
Lifting Special Generic Maps

Osamu Saeki
(Institute of Mathematics for Industry, Kyushu University)



Lifting Special Generic Maps

Osamu Saeki
(Institute of Mathematics for Industry, Kyushu University)
（九州大学，マス・フォア・インダストリ研究所）



Lifting Special Generic Maps

Osamu Saeki
(Institute of Mathematics for Industry, Kyushu University)
（九州大学，マス・フォア・インダストリ研究所）

Joint work with Masamichi Takase (Seikei University)

May 31, 2011
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This is a singular plane curve.

But, this can be the projected image of a non-singular space curve.
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Mn: closed n-dim. C∞ manifold,
f : Mn → Rp a generic C∞ map (n ≥ p).
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Mn: closed n-dim. C∞ manifold,
f : Mn → Rp a generic C∞ map (n ≥ p). ←− always singular
For m > n ≥ p, π : Rm → Rp will denote the standard projection.
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Mn: closed n-dim. C∞ manifold,
f : Mn → Rp a generic C∞ map (n ≥ p). ←− always singular
For m > n ≥ p, π : Rm → Rp will denote the standard projection.

Problem 1.1

Rm

π

��
Mn

f ��

? η
���������
Rp

η: immersion or embedding
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Theorem 1.2 (Haefliger, 1960) f : M 2 → R2

∃immersion η : M 2 → R3 s.t. f = π ◦ η
⇐⇒ For every singular set component S (∼= S1) of f :
if S has an annulus nbhd, S contains an even number of cusps,
if S has a Möbius band nbhd, S contains an odd number of cusps.
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if S has a Möbius band nbhd, S contains an odd number of cusps.

Theorem 1.3 (M. Yamamoto, 2007) f : M 2 → R2
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Theorem 1.2 (Haefliger, 1960) f : M 2 → R2

∃immersion η : M 2 → R3 s.t. f = π ◦ η
⇐⇒ For every singular set component S (∼= S1) of f :
if S has an annulus nbhd, S contains an even number of cusps,
if S has a Möbius band nbhd, S contains an odd number of cusps.

Theorem 1.3 (M. Yamamoto, 2007) f : M 2 → R2

There always exists an embedding η : M 2 → R4 s.t. f = π ◦ η.

Theorem 1.4 (Burlet–Haab, 1985) f : M 2 → R Morse
There always exists an immersion η : M 2 → R3 s.t. f = π ◦ η.
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Theorem 1.5 (Saito, 1961) Mn: orientable
f : Mn → Rn special generic map
There always exists an immersion η : Mn → Rn+1 s.t. f = π ◦ η.
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Theorem 1.5 (Saito, 1961) Mn: orientable
f : Mn → Rn special generic map
There always exists an immersion η : Mn → Rn+1 s.t. f = π ◦ η.

Theorem 1.6 (Blank–Curley, 1985)
f : Mn → Nn, π : E → Nn line bundle
∃immersion η : Mn → E s.t. f = π ◦ η
⇐⇒ rk df ≥ n− 1, and
[{cusps}]∗ + w1(ν) + i∗f∗w1(E) = 0 in H1({folds};Z2),
where ν is the normal line bundle of {folds} in Mn and
i : {folds} →Mn is the inclusion.
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Today’s topic:
Desingularization of special generic maps.
(Lifting special generic maps to immersions and embeddings.)
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Today’s topic:
Desingularization of special generic maps.
(Lifting special generic maps to immersions and embeddings.)

Definition 1.7 A singularity of a C∞ map Mn → Np, n ≥ p, that has
the normal form

(x1, x2, . . . , xn) 
→ (x1, x2, . . . , xp−1, x
2
p + x2

p+1 + · · ·+ x2
n)

is called a definite fold singularity.
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Today’s topic:
Desingularization of special generic maps.
(Lifting special generic maps to immersions and embeddings.)

Definition 1.7 A singularity of a C∞ map Mn → Np, n ≥ p, that has
the normal form

(x1, x2, . . . , xn) 
→ (x1, x2, . . . , xp−1, x
2
p + x2

p+1 + · · ·+ x2
n)

is called a definite fold singularity.

Definition 1.8 f : Mn → Np is a special generic map (SGM,
for short) if it has only definite fold singularities.
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Sn R

Rp (n ≥ p)

Sa × Sb

Ra+b′ (b′ ≤ b)

Figure 1: Examples of special generic maps
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Theorem 2.1 (Reeb, Smale, Cerf et al)
Mn: closed connected n-dim. C∞ manifold
∃special generic function Mn → R
⇐⇒
(1) Mn ≈ Sn (homeomorphic) (n = 4)
(2) Mn ∼= Sn (diffeomorphic) (n = 4)
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Generalized Poincaré conjecture is still open in dimension 4

in the C∞ category.



Special generic functions
§1. Lifting Singular Maps §2. Lifting Special Generic Functions §3. Lifting Special Generic Maps into R2 §4. Further Results

10 / 27

Theorem 2.1 (Reeb, Smale, Cerf et al)
Mn: closed connected n-dim. C∞ manifold
∃special generic function Mn → R
⇐⇒
(1) Mn ≈ Sn (homeomorphic) (n = 4)
(2) Mn ∼= Sn (diffeomorphic) (n = 4)

Remark 2.2
Generalized Poincaré conjecture is still open in dimension 4

in the C∞ category.

In the following, Mn will be connected.
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Theorem 2.3 n ≥ 1
f : Mn → R special generic function
There always exists an immersion η : Mn → Rn+1 s.t. f = π ◦ η.
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This is a consequence of the following.
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Theorem 2.3 n ≥ 1
f : Mn → R special generic function
There always exists an immersion η : Mn → Rn+1 s.t. f = π ◦ η.

This is a consequence of the following.

Lemma 2.4 (Kaiser, 1988)
Let i : Sn−1 → Rn be the standard embedding.
For ∀diffeomorphism ϕ : Sn−1 → Sn−1 that preserves the orientation,
the immersions i and i ◦ ϕ are regularly homotopic.
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Mn

R

Rn

f

i

η

π

i ◦ ϕ

ϕ
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Theorem 2.5 n ≥ 2, f : Mn → R special generic function
η0 : Mn → Rn+1 immersion
∃immersion η : Mn → Rn+1 regularly homotopic to η0 s.t. f = π◦η
⇐⇒ normal degree of η0 is equal to{

±1, n = 3, 7

±1 or 0, n = 3, 7.

S3 or S7
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Theorem 2.6 n ≥ 2, n = 5
f : Mn → R special generic function
∃embedding η : Mn → Rn+1 s.t. f = π ◦ η
⇐⇒
Mn ∼= Sn (diffeomorphic)
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Theorem 2.6 n ≥ 2, n = 5
f : Mn → R special generic function
∃embedding η : Mn → Rn+1 s.t. f = π ◦ η
⇐⇒
Mn ∼= Sn (diffeomorphic)

Problem 2.7 How about n = 1 or n = 5?



§3. Lifting Special Generic
Maps into R2
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Theorem 3.1 (Burlet–de Rham, 1974;
Porto–Furuya, 1990; S, 1993)

Mn: closed connected orientable (n ≥ 2)
∃special generic map f : Mn → R2

⇐⇒ Mn is diffeomorphic to

Σn�
(
�r
i=1(Σ

n−1
i × S1)

)
for some homotopy spheres Σn and Σn−1

i

(for n ≤ 6, they are standard spheres).
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Theorem 3.2 Mn: orientable, 2 ≤ n ≤ 7 or n = 4m.
f : Mn → R2 special generic map
There always exists an immersion η : Mn → Rn+1 s.t. f = π ◦ η.
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Theorem 3.2 Mn: orientable, 2 ≤ n ≤ 7 or n = 4m.
f : Mn → R2 special generic map
There always exists an immersion η : Mn → Rn+1 s.t. f = π ◦ η.

Remark 3.3 The case n = 2 is a consequence of Haefliger’s result.
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Theorem 3.2 Mn: orientable, 2 ≤ n ≤ 7 or n = 4m.
f : Mn → R2 special generic map
There always exists an immersion η : Mn → Rn+1 s.t. f = π ◦ η.

Remark 3.3 The case n = 2 is a consequence of Haefliger’s result.
The case n = 3, 7 or 4m is a consequence of the fact that
πn−1(SO(n− 1))→ πn−1(SO(n)) is injective (Kervaire, 1960).
The case n = 5 is a consequence of Diff(S3) � O(4) (Hatcher, 1983).
The case n = 6 is a consequence of the fact that every homotopy
6-sphere is standard (Kervaire–Milnor, 1963).
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Suppose n ≥ 5.
Θn: the group of homotopy n-spheres



An invariant of SGM
§1. Lifting Singular Maps §2. Lifting Special Generic Functions §3. Lifting Special Generic Maps into R2 §4. Further Results

18 / 27

Suppose n ≥ 5.
Θn: the group of homotopy n-spheres

f : Mn → R2 special generic map, n ≥ 5
=⇒ A “canonical” homotopy n-sphere Σ(f) ∈ Θn can be defined
in such a way that

Mn ∼= Σ(f)�
(
�r
i=1(Σ

n−1
i × S1)

)
(diffeomorphic)

for some homotopy (n− 1)-spheres Σn−1
i .
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Suppose n ≥ 5.
Θn: the group of homotopy n-spheres

f : Mn → R2 special generic map, n ≥ 5
=⇒ A “canonical” homotopy n-sphere Σ(f) ∈ Θn can be defined
in such a way that

Mn ∼= Σ(f)�
(
�r
i=1(Σ

n−1
i × S1)

)
(diffeomorphic)

for some homotopy (n− 1)-spheres Σn−1
i .

On the other hand, we have the homomorphism
SH : Θn → Z2 called the “Smale–Hirsch map” (Budney, 2004).
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Theorem 3.4 f : Mn → R2 special generic map, n ≥ 5
∃immersion η : Mn → Rn+1 s.t. f = π ◦ η
⇐⇒ SH(Σ(f)) = 0
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⇐⇒ SH(Σ(f)) = 0

Problem 3.5
(1) Can the map SH : Θn → Z2 be non-trivial?
That is, does there exist a SGM f : Mn → R2 that cannot be lifted to
an immersion into Rn+1 ?
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Theorem 3.4 f : Mn → R2 special generic map, n ≥ 5
∃immersion η : Mn → Rn+1 s.t. f = π ◦ η
⇐⇒ SH(Σ(f)) = 0

Problem 3.5
(1) Can the map SH : Θn → Z2 be non-trivial?
That is, does there exist a SGM f : Mn → R2 that cannot be lifted to
an immersion into Rn+1 ?
(2) Is Σ(f) determined only by the source manifold Mn ?
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Definition 4.1 f : Mn → Rp C∞ map (n > p)
For x, x′ ∈Mn, define x ∼f x′ if
(i) f(x) = f(x′)(= y), and
(ii) x and x′ belong to the same connected component of f−1(y).
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Definition 4.1 f : Mn → Rp C∞ map (n > p)
For x, x′ ∈Mn, define x ∼f x′ if
(i) f(x) = f(x′)(= y), and
(ii) x and x′ belong to the same connected component of f−1(y).

Wf = Mn/∼f quotient space, qf : Mn → Wf quotient map

∃!f̄ : Wf → Rp that makes the diagram commutative:

Mn f−−−−→ N

qf
↘ ↗f̄

Wf
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Definition 4.1 f : Mn → Rp C∞ map (n > p)
For x, x′ ∈Mn, define x ∼f x′ if
(i) f(x) = f(x′)(= y), and
(ii) x and x′ belong to the same connected component of f−1(y).

Wf = Mn/∼f quotient space, qf : Mn → Wf quotient map

∃!f̄ : Wf → Rp that makes the diagram commutative:

Mn f−−−−→ N

qf
↘ ↗f̄

Wf

The above diagram is called the Stein factorization of f .
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f

Mn
Rp

Wf

f̄qf

∂Wf

S(f) Sn−p

Figure 2: Stein factorization of a SGM
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Proposition 4.2 f : Mn → Rp special generic map (n > p).

(1) The singular point set S(f) is a regular submanifold of Mn of
dimension p− 1,

(2) Wf has the structure of a smooth p-dim. manifold possibly with
boundary such that f̄ : Wf → Rp is an immersion.

(3) qf |S(f) : S(f)→ ∂Wf is a diffeomorphism.
(4) qf |Mn\S(f) : Mn \ S(f)→ Int Wf is a smooth Sn−p-bundle.
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Theorem 4.3 Mn: orientable, (n, p) = (5, 3), (6, 3), (6, 4) or (7, 4)
f : Mn → Rp special generic map
∃immersion η : Mn → Rn+1 s.t. f = π ◦ η
⇐⇒ Mn is spin, i.e. w2(M

n) = 0.
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Key to the proof:
The Stein factorization induces a smooth Sn−p-bundle

Mn \ S(f)→ Int Wf .
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Theorem 4.3 Mn: orientable, (n, p) = (5, 3), (6, 3), (6, 4) or (7, 4)
f : Mn → Rp special generic map
∃immersion η : Mn → Rn+1 s.t. f = π ◦ η
⇐⇒ Mn is spin, i.e. w2(M

n) = 0.

Key to the proof:
The Stein factorization induces a smooth Sn−p-bundle

Mn \ S(f)→ Int Wf .

If w2(M
n) = 0, then we can show that this is a trivial bundle.
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f : Mn → Rp special generic map (n > p)
Orient Rp. Then the quotient space Wf has the induced orientation.
Then ∂Wf

∼= S(f) also have the induced orientations.
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⇐⇒ [S(f)] = 0 in Hn−2(M

n;Z).
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f : Mn → Rp special generic map (n > p)
Orient Rp. Then the quotient space Wf has the induced orientation.
Then ∂Wf

∼= S(f) also have the induced orientations.

Theorem 4.4 Mn: orientable, f : Mn → Rn−1 special generic
∃immersion η : Mn → Rn+1 s.t. f = π ◦ η
⇐⇒ [S(f)] = 0 in Hn−2(M

n;Z).

Key to the proof:
The Stein factorization induces a smooth Sn−p-bundle

Mn \ S(f)→ Int Wf .

If [S(f)] = 0, then we can show that this is a trivial bundle.
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Theorem 4.5 Mn: orientable, f : Mn → Rp special generic map
(n, p) = (2, 1), (3, 2), (4, 3), (5, 3), (6, 3), (6, 4) or (7, 4)
=⇒ ∃regular homotopy of immersions ηt : Mn → Rn+1, t ∈ [0, 1],
with f = π ◦ η0 s.t. ft = π ◦ ηt is a special generic map, t ∈ [0, 1],
and η1 is an embedding.
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Theorem 4.5 Mn: orientable, f : Mn → Rp special generic map
(n, p) = (2, 1), (3, 2), (4, 3), (5, 3), (6, 3), (6, 4) or (7, 4)
=⇒ ∃regular homotopy of immersions ηt : Mn → Rn+1, t ∈ [0, 1],
with f = π ◦ η0 s.t. ft = π ◦ ηt is a special generic map, t ∈ [0, 1],
and η1 is an embedding.

Theorem 4.6 M 4: orientable, ∃f : M 4 → R3 special generic map
M 4 can be embedded into R5

⇐⇒ M 4 is spin, i.e. w2(M
4) = 0.
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Thank you!
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