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f = f(z1, z2, . . . , zn+1) complex polynomial with f(0) = 0
In this talk, we always assume that 0 is an isolated critical point.
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(D2n+2

ε , f−1(0) ∩D2n+2
ε ) ≈ Cone(S2n+1

ε , Kf ) (homeo.)

Theorem 1.2 (Milnor, 1968)

(1) ϕf = f/|f | : S2n+1
ε \Kf → S1 is a locally trivial fibration.

(2) Kf is (n− 2)-connected, i.e., πi(Kf ) = 0 ∀i ≤ n− 2.
(3) A fiber Ff , called a Milnor fiber, of ϕf is (n− 1)-connected.
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Theorem 1.3 (S., 1989) For complex polynomials f, g, the follow-
ing are equivalent.
1. The knots (S2n+1

ε , Kf ) and (S2n+1

ε′ , Kg) are diffeomorphic.
2. Φ(f−1(0)) = g−1(0) for some homeomorphism germ

Φ : (Cn+1,0) → (Cn+1,0).
3. For some homeomorphism germs Φ and ϕ, the following diagram

commutes.
(Cn+1,0)

f
−−−−→(C, 0)

Φ ↓ ↓ ϕ

(Cn+1,0)
g

−−−−→(C, 0)
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Theorem 1.3 (S., 1989) For complex polynomials f, g, the follow-
ing are equivalent.
1. The knots (S2n+1

ε , Kf ) and (S2n+1

ε′ , Kg) are diffeomorphic.
2. Φ(f−1(0)) = g−1(0) for some homeomorphism germ

Φ : (Cn+1,0) → (Cn+1,0).
3. For some homeomorphism germs Φ and ϕ, the following diagram

commutes.
(Cn+1,0)

f
−−−−→(C, 0)

Φ ↓ ↓ ϕ

(Cn+1,0)
g

−−−−→(C, 0)

If 1, 2 or 3 holds, then f and g have the same topological type.
If Φ, ϕ can be chosen to be orientation preserving (⇔ Kf and Kg are
oriented isotopic), then they have the same oriented topological type.
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Ff ≃ ∨µfSn: homotopy equivalent to a bouquet of n-spheres.
The number µf is called the Milnor number.
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Ff ≃ ∨µfSn: homotopy equivalent to a bouquet of n-spheres.
The number µf is called the Milnor number.

Let h : IntFf

∼=
−→ IntFf be the geometric monodromy.

We denote by ∆f (t) the characteristic polynomial of

h∗ : Hn(IntFf ;C) → Hn(IntFf ;C).

Milnor number and characteristic polynomial are topological
invariants; i.e. if f and g have the same topological type,
then µf = µg and ∆f (t) = ∆g(t).
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The Seifert form associated with f is the bilinear form
Lf : Hn(Ff ;Z)×Hn(Ff ;Z) → Z define by
Lf (α, β) = lk(a+, b), where



Seifert form
§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

7 / 27

The Seifert form associated with f is the bilinear form
Lf : Hn(Ff ;Z)×Hn(Ff ;Z) → Z define by
Lf (α, β) = lk(a+, b), where

■ a and b are n-cycles representing α, β ∈ Hn(Ff ;Z),
■ a+: push-off of a into the positive normal direction of Ff ⊂ S2n+1
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■ lk is the linking number in S2n+1
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The Seifert form associated with f is the bilinear form
Lf : Hn(Ff ;Z)×Hn(Ff ;Z) → Z define by
Lf (α, β) = lk(a+, b), where

■ a and b are n-cycles representing α, β ∈ Hn(Ff ;Z),
■ a+: push-off of a into the positive normal direction of Ff ⊂ S2n+1

ε ,
■ lk is the linking number in S2n+1

ε .

Theorem 1.4 (Durfee, Kato, 1974) For n ≥ 3,
f and g have the same oriented topological type
⇐⇒ Seifert forms Lf and Lg are isomorphic.

In general, Seifert forms are very difficult to compute.

Problem 1.5 For a given f , compute the Seifert form Lf .
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Let f be a quasi-homogeneous polynomial in Cn+1,
i.e. ∃w1, w2, . . . , wn+1 ∈ Q>0, called weights, such that for each
monomial czk11 zk22 · · · z

kn+1

n+1 , c 6= 0, of f , we have

k1
w1

+
k2
w2

+ · · ·+
kn+1

wn+1

= 1.
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Let f be a quasi-homogeneous polynomial in Cn+1,
i.e. ∃w1, w2, . . . , wn+1 ∈ Q>0, called weights, such that for each
monomial czk11 zk22 · · · z

kn+1

n+1 , c 6= 0, of f , we have

k1
w1

+
k2
w2

+ · · ·+
kn+1

wn+1

= 1.

We always assume that f has an isolated critical point at 0.

Saito (1971):
By an analytic change of coordinates, f can be transformed to a
quasi-homogeneous polynomial with all weights ≥ 2.
Furthermore, then the weights ≥ 2 are analytic invariants.

In the following, we always assume ∀weights ≥ 2.
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For ∆(t) = (t− α1)(t− α2) · · · (t− αk) ∈ C[t], αℓ ∈ C∗, set

div∆ = 〈α1〉+ 〈α2〉+ · · ·+ 〈αk〉 ∈ QC∗.

Set Λm = div (tm − 1).



Milnor–Orlik formulas
§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

10 / 27

For ∆(t) = (t− α1)(t− α2) · · · (t− αk) ∈ C[t], αℓ ∈ C∗, set

div∆ = 〈α1〉+ 〈α2〉+ · · ·+ 〈αk〉 ∈ QC∗.

Set Λm = div (tm − 1).

Theorem 2.1 (Milnor–Orlik, 1970) f : quasi-homogeneous of
weights (w1, . . . , wn+1) = (u1/v1, . . . , un+1/vn+1), where vj > 0
and gcd(uj, vj) = 1. Then, we have the following.

(1) µf = (w1 − 1)(w2 − 1) · · · (wn+1 − 1).

(2) div∆f =

(

1

v1
Λu1

− 1

)(

1

v2
Λu2

− 1

)

· · ·

(

1

vn+1

Λun+1
− 1

)

.
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Definition 2.2 Let fs, s ∈ [0, 1], be an (analytic) family of polynomials.
(1) It is a µ-constant deformation if the Milnor number µfs , s ∈ [0, 1],
is constant.
(2) It is a topologially constant deformation if fs have the same
topological types for all s ∈ [0, 1].
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Definition 2.2 Let fs, s ∈ [0, 1], be an (analytic) family of polynomials.
(1) It is a µ-constant deformation if the Milnor number µfs , s ∈ [0, 1],
is constant.
(2) It is a topologially constant deformation if fs have the same
topological types for all s ∈ [0, 1].

Theorem 2.3 (Steenbrink, Varchenko, etc.)
For quasi-homogeneous polynomials f and g, the following are
equivalent.

(1) They are connected by a µ-constant deformation.
(2) They are connected by a topologically constant deformation.
(3) They have the same weights.
(4) They have the same “spectrum”.
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For a1, a2, . . . , an+1 ≥ 2, set

f(z1, z2, . . . , zn+1) = za11 + za22 + · · ·+ z
an+1

n+1 ,

which is called a Brieskorn–Pham polynomial.



Brieskorn–Pham polynomial
§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

12 / 27

For a1, a2, . . . , an+1 ≥ 2, set

f(z1, z2, . . . , zn+1) = za11 + za22 + · · ·+ z
an+1

n+1 ,

which is called a Brieskorn–Pham polynomial.
The integers a1, a2, . . . , an+1 are called the exponents.



Brieskorn–Pham polynomial
§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

12 / 27

For a1, a2, . . . , an+1 ≥ 2, set

f(z1, z2, . . . , zn+1) = za11 + za22 + · · ·+ z
an+1

n+1 ,

which is called a Brieskorn–Pham polynomial.
The integers a1, a2, . . . , an+1 are called the exponents.

Brieskorn–Pham polynomial za11 + za22 + · · ·+ z
an+1

n+1

=⇒ quasi-homogeneous of weights (a1, a2, . . . , an+1)
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Seifert forms for algebraic knots associated with Brieskorn–Pham
polynomials are known.
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Seifert forms for algebraic knots associated with Brieskorn–Pham
polynomials are known.
In fact, we have the following.

Theorem 2.4 (Yoshinaga–Suzuki, 1978)
For two Brieskorn–Pham polynomials f and g, the following three
are equivanent.

(1) f and g have the same topological type.
(2) f and g have the same set of exponents.
(3) ∆f (t) = ∆g(t).
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⇐⇒ f and g have the same weights
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Conjecture 2.5 (Folklore)
For quasi-homogeneous polynomials f and g,
f and g have the same topological type
⇐⇒ f and g have the same weights

⇐=: Known to be true (easy exercise)

The conjecture is known to be true in the following cases:

1. n = 1: Yoshinaga–Suzuki 1979, Nishimura 1986
2. n = 2: S. 1988, Xu-Yau 1989, S. 2000
3. When f has weights of the form (u1/v1, . . . , un+1/vn+1) with

u1 = · · · = un+1 even: S. 1998.
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Set f = z21z2 + z1z
6
2 , g = z31z2 + z1z

4
2 , which are quasi-homogeneous of

weights (11/5, 11) and (11/3, 11/2), respectively.
=⇒ ∆f (t) = ∆g(t) (Yoshinaga-Suzuki).
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Set f = z21z2 + z1z
6
2 , g = z31z2 + z1z

4
2 , which are quasi-homogeneous of

weights (11/5, 11) and (11/3, 11/2), respectively.
=⇒ ∆f (t) = ∆g(t) (Yoshinaga-Suzuki).

Set F = f(z1, z2) + z33 + z134 + z25 + · · ·+ z2n+1,
G = g(z1, z2) + z33 + z134 + z25 + · · ·+ z2n+1 (n ≥ 3),

which are quasi-homogeneous of weights (11/5, 11, 3, 13, 2, . . . , 2) and
(11/3, 11/2, 3, 13, 2, . . . , 2), respectively.
=⇒ ∆F (t) = ∆G(t) (and ∆F (1) = ∆G(1) = 1).
However, they have distinct signatures =⇒ distinct topological types
=⇒ Either F or G does not have the topological type of a
Brieskorn-Pham polynomial.

S. (1987): For n = 2, every quasi-homogeneous polynomial h(z1, z2, z3)
with ∆h(1) = 1 has the topological type of a Brieskorn-Pham
polynomial.
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Definition 3.1 Oriented (2n− 1)-knots K0 and K1 in S2n+1 are
cobordant if ∃X(∼= K0 × [0, 1]) ⊂ S2n+1 × [0, 1], a properly embedded
oriented 2n-dim. submanifold, such that

∂X = (K0 × {0}) ∪ (−K1 × {1}).
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Definition 3.1 Oriented (2n− 1)-knots K0 and K1 in S2n+1 are
cobordant if ∃X(∼= K0 × [0, 1]) ⊂ S2n+1 × [0, 1], a properly embedded
oriented 2n-dim. submanifold, such that

∂X = (K0 × {0}) ∪ (−K1 × {1}).

X is called a cobordism between K0 and K1.

 

S2n+1 × {0} S2n+1 × {1}

K0 × {0} K1 × {1}

X



Problem
§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

18 / 27

If two algebraic knots Kf and Kg are cobordant, then the topological
types of f and g are mildly related.



Problem
§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

18 / 27

If two algebraic knots Kf and Kg are cobordant, then the topological
types of f and g are mildly related.

Problem 3.2 Given f and g, determine whether Kf and Kg are
cobordant.
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Theorem 3.3 (Lê, 1972)
f, g: 2-variable polynomials, irreducible at 0.
The following are equivalent.
(1) f and g have the same topological type.
(2) Kf and Kg are cobordant.
(3) ∆f (t) = ∆g(t).
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Theorem 3.3 (Lê, 1972)
f, g: 2-variable polynomials, irreducible at 0.
The following are equivalent.
(1) f and g have the same topological type.
(2) Kf and Kg are cobordant.
(3) ∆f (t) = ∆g(t).

It has long been conjectured that cobordant algebraic knots would be
isotopic for all n.
This conjecture was negatively answered almost twenty years later.

du Bois–Michel (1993)
Examples of two algebraic knots that are cobordant, but are not isotopic,
n ≥ 3.
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Let Li : Gi ×Gi → Z, i = 0, 1, be two bilinear forms defined on free
Z-modules of finite ranks.
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Let Li : Gi ×Gi → Z, i = 0, 1, be two bilinear forms defined on free
Z-modules of finite ranks.
Set G = G0 ⊕G1 and L = L0 ⊕ (−L1).

Definition 3.4 Suppose m = rankG is even.
A direct summand M ⊂ G is called a metabolizer
if rankM = m/2 and L vanishes on M .

L0 is algebraically cobordant to L1 if there exists a metabolizer
satisfying certain additional conditions about S = L± LT .

Theorem 3.5 (Blanlœil–Michel, 1997) For n ≥ 3,
two algebraic knots Kf and Kg are cobordant
⇐⇒ Seifert forms Lf and Lg are algebraically cobordant.
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Remark 3.6
At present, there is no efficient criterion for algebraic cobordism.
It is usually very difficult to determine whether given two forms are
algebraically cobordant or not.
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Remark 3.6
At present, there is no efficient criterion for algebraic cobordism.
It is usually very difficult to determine whether given two forms are
algebraically cobordant or not.

Two forms L0 and L1 are Witt equivalent over R if there exists a
metabolizer over R for L0 ⊗R and L1 ⊗R.

Lemma 3.7 If two algebraic knots Kf and Kg are cobordant, then
their Seifert forms Lf and Lg are Witt equivalent over R.
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Theorem 3.8 (Blanlœil–S., 2011) Let f and g be quasi-
homogeneous polynomials. Seifert forms Lf and Lg are Witt equiv-
alent over R iff Pf (t) ≡ Pg(t) mod t+ 1.
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Theorem 3.8 (Blanlœil–S., 2011) Let f and g be quasi-
homogeneous polynomials. Seifert forms Lf and Lg are Witt equiv-
alent over R iff Pf (t) ≡ Pg(t) mod t+ 1.

Here, Pf (t) =
n+1
∏

j=1

t− t1/wj

t1/wj − 1
.

The above theorem should be compared with the following.

Theorem 3.9 (S., 2000) For f, g as above, Lf and Lg are iso-
morphic over R iff Pf (t) ≡ Pg(t) mod t2 − 1.
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Proposition 3.10 (Blanlœil–S., 2011) Let

f(z) =
n+1
∑

j=1

z
aj
j and g(z) =

n+1
∑

j=1

z
bj
j

be Brieskorn–Pham polynomials.
Then, their Seifert forms are Witt equivalent over R iff

n+1
∏

j=1

cot
πℓ

2aj
=

n+1
∏

j=1

cot
πℓ

2bj

holds for all odd integers ℓ.
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Theorem 3.11 (Blanlœil–S., 2011) Suppose that for each of the
Brieskorn–Pham polynomials

f(z) =
n+1
∑

j=1

z
aj
j and g(z) =

n+1
∑

j=1

z
bj
j ,

no exponent is a multiple of another one.
Then, the knots Kf and Kg are cobordant iff

aj = bj, j = 1, 2, . . . , n+ 1,

up to order.
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Theorem 3.11 (Blanlœil–S., 2011) Suppose that for each of the
Brieskorn–Pham polynomials

f(z) =
n+1
∑

j=1

z
aj
j and g(z) =

n+1
∑

j=1

z
bj
j ,

no exponent is a multiple of another one.
Then, the knots Kf and Kg are cobordant iff

aj = bj, j = 1, 2, . . . , n+ 1,

up to order.

Problem 3.12 Are the exponents cobordism invariants for
Brieskorn–Pham polynomials in general?
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Proposition 3.13 (Blanlœil–S., 2011) Let f and g be quasi-
homogeneous polynomials of two variables with weights (w1, w2) and
(w′

1, w
′

2).
If their Seifert forms are Witt equivalent over R, then
wj = w′

j, j = 1, 2, up to order.
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Proposition 3.14 (Blanlœil–S., 2011)
Let f(z) = za11 + za22 + za33 and g(z) = zb11 + zb22 + zb33 be Brieskorn–
Pham polynomials of three variables.
If the Seifert forms Lf and Lg are Witt equivalent over R,
then aj = bj, j = 1, 2, 3, up to order.
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Proposition 3.13 (Blanlœil–S., 2011) Let f and g be quasi-
homogeneous polynomials of two variables with weights (w1, w2) and
(w′

1, w
′

2).
If their Seifert forms are Witt equivalent over R, then
wj = w′

j, j = 1, 2, up to order.

Proposition 3.14 (Blanlœil–S., 2011)
Let f(z) = za11 + za22 + za33 and g(z) = zb11 + zb22 + zb33 be Brieskorn–
Pham polynomials of three variables.
If the Seifert forms Lf and Lg are Witt equivalent over R,
then aj = bj, j = 1, 2, 3, up to order.

These imply that weights and exponents are cobordism invariants!
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Set f = z51 + z312 + z2z
75
3 , g = z71 + z112 + z1543 , which are

quasi-homogeneous of weights (5, 31, 155/2) and (7, 11, 154),
respectively.
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Set f = z51 + z312 + z2z
75
3 , g = z71 + z112 + z1543 , which are

quasi-homogeneous of weights (5, 31, 155/2) and (7, 11, 154),
respectively.
We can show that the 3-manifolds Kf and Kg are diffeomorphic.
(In fact, they are “Seifert 3-manifolds” with the same Seifert invariants.)
Furthermore, the Milnor numbers coincide (= 9180).
The signatures also coincide.
However, the algebraic knots are not cobordant to each other, since
∆f (t) and ∆g(t) do not satisfy the so-called “Fox-Milnor relation”.

Problem 3.15 Are weights cobordism invariants for quasi-
homogeneous polynomials of 3 variables?
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鈴木先生，還暦おめでとうございます！
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