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Mm : compact C∞ manifold without boundary

Definition 1.1 A Morse function Mm → R is a C∞ function with
each critical point being of the form

(x1, x2, . . . , xm) 7→ ±x2

1 ± x2

2 ± · · · ± x2

m + c.

Number of negative signs is called the index of a critical point.

{
local minimum ⇐⇒ index 0

local maximum ⇐⇒ index m

They always appear if Mm is compact.
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Theorem 1.2 (Reeb, Smale, Cerf et al.)
Mm: compact C∞ manifold without boundary
∃Morse function Mm → R with only critical points of index 0 or m

⇐⇒
(1) Mm ≈ Sm (homeomorphic) (m 6= 4)
(2) Mm ∼= Sm (diffeomorphic) (m = 4)

Remark 1.3
Generalized Poincaré conjecture is still open in dimension 4

in the C∞ category.
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Definition 1.4 A singularity of a C∞ map Mm → Nn, m ≥ n, that
has the normal form

(x1, x2, . . . , xm) 7→ (x1, x2, . . . , xn−1,±x2

n ± x2

n+1 ± · · · ± x2

m)

is called a fold singularity.

It is a definite fold singularity if all the signs are the same.

Definition 1.5 f : Mm → Nn is a special generic map (SGM,
for short) if it has only definite fold singularities.

Example 1.6 A function f : Mm → R is a SGM iff it is a Morse
function with only critical points of index 0 or m
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PSfrag replacements

Sm
R

R
n (m ≥ n)

Sa × Sb

R
a+b′ (b′ ≤ b)

Figure 1: Examples of special generic maps
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Definition 1.7 Mm: compact

S(Mm) = {n ∈ Z | 1 ≤ n ≤ m, ∃f : Mm → R
n SGM}

This is a diffeomorphism invariant of Mm.

M0
∼= M1 (diffeomorphic) =⇒ S(M0) = S(M1)

Example 1.8

(1) S(Sm) = {1, 2, . . . ,m}
(2) S(Sa × Sb) = {a + 1, a + 2, . . . , a + b} (a ≤ b)
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Theorem 1.9 (S., 1993)
Mm: compact C∞ manifold of dimension m

S(Mm) = {1, 2, . . . ,m} ⇐⇒ Mm ∼= Sm (diffeomorphic)

SGMs can detect the standard differentiable structure on a
sphere!

Example 1.10
Σ7 : Milnor’s exotic 7-sphere
{1, 2, 7} ⊂ S(Σ7) ⊂ {1, 2, 3, 7}
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Definition 1.11 fi : Mm
i → R

n SGMs, i = 0, 1, are cobordant if

∃V m+1: compact manifold with ∂V m+1 = Mm
0 ∪Mm

1 ,
∃F : V m+1 → R

n × [0, 1] SGM such that{
F |M0

= f0 : Mm
0 → R

n × {0}

F |M1
= f1 : Mm

1 → R
n × {1}

PSfrag replacements
M0

M1

R
n × {0}

V

R
n × {1}

f0

f1

F
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Set of cobordism classes of all SGMs of m-dim. compact manifolds into
R

n forms an abelian group, denoted by Γ(m,n).

Addition ←→ Disjoint union

Γ̃(m,n) : oriented version

Θm : group of differentiable structures on an oriented m-sphere
Addition ←→ Connected sum

Theorem 1.12 (S., 2002) m ≥ 6

Γ̃(m, 1) ∼= Θm

Γ(m, 1) ∼= Θm ⊗ Z2

Special generic maps
l closely related !

Differentiable structures
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Theorem 2.1 (Sakuma-S., 1990’s)
∃(M4

1 ,M4
2 ): pair of compact C∞ 4-manifolds such that

M4
1 ≈M 4

2 (homeomorphic),
∃f1 : M4

1 → R
3 SGM,

6 ∃f2 : M4
2 → R

3 SGM.
In fact, there are infinitely many such pairs.

M4

1 6∼= M4

2 non-diffeomorphic

SGMs can detect distinct differentiable structures on a given topological
4-manifold.
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Theorem 2.2 (S. (1993) + 3-dim. Poincaré Conj.)
M4: compact simply connected C∞ 4-manifold
∃f : M 4 → R

3 special generic map
⇐⇒ M 4 ∼= ]k(S2 × S2) or ]k(S2 ×̃S2) (diffeomorphic)

Corollary 2.3
M4: C∞ 4-manifold
M4 ≈ ]k(S2 × S2) or ]k(S2 ×̃S2) (homeomorphic)
∃f : M 4 → R

3 special generic map
⇐⇒ M 4 ∼= ]k(S2 × S2) or ]k(S2 ×̃S2) (diffeomorphic)
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Remark 2.4 Smooth structures on ]k(S2 × S2) are not unique.
In fact, there are infinitely many such structures if k is a sufficiently big
odd integer (Jongil Park, 2002).

SGMs can detect the standard differentiable structure.

Remark 2.5 M 4
1 , M4

2 : compact orientable C∞ 4-manifolds
If M 4

1 ≈M 4
2 (homeomorphic), then

∃f1 : M4
1 → R

3 smooth map with only fold singularities (= fold map)
⇐⇒ ∃f2 : M4

2 → R
3 fold map

Fold maps cannot detect distinct differentiable structures.
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Theorem 2.6 (S., 2010)
M4: open simply connected C∞ 4-manifold of “finite type”
∃f : M 4 → N 3 proper special generic map

for some 3-manifold N 3 with S(f) 6= ∅
⇐⇒ M 4 is diffeomorphic to the connected sum

of a finite number of copies of the following manifolds:
R

4(= S4 \ {point}),
Int

(
\k(S2 ×D2)

)
= S4 \ (∨kS1),

S2 × S2,
S2 ×̃S2,
R

2-bundle over S2
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Corollary 2.7
M4: C∞ 4-manifold with M 4 ≈ R

4 (homeomorphic)
∃f : M 4 → R

p proper SGM with S(f) 6= ∅ for 1 ≤ ∃p ≤ 3
⇐⇒ M 4 ∼= R

4 (diffeomorphic)

Remark 2.8
It is known that R

n, n 6= 4, has a unique differentiable structure
(Munkres, Stallings, ∼ 60’s).
However, R

4 admits uncountably many differentiable structures
(Donaldson, Freedman, Taubes, ∼ 80’s).
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Remark 2.9 Every 4-manifold as in Theorem 2.6 admits infinitely many
(or uncountably many) distinct differentiable structures.

Theorem 2.6 implies that among them there is exactly one structure
that allows the existence of a proper SGM into a 3-manifold.

Conjecture 2.10
M4: topological 4-manifold
=⇒ There exists at most one differentiable structure on M 4

that allows the existence of a proper SGM into R
3.
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M , Σ: compact connected oriented C∞ manifolds
dim M = 4, dim Σ = 2

Definition 3.1
A singularity of a smooth map M → Σ that has the normal form

(z, w) 7→ zw

w.r.t. complex coordinates compatible with the orientations, is called a
Lefschetz singularity.

Definition 3.2 (Auroux–Donaldson–Katzarkov 2005, etc.)
Let f : M → Σ be a C∞ map.
f is a broken Lefschetz fibration (BLF, for short) if
it has at most Lefschetz and indefinite fold singularities.
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Remark 3.3
Regular fibers of a BLF may not be connected.
Even if they are connected, their genera may not be constant.

PSfrag replacements
vanishing cycle

Figure 2: Regular fibers near indefinite fold

For a BLF f : M 4 → Σ2, we denote by SI(f) (⊂M 4) the oriented
1-dimensional submanifold of M 4 consisting of the indefinite fold
singularities.
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A usual Lefschetz fibration is a special case of a BLF.

Donaldson, Gompf, 1990’s
Lefschetz fibrations ⇐⇒ symplectic structures (up to blow-up)

Auroux–Donaldson–Katzarkov, 2005
broken Lefschetz fibrations ⇐⇒ near-symplectic structures

(SI(f) ←→ 1-dim. sing. locus)

Symplectic structure: ω ∈ Ω2(M4), dω = 0, non-degenerate (ω2 > 0)

Kähler =⇒ symplectic =⇒ almost complex

⇓

Gauge theoretic invariants can be defined.
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Remark 3.4
Not every 4-manifold admits a symplectic structure.
(e.g. ]n

CP 2, n ≥ 2, etc.)

On the other hand, it is known that every closed oriented 4-manifold
M4 with b+

2 (M4) > 0 admits a near-symplectic structure.

In fact, there are a variety of such structures on a given 4-manifold M 4.
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Definition 3.5 A singularity that has the normal form

(x1, x2, x3, x4) 7→ (x1, x
3

2 − 3x1x2 + x2

3 ± x2

4)

is called a cusp.

Figure 3: Indefinite cusp
Figure 4: Definite cusp



Cusps
§1. Special Generic Maps §2. 4-Dimensional Case §3. Broken Lefschetz Fibrations

24 / 32

Definition 3.5 A singularity that has the normal form

(x1, x2, x3, x4) 7→ (x1, x
3

2 − 3x1x2 + x2

3 ± x2

4)

is called a cusp.

Figure 3: Indefinite cusp

Figure 4: Definite cusp



Cusps
§1. Special Generic Maps §2. 4-Dimensional Case §3. Broken Lefschetz Fibrations

24 / 32

Definition 3.5 A singularity that has the normal form

(x1, x2, x3, x4) 7→ (x1, x
3

2 − 3x1x2 + x2

3 ± x2

4)

is called a cusp.

Figure 3: Indefinite cusp
Figure 4: Definite cusp



Excellent maps
§1. Special Generic Maps §2. 4-Dimensional Case §3. Broken Lefschetz Fibrations

25 / 32

Facts.

Whitney (1955)

Every smooth map M → Σ is homotopic to a map with at most definite
fold, indefinite fold, and cusp singularities.

Such a map is called an excellent map.

Levine (1965)

Every smooth map M → Σ is homotopic to an excellent map without a
cusp if χ(M) is even, and with exactly one cusp if χ(M) is odd.
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Theorem 3.6 (S., 2006)
Every smooth map g : M → S2 is homotopic to an excellent map
without definite fold singularities, and possibly with a cusp.

In other words, we can eliminate definite fold singularities by
homotopy.
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Corollary 3.7 (Baykur, 2008)
Every closed oriented 4-manifold admits a BLF over S2.

Figure 5: Sinking and Unsinking (Lekili 2009)



Existence of BLF
§1. Special Generic Maps §2. 4-Dimensional Case §3. Broken Lefschetz Fibrations

27 / 32

Corollary 3.7 (Baykur, 2008)
Every closed oriented 4-manifold admits a BLF over S2.

Figure 5: Sinking and Unsinking (Lekili 2009)



Prescribed indefinite locus
§1. Special Generic Maps §2. 4-Dimensional Case §3. Broken Lefschetz Fibrations

28 / 32

We can also prove the following (cf. Lekili, 2009).

Theorem 3.8 g : M 4 → S2 a C∞ map
L ⊂M 4: a non-empty closed oriented 1-dim. submanifold
∃f : M 4 → S2 BLF homotopic to g s.t. SI(f) = L

⇐⇒ [L] = 0 in H1(M
4;Z)

Using similar techniques in the context of near-symplectic structures
(Perutz, 2006; Lekili, 2009), we can prove the following.

Theorem 3.9 M 4: closed oriented 4-manifold with b+

2 (M4) > 0
L ⊂M 4: a non-empty closed oriented 1-dim. submanifold
∃near-symplectic structure ω whose zero locus coincides with L

⇐⇒ [L] = 0 in H1(M
4;Z)
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Remark 3.10 For the existence of a BLF, several proofs have been
known (Auroux–Donaldson–Katzarkov, Gay–Kirby, Baykur, Lekili,
Akbulut–Karakurt).

Not every 4-manifold admits a Lefschetz fibration.
However, every 4-manifold admits a BLF !

Furthermore, there are plenty of BLFs on a given 4-manifold.
Several moves for BLFs have been invented.

(Lekili, 2009; Williams, 2010; Gay–Kirby, 2011).

Two BLFs on a given 4-manifold are homotopic iff one can be
obtained from the other by a finite iteration of Likili’s moves.

Elimination of definite fold for generic homotopy is possible.
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Figure 6: Lekili’s moves
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Remark 3.11 To a BLF is associated a deformation class of
near-symplectic forms (Lekili).

Perutz (2007) defines Lagrangian matching invariants for BLFs.

We do not know if they are invariant under Lekili’s moves.

It is conjectured that Lagrangian matching invariants equal the
Seiberg–Witten invariants.

Singularities of C∞ maps are closely related to differentiable
structures of manifolds!
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Thank you!
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