi × [0,∞), i = 1, 2
Fi × {0} ↪→ Wf induce isomorphisms of fundamental groups



Proof of Theorem 2.3
§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

25 / 27

Proof of Theorem 2.3:
M4 ≈ L3 ×R, f : M4 → N3 proper special generic map
=⇒
Wf is of “finite type” and has exactly two ends Fi × [0,∞), i = 1, 2
Fi × {0} ↪→ Wf induce isomorphisms of fundamental groups
Wf
∼= (F1 ×R)�(�kD3)



Proof of Theorem 2.3
§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

25 / 27

Proof of Theorem 2.3:
M4 ≈ L3 ×R, f : M4 → N3 proper special generic map
=⇒
Wf is of “finite type” and has exactly two ends Fi × [0,∞), i = 1, 2
Fi × {0} ↪→ Wf induce isomorphisms of fundamental groups
Wf
∼= (F1 ×R)�(�kD3)

Since M4 ≈ L3 ×R, we see Wf
∼= F1 ×R.



Proof of Theorem 2.3
§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

25 / 27

Proof of Theorem 2.3:
M4 ≈ L3 ×R, f : M4 → N3 proper special generic map
=⇒
Wf is of “finite type” and has exactly two ends Fi × [0,∞), i = 1, 2
Fi × {0} ↪→ Wf induce isomorphisms of fundamental groups
Wf
∼= (F1 ×R)�(�kD3)

Since M4 ≈ L3 ×R, we see Wf
∼= F1 ×R.

=⇒ M4 ∼= L′ ×R for some 3-manifold L′



Proof of Theorem 2.3
§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

25 / 27

Proof of Theorem 2.3:
M4 ≈ L3 ×R, f : M4 → N3 proper special generic map
=⇒
Wf is of “finite type” and has exactly two ends Fi × [0,∞), i = 1, 2
Fi × {0} ↪→ Wf induce isomorphisms of fundamental groups
Wf
∼= (F1 ×R)�(�kD3)

Since M4 ≈ L3 ×R, we see Wf
∼= F1 ×R.

=⇒ M4 ∼= L′ ×R for some 3-manifold L′

π1(L
′) ∼= π1(L

3) is free



Proof of Theorem 2.3
§1. Introduction §2. Main Results §3. Ends of Open Manifolds §4. Stein Factorization §5. Proofs of Theorems

25 / 27

Proof of Theorem 2.3:
M4 ≈ L3 ×R, f : M4 → N3 proper special generic map
=⇒
Wf is of “finite type” and has exactly two ends Fi × [0,∞), i = 1, 2
Fi × {0} ↪→ Wf induce isomorphisms of fundamental groups
Wf
∼= (F1 ×R)�(�kD3)

Since M4 ≈ L3 ×R, we see Wf
∼= F1 ×R.

=⇒ M4 ∼= L′ ×R for some 3-manifold L′

π1(L
′) ∼= π1(L

3) is free
L′ ∼= L3 ∼= ��(S1 × S2), and hence
∃g : L3 → R2 special generic map (Burlet–de Rham, 1974)
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Conjecture 5.2
M4: topological 4-manifold
=⇒ There exists at most one smooth structure on M4 that

allows the existence of a proper special generic map into R3.
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Thank you!
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