Topology of quasi-homogeneous isolated hypersurface singularities

Osamu Saeki

(Institute of Mathematics for Industry, Kyushu University)

Partially a joint work with Vincent Blanlœil

(Univ. of Strasbourg, France)

December 10, 2012

§1. Topology of Complex Hypersurface Singularities

Complex hypersurface

$f=f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)$ complex polynomial with $f(\mathbf{0})=0$ In this talk, we always assume that 0 is an isolated critical point.

Complex hypersurface

$f=f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)$ complex polynomial with $f(0)=0$ In this talk, we always assume that 0 is an isolated critical point.
$V_{f}=f^{-1}(0) \subset \mathbf{C}^{n+1}:$ complex hypersurface $K_{f}=V_{f} \cap S_{\varepsilon}^{2 n+1} \subset S_{\varepsilon}^{2 n+1}$: algebraic knot associated with f,

$$
0<\varepsilon \ll 1
$$

Complex hypersurface

$f=f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)$ complex polynomial with $f(0)=0$ In this talk, we always assume that 0 is an isolated critical point.
$V_{f}=f^{-1}(0) \subset \mathbf{C}^{n+1}:$ complex hypersurface
$K_{f}=V_{f} \cap S_{\varepsilon}^{2 n+1} \subset S_{\varepsilon}^{2 n+1}$: algebraic knot associated with f,

$$
0<\varepsilon \ll 1
$$

$K_{f}:(2 n-1)$-dim. closed (oriented) C^{∞} manifold embedded in $S_{\varepsilon}^{2 n+1}$.

Complex hypersurface

$f=f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)$ complex polynomial with $f(\mathbf{0})=0$ In this talk, we always assume that 0 is an isolated critical point.
$V_{f}=f^{-1}(0) \subset \mathbf{C}^{n+1}:$ complex hypersurface
$K_{f}=V_{f} \cap S_{\varepsilon}^{2 n+1} \subset S_{\varepsilon}^{2 n+1}$: algebraic knot associated with f,
$0<\varepsilon \ll 1$.
$K_{f}:(2 n-1)$-dim. closed (oriented) C^{∞} manifold embedded in $S_{\varepsilon}^{2 n+1}$.

Milnor's theorems

§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

Theorem 1.1 (Milnor, 1968)
$\left(D_{\varepsilon}^{2 n+2}, f^{-1}(0) \cap D_{\varepsilon}^{2 n+2}\right) \approx \operatorname{Cone}\left(S_{\varepsilon}^{2 n+1}, K_{f}\right) \quad$ (homeo.)

Milnor's theorems

Theorem 1.1 (Milnor, 1968)
$\left(D_{\varepsilon}^{2 n+2}, f^{-1}(0) \cap D_{\varepsilon}^{2 n+2}\right) \approx \operatorname{Cone}\left(S_{\varepsilon}^{2 n+1}, K_{f}\right) \quad$ (homeo.)
Theorem 1.2 (Milnor, 1968)
(1) $\varphi_{f}=f /|f|: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a locally trivial fibration.
(2) K_{f} is $(n-2)$-connected, i.e., $\pi_{i}\left(K_{f}\right)=0 \forall i \leq n-2$.
(3) A fiber F_{f}, called a Milnor fiber, of φ_{f} is $(n-1)$-connected.

Milnor's theorems

Theorem 1.1 (Milnor, 1968)
$\left(D_{\varepsilon}^{2 n+2}, f^{-1}(0) \cap D_{\varepsilon}^{2 n+2}\right) \approx \operatorname{Cone}\left(S_{\varepsilon}^{2 n+1}, K_{f}\right) \quad$ (homeo.)
Theorem 1.2 (Milnor, 1968)
(1) $\varphi_{f}=f /|f|: S_{\varepsilon}^{2 n+1} \backslash K_{f} \rightarrow S^{1}$ is a locally trivial fibration.
(2) K_{f} is $(n-2)$-connected, i.e., $\pi_{i}\left(K_{f}\right)=0 \forall i \leq n-2$.
(3) A fiber F_{f}, called a Milnor fiber, of φ_{f} is $(n-1)$-connected.

Topological type

Theorem 1.3 (S., 1989) For complex polynomials f, g, the following are equivalent.

1. The knots $\left(S_{\varepsilon}^{2 n+1}, K_{f}\right)$ and $\left(S_{\varepsilon^{\prime}}^{2 n+1}, K_{g}\right)$ are diffeomorphic.
2. $\Phi\left(f^{-1}(0)\right)=g^{-1}(0)$ for some homeomorphism germ $\Phi:\left(\mathbf{C}^{n+1}, \mathbf{0}\right) \rightarrow\left(\mathbf{C}^{n+1}, \mathbf{0}\right)$.
3. For some homeomorphism germs Φ and φ, the following diagram commutes.

$$
\begin{array}{cc}
\left(\mathbf{C}^{n+1}, \mathbf{0}\right) \xrightarrow{f}(\mathbf{C}, 0) \\
\Phi \downarrow & \downarrow \varphi \\
\left(\mathbf{C}^{n+1}, \mathbf{0}\right) \xrightarrow{g}(\mathbf{C}, 0)
\end{array}
$$

Topological type

Theorem 1.3 (S., 1989) For complex polynomials f, g, the following are equivalent.

1. The knots $\left(S_{\varepsilon}^{2 n+1}, K_{f}\right)$ and $\left(S_{\varepsilon^{\prime}}^{2 n+1}, K_{g}\right)$ are diffeomorphic.
2. $\Phi\left(f^{-1}(0)\right)=g^{-1}(0)$ for some homeomorphism germ $\Phi:\left(\mathbf{C}^{n+1}, \mathbf{0}\right) \rightarrow\left(\mathbf{C}^{n+1}, \mathbf{0}\right)$.
3. For some homeomorphism germs Φ and φ, the following diagram commutes.

$$
\begin{array}{cc}
\left(\mathbf{C}^{n+1}, \mathbf{0}\right) \xrightarrow{f} & (\mathbf{C}, 0) \\
\Phi \downarrow & \downarrow \varphi \\
\left(\mathbf{C}^{n+1}, \mathbf{0}\right) \xrightarrow{g} & (\mathbf{C}, 0)
\end{array}
$$

If 1,2 or 3 holds, then f and g have the same topological type.

Topological type

Theorem 1.3 (S., 1989) For complex polynomials f, g, the following are equivalent.

1. The knots $\left(S_{\varepsilon}^{2 n+1}, K_{f}\right)$ and $\left(S_{\varepsilon^{\prime}}^{2 n+1}, K_{g}\right)$ are diffeomorphic.
2. $\Phi\left(f^{-1}(0)\right)=g^{-1}(0)$ for some homeomorphism germ $\Phi:\left(\mathbf{C}^{n+1}, \mathbf{0}\right) \rightarrow\left(\mathbf{C}^{n+1}, \mathbf{0}\right)$.
3. For some homeomorphism germs Φ and φ, the following diagram commutes.

$$
\begin{array}{cc}
\left(\mathbf{C}^{n+1}, \mathbf{0}\right) \xrightarrow{f} & (\mathbf{C}, 0) \\
\Phi \downarrow & \downarrow \varphi \\
\left(\mathbf{C}^{n+1}, \mathbf{0}\right) \xrightarrow{g} & (\mathbf{C}, 0)
\end{array}
$$

If 1,2 or 3 holds, then f and g have the same topological type. If Φ, φ can be chosen to be orientation preserving ($\Leftrightarrow K_{f}$ and K_{g} are oriented isotopic), then they have the same oriented topological type.

Some invariants

§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism
$F_{f} \simeq \vee^{\mu_{f}} S^{n}$: homotopy equivalent to a bouquet of n-spheres. The number μ_{f} is called the Milnor number.

Some invariants

$F_{f} \simeq \vee^{\mu_{f}} S^{n}$: homotopy equivalent to a bouquet of n-spheres.
The number μ_{f} is called the Milnor number.
Let $h: \operatorname{Int} F_{f} \xrightarrow{\cong} \operatorname{Int} F_{f}$ be the geometric monodromy. We denote by $\Delta_{f}(t)$ the characteristic polynomial of

$$
h_{*}: H_{n}\left(\operatorname{Int} F_{f} ; \mathbf{C}\right) \rightarrow H_{n}\left(\operatorname{Int} F_{f} ; \mathbf{C}\right) .
$$

Some invariants

$F_{f} \simeq \vee^{\mu_{f}} S^{n}$: homotopy equivalent to a bouquet of n-spheres.
The number μ_{f} is called the Milnor number.
Let $h: \operatorname{Int} F_{f} \xrightarrow{\cong} \operatorname{Int} F_{f}$ be the geometric monodromy. We denote by $\Delta_{f}(t)$ the characteristic polynomial of

$$
h_{*}: H_{n}\left(\operatorname{Int} F_{f} ; \mathbf{C}\right) \rightarrow H_{n}\left(\operatorname{Int} F_{f} ; \mathbf{C}\right) .
$$

Milnor number and characteristic polynomial are topological invariants; i.e. if f and g have the same topological type, then $\mu_{f}=\mu_{g}$ and $\Delta_{f}(t)=\Delta_{g}(t)$.

Seifert form

§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

The Seifert form associated with f is the bilinear form $L_{f}: H_{n}\left(F_{f} ; \mathbf{Z}\right) \times H_{n}\left(F_{f} ; \mathbf{Z}\right) \rightarrow \mathbf{Z}$ define by $L_{f}(\alpha, \beta)=\operatorname{lk}\left(a_{+}, b\right)$, where

Seifert form

The Seifert form associated with f is the bilinear form $L_{f}: H_{n}\left(F_{f} ; \mathbf{Z}\right) \times H_{n}\left(F_{f} ; \mathbf{Z}\right) \rightarrow \mathbf{Z}$ define by $L_{f}(\alpha, \beta)=\operatorname{lk}\left(a_{+}, b\right)$, where

- a and b are n-cycles representing $\alpha, \beta \in H_{n}\left(F_{f} ; \mathbf{Z}\right)$,
- a_{+}: push-off of a into the positive normal direction of $F_{f} \subset S_{\varepsilon}^{2 n+1}$,
- lk is the linking number in $S_{\varepsilon}^{2 n+1}$.

Seifert form

The Seifert form associated with f is the bilinear form $L_{f}: H_{n}\left(F_{f} ; \mathbf{Z}\right) \times H_{n}\left(F_{f} ; \mathbf{Z}\right) \rightarrow \mathbf{Z}$ define by $L_{f}(\alpha, \beta)=\operatorname{lk}\left(a_{+}, b\right)$, where

- a and b are n-cycles representing $\alpha, \beta \in H_{n}\left(F_{f} ; \mathbf{Z}\right)$,
- a_{+}: push-off of a into the positive normal direction of $F_{f} \subset S_{\varepsilon}^{2 n+1}$,
- lk is the linking number in $S_{\varepsilon}^{2 n+1}$.

Theorem 1.4 (Durfee, Kato, 1974) For $n \geq 3$, f and g have the same oriented topological type \Longleftrightarrow Seifert forms L_{f} and L_{g} are isomorphic.

Seifert form

The Seifert form associated with f is the bilinear form
$L_{f}: H_{n}\left(F_{f} ; \mathbf{Z}\right) \times H_{n}\left(F_{f} ; \mathbf{Z}\right) \rightarrow \mathbf{Z}$ define by
$L_{f}(\alpha, \beta)=\operatorname{lk}\left(a_{+}, b\right)$, where

- a and b are n-cycles representing $\alpha, \beta \in H_{n}\left(F_{f} ; \mathbf{Z}\right)$,
- a_{+}: push-off of a into the positive normal direction of $F_{f} \subset S_{\varepsilon}^{2 n+1}$,
- lk is the linking number in $S_{\varepsilon}^{2 n+1}$.

Theorem 1.4 (Durfee, Kato, 1974) For $n \geq 3$, f and g have the same oriented topological type \Longleftrightarrow Seifert forms L_{f} and L_{g} are isomorphic.

In general, Seifert forms are very difficult to compute.
Problem 1.5 For a given f, compute the Seifert form L_{f}.

§2. Quasi-homogeneous Polynomials

Quasi-homogeneous polynomials

§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

Let f be a quasi-homogeneous polynomial in \mathbf{C}^{n+1},

Quasi-homogeneous polynomials

§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

Let f be a quasi-homogeneous polynomial in \mathbf{C}^{n+1}, i.e. $\exists w_{1}, w_{2}, \ldots, w_{n+1} \in \mathbf{Q}_{>0}$, called weights, such that for each monomial $c z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n+1}^{k_{n+1}}, c \neq 0$, of f, we have

$$
\frac{k_{1}}{w_{1}}+\frac{k_{2}}{w_{2}}+\cdots+\frac{k_{n+1}}{w_{n+1}}=1 .
$$

Quasi-homogeneous polynomials

§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

Let f be a quasi-homogeneous polynomial in \mathbf{C}^{n+1}, i.e. $\exists w_{1}, w_{2}, \ldots, w_{n+1} \in \mathbf{Q}_{>0}$, called weights, such that for each monomial $c z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n+1}^{k_{n+1}}, c \neq 0$, of f, we have

$$
\frac{k_{1}}{w_{1}}+\frac{k_{2}}{w_{2}}+\cdots+\frac{k_{n+1}}{w_{n+1}}=1 .
$$

We always assume that f has an isolated critical point at 0 .

Quasi-homogeneous polynomials

Let f be a quasi-homogeneous polynomial in \mathbf{C}^{n+1}, i.e. $\exists w_{1}, w_{2}, \ldots, w_{n+1} \in \mathbf{Q}_{>0}$, called weights, such that for each monomial $c z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n+1}^{k_{n+1}}, c \neq 0$, of f, we have

$$
\frac{k_{1}}{w_{1}}+\frac{k_{2}}{w_{2}}+\cdots+\frac{k_{n+1}}{w_{n+1}}=1
$$

We always assume that f has an isolated critical point at 0 .

Saito (1971):

By an analytic change of coordinates, f can be transformed to a quasi-homogeneous polynomial with all weights ≥ 2.
Furthermore, then the weights ≥ 2 are analytic invariants.

Quasi-homogeneous polynomials

Let f be a quasi-homogeneous polynomial in \mathbf{C}^{n+1}, i.e. $\exists w_{1}, w_{2}, \ldots, w_{n+1} \in \mathbf{Q}_{>0}$, called weights, such that for each monomial $c z_{1}^{k_{1}} z_{2}^{k_{2}} \cdots z_{n+1}^{k_{n+1}}, c \neq 0$, of f, we have

$$
\frac{k_{1}}{w_{1}}+\frac{k_{2}}{w_{2}}+\cdots+\frac{k_{n+1}}{w_{n+1}}=1
$$

We always assume that f has an isolated critical point at 0 .

Saito (1971):

By an analytic change of coordinates, f can be transformed to a quasi-homogeneous polynomial with all weights ≥ 2.
Furthermore, then the weights ≥ 2 are analytic invariants.
In the following, we always assume \forall weights ≥ 2.

Milnor-Orlik formulas

§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

$$
\begin{gathered}
\text { For } \Delta(t)=\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right) \cdots\left(t-\alpha_{k}\right) \in \mathbf{C}[t], \alpha_{\ell} \in \mathbf{C}^{*} \text {, set } \\
\operatorname{div} \Delta=\left\langle\alpha_{1}\right\rangle+\left\langle\alpha_{2}\right\rangle+\cdots+\left\langle\alpha_{k}\right\rangle \in \mathbf{Q C}^{*} .
\end{gathered}
$$

Set $\Lambda_{m}=\operatorname{div}\left(t^{m}-1\right)$.

Milnor-Orlik formulas

For $\Delta(t)=\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right) \cdots\left(t-\alpha_{k}\right) \in \mathbf{C}[t], \alpha_{\ell} \in \mathbf{C}^{*}$, set

$$
\operatorname{div} \Delta=\left\langle\alpha_{1}\right\rangle+\left\langle\alpha_{2}\right\rangle+\cdots+\left\langle\alpha_{k}\right\rangle \in \mathbf{Q C}^{*}
$$

Set $\Lambda_{m}=\operatorname{div}\left(t^{m}-1\right)$.
Theorem 2.1 (Milnor-Orlik, 1970) f : quasi-homogeneous of weights $\left(w_{1}, \ldots, w_{n+1}\right)=\left(u_{1} / v_{1}, \ldots, u_{n+1} / v_{n+1}\right)$, where $v_{j}>0$ and $\operatorname{gcd}\left(u_{j}, v_{j}\right)=1$. Then, we have the following.
(1) $\mu_{f}=\left(w_{1}-1\right)\left(w_{2}-1\right) \cdots\left(w_{n+1}-1\right)$.
(2) $\operatorname{div} \Delta_{f}=\left(\frac{1}{v_{1}} \Lambda_{u_{1}}-1\right)\left(\frac{1}{v_{2}} \Lambda_{u_{2}}-1\right) \cdots\left(\frac{1}{v_{n+1}} \Lambda_{u_{n+1}}-1\right)$.

μ-constant deformation

Definition 2.2 Let $f_{s}, s \in[0,1]$, be an (analytic) family of polynomials. (1) It is a μ-constant deformation if the Milnor number $\mu_{f_{s}}, s \in[0,1]$, is constant.
(2) It is a topologially constant deformation if f_{s} have the same topological types for all $s \in[0,1]$.

μ-constant deformation

Definition 2.2 Let $f_{s}, s \in[0,1]$, be an (analytic) family of polynomials. (1) It is a μ-constant deformation if the Milnor number $\mu_{f_{s}}, s \in[0,1]$, is constant.
(2) It is a topologially constant deformation if f_{s} have the same topological types for all $s \in[0,1]$.

Theorem 2.3 (Steenbrink, Varchenko, etc.)
For quasi-homogeneous polynomials f and g, the following are equivalent.
(1) They are connected by a μ-constant deformation.
(2) They are connected by a topologically constant deformation.
(3) They have the same weights.
(4) They have the same "spectrum".

Brieskorn-Pham polynomial

§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

For $a_{1}, a_{2}, \ldots, a_{n+1} \geq 2$, set

$$
f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n+1}^{a_{n+1}}
$$

which is called a Brieskorn-Pham polynomial.

Brieskorn-Pham polynomial

For $a_{1}, a_{2}, \ldots, a_{n+1} \geq 2$, set

$$
f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n+1}^{a_{n+1}}
$$

which is called a Brieskorn-Pham polynomial. The integers $a_{1}, a_{2}, \ldots, a_{n+1}$ are called the exponents.

Brieskorn-Pham polynomial

For $a_{1}, a_{2}, \ldots, a_{n+1} \geq 2$, set

$$
f\left(z_{1}, z_{2}, \ldots, z_{n+1}\right)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n+1}^{a_{n+1}}
$$

which is called a Brieskorn-Pham polynomial.
The integers $a_{1}, a_{2}, \ldots, a_{n+1}$ are called the exponents.
Brieskorn-Pham polynomial $z_{1}^{a_{1}}+z_{2}^{a_{2}}+\cdots+z_{n+1}^{a_{n+1}}$
\Longrightarrow quasi-homogeneous of weights $\left(a_{1}, a_{2}, \ldots, a_{n+1}\right)$

Topology of B-P polynomials

§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

Seifert forms for algebraic knots associated with Brieskorn-Pham polynomials are known.

Topology of B-P polynomials

Seifert forms for algebraic knots associated with Brieskorn-Pham polynomials are known.
In fact, we have the following.
Theorem 2.4 (Yoshinaga-Suzuki, 1978)
For two Brieskorn-Pham polynomials f and g, the following three are equivanent.
(1) f and g have the same topological type.
(2) f and g have the same set of exponents.
(3) $\Delta_{f}(t)=\Delta_{g}(t)$.

Quasi-homogeneous case

§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

Conjecture 2.5 (Folklore)

For quasi-homogeneous polynomials f and g, f and g have the same topological type
$\Longleftrightarrow f$ and g have the same weights

Quasi-homogeneous case

§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

Conjecture 2.5 (Folklore)

For quasi-homogeneous polynomials f and g, f and g have the same topological type
$\Longleftrightarrow f$ and g have the same weights
\Longleftarrow : Known to be true (easy exercise)

Quasi-homogeneous case

Conjecture 2.5 (Folklore)
 For quasi-homogeneous polynomials f and g,
 f and g have the same topological type
 $\Longleftrightarrow f$ and g have the same weights

\Longleftarrow : Known to be true (easy exercise)
The conjecture is known to be true in the following cases:

Quasi-homogeneous case

Conjecture 2.5 (Folklore)
 For quasi-homogeneous polynomials f and g,
 f and g have the same topological type
 $\Longleftrightarrow f$ and g have the same weights

\Longleftarrow : Known to be true (easy exercise)
The conjecture is known to be true in the following cases:

1. $n=1$: Yoshinaga-Suzuki 1979, Nishimura 1986
2. $n=2: \mathbf{S} .1988, \mathbf{X u}$-Yau 1989, S. 2000
3. When f has weights of the form $\left(u_{1} / v_{1}, \ldots, u_{n+1} / v_{n+1}\right)$ with $u_{1}=\cdots=u_{n+1}$ even: S. 1998.

Example

§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

Set $f=z_{1}^{2} z_{2}+z_{1} z_{2}^{6}, g=z_{1}^{3} z_{2}+z_{1} z_{2}^{4}$, which are quasi-homogeneous of weights $(11 / 5,11)$ and $(11 / 3,11 / 2)$, respectively.
$\Longrightarrow \Delta_{f}(t)=\Delta_{g}(t)$ (Yoshinaga-Suzuki).

Example

Set $f=z_{1}^{2} z_{2}+z_{1} z_{2}^{6}, g=z_{1}^{3} z_{2}+z_{1} z_{2}^{4}$, which are quasi-homogeneous of weights $(11 / 5,11)$ and $(11 / 3,11 / 2)$, respectively.
$\Longrightarrow \Delta_{f}(t)=\Delta_{g}(t)$ (Yoshinaga-Suzuki).
Set $F=f\left(z_{1}, z_{2}\right)+z_{3}^{3}+z_{4}^{13}+z_{5}^{2}+\cdots+z_{n+1}^{2}$,

$$
G=g\left(z_{1}, z_{2}\right)+z_{3}^{3}+z_{4}^{13}+z_{5}^{2}+\cdots+z_{n+1}^{2} \quad(n \geq 3)
$$

which are quasi-homogeneous of weights $(11 / 5,11,3,13,2, \ldots, 2)$ and $(11 / 3,11 / 2,3,13,2, \ldots, 2)$, respectively.

Example

Set $f=z_{1}^{2} z_{2}+z_{1} z_{2}^{6}, g=z_{1}^{3} z_{2}+z_{1} z_{2}^{4}$, which are quasi-homogeneous of weights $(11 / 5,11)$ and $(11 / 3,11 / 2)$, respectively.
$\Longrightarrow \Delta_{f}(t)=\Delta_{g}(t)$ (Yoshinaga-Suzuki).
Set $F=f\left(z_{1}, z_{2}\right)+z_{3}^{3}+z_{4}^{13}+z_{5}^{2}+\cdots+z_{n+1}^{2}$,

$$
G=g\left(z_{1}, z_{2}\right)+z_{3}^{3}+z_{4}^{13}+z_{5}^{2}+\cdots+z_{n+1}^{2} \quad(n \geq 3)
$$

which are quasi-homogeneous of weights $(11 / 5,11,3,13,2, \ldots, 2)$ and $(11 / 3,11 / 2,3,13,2, \ldots, 2)$, respectively.
$\Longrightarrow \Delta_{F}(t)=\Delta_{G}(t)\left(\right.$ and $\left.\Delta_{F}(1)=\Delta_{G}(1)=1\right)$.
However, they have distinct signatures \Longrightarrow distinct topological types

Example

Set $f=z_{1}^{2} z_{2}+z_{1} z_{2}^{6}, g=z_{1}^{3} z_{2}+z_{1} z_{2}^{4}$, which are quasi-homogeneous of weights $(11 / 5,11)$ and $(11 / 3,11 / 2)$, respectively.
$\Longrightarrow \Delta_{f}(t)=\Delta_{g}(t)$ (Yoshinaga-Suzuki).
Set $F=f\left(z_{1}, z_{2}\right)+z_{3}^{3}+z_{4}^{13}+z_{5}^{2}+\cdots+z_{n+1}^{2}$,

$$
G=g\left(z_{1}, z_{2}\right)+z_{3}^{3}+z_{4}^{13}+z_{5}^{2}+\cdots+z_{n+1}^{2} \quad(n \geq 3)
$$

which are quasi-homogeneous of weights $(11 / 5,11,3,13,2, \ldots, 2)$ and $(11 / 3,11 / 2,3,13,2, \ldots, 2)$, respectively.
$\Longrightarrow \Delta_{F}(t)=\Delta_{G}(t)\left(\right.$ and $\left.\Delta_{F}(1)=\Delta_{G}(1)=1\right)$.
However, they have distinct signatures \Longrightarrow distinct topological types \Longrightarrow Either F or G does not have the topological type of a Brieskorn-Pham polynomial.

Example

Set $f=z_{1}^{2} z_{2}+z_{1} z_{2}^{6}, g=z_{1}^{3} z_{2}+z_{1} z_{2}^{4}$, which are quasi-homogeneous of weights $(11 / 5,11)$ and $(11 / 3,11 / 2)$, respectively.
$\Longrightarrow \Delta_{f}(t)=\Delta_{g}(t)$ (Yoshinaga-Suzuki).
Set $F=f\left(z_{1}, z_{2}\right)+z_{3}^{3}+z_{4}^{13}+z_{5}^{2}+\cdots+z_{n+1}^{2}$,

$$
G=g\left(z_{1}, z_{2}\right)+z_{3}^{3}+z_{4}^{13}+z_{5}^{2}+\cdots+z_{n+1}^{2} \quad(n \geq 3)
$$

which are quasi-homogeneous of weights $(11 / 5,11,3,13,2, \ldots, 2)$ and $(11 / 3,11 / 2,3,13,2, \ldots, 2)$, respectively.
$\Longrightarrow \Delta_{F}(t)=\Delta_{G}(t)\left(\right.$ and $\left.\Delta_{F}(1)=\Delta_{G}(1)=1\right)$.
However, they have distinct signatures \Longrightarrow distinct topological types
\Longrightarrow Either F or G does not have the topological type of a Brieskorn-Pham polynomial.
S. (1987): For $n=2$, every quasi-homogeneous polynomial $h\left(z_{1}, z_{2}, z_{3}\right)$ with $\Delta_{h}(1)=1$ has the topological type of a Brieskorn-Pham polynomial.

§3. Cobordism

Cobordism of knots

Definition 3.1 Oriented $(2 n-1)$-knots K_{0} and K_{1} in $S^{2 n+1}$ are cobordant if $\exists X\left(\cong K_{0} \times[0,1]\right) \subset S^{2 n+1} \times[0,1]$, a properly embedded oriented $2 n$-dim. submanifold, such that

$$
\partial X=\left(K_{0} \times\{0\}\right) \cup\left(-K_{1} \times\{1\}\right) .
$$

Cobordism of knots

Definition 3.1 Oriented $(2 n-1)$-knots K_{0} and K_{1} in $S^{2 n+1}$ are cobordant if $\exists X\left(\cong K_{0} \times[0,1]\right) \subset S^{2 n+1} \times[0,1]$, a properly embedded oriented $2 n$-dim. submanifold, such that

$$
\partial X=\left(K_{0} \times\{0\}\right) \cup\left(-K_{1} \times\{1\}\right) .
$$

X is called a cobordism between K_{0} and K_{1}.

Cobordism of knots

Definition 3.1 Oriented $(2 n-1)$-knots K_{0} and K_{1} in $S^{2 n+1}$ are cobordant if $\exists X\left(\cong K_{0} \times[0,1]\right) \subset S^{2 n+1} \times[0,1]$, a properly embedded oriented $2 n$-dim. submanifold, such that

$$
\partial X=\left(K_{0} \times\{0\}\right) \cup\left(-K_{1} \times\{1\}\right) .
$$

X is called a cobordism between K_{0} and K_{1}.

Problem

§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

If two algebraic knots K_{f} and K_{g} are cobordant, then the topological types of f and g are mildly related.

Problem

If two algebraic knots K_{f} and K_{g} are cobordant, then the topological types of f and g are mildly related.

Problem 3.2 Given f and g, determine whether K_{f} and K_{g} are cobordant.

Known results

Theorem 3.3 (Lê, 1972)

f, g : 2-variable polynomials, irreducible at 0 .
The following are equivalent.
(1) f and g have the same topological type.
(2) K_{f} and K_{g} are cobordant.
(3) $\Delta_{f}(t)=\Delta_{g}(t)$.

Known results

Theorem 3.3 (Lê, 1972)
f, g : 2-variable polynomials, irreducible at 0 .
The following are equivalent.
(1) f and g have the same topological type.
(2) K_{f} and K_{g} are cobordant.
(3) $\Delta_{f}(t)=\Delta_{g}(t)$.

It has long been conjectured that cobordant algebraic knots would be isotopic for all n.

Known results

Theorem 3.3 (Lê, 1972)
f, g : 2-variable polynomials, irreducible at 0 .
The following are equivalent.
(1) f and g have the same topological type.
(2) K_{f} and K_{g} are cobordant.
(3) $\Delta_{f}(t)=\Delta_{g}(t)$.

It has long been conjectured that cobordant algebraic knots would be isotopic for all n.
This conjecture was negatively answered almost twenty years later.

Known results

```
Theorem 3.3 (Lê, 1972)
\(f, g\) : 2-variable polynomials, irreducible at 0 .
The following are equivalent.
(1) \(f\) and \(g\) have the same topological type.
(2) \(K_{f}\) and \(K_{g}\) are cobordant.
(3) \(\Delta_{f}(t)=\Delta_{g}(t)\).
```

It has long been conjectured that cobordant algebraic knots would be isotopic for all n.
This conjecture was negatively answered almost twenty years later.

du Bois-Michel (1993)

Examples of two algebraic knots that are cobordant, but are not isotopic, $n \geq 3$.

Algebraic cobordism

§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

Let $L_{i}: G_{i} \times G_{i} \rightarrow \mathbf{Z}, i=0,1$, be two bilinear forms defined on free Z-modules of finite ranks.

Algebraic cobordism

§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

Let $L_{i}: G_{i} \times G_{i} \rightarrow \mathbf{Z}, i=0,1$, be two bilinear forms defined on free Z-modules of finite ranks.
Set $G=G_{0} \oplus G_{1}$ and $L=L_{0} \oplus\left(-L_{1}\right)$.

Algebraic cobordism

Let $L_{i}: G_{i} \times G_{i} \rightarrow \mathbf{Z}, i=0,1$, be two bilinear forms defined on free Z-modules of finite ranks.
Set $G=G_{0} \oplus G_{1}$ and $L=L_{0} \oplus\left(-L_{1}\right)$.
Definition 3.4 Suppose $m=\operatorname{rank} G$ is even.
A direct summand $M \subset G$ is called a metabolizer
if rank $M=m / 2$ and L vanishes on M.

Algebraic cobordism

Let $L_{i}: G_{i} \times G_{i} \rightarrow \mathbf{Z}, i=0,1$, be two bilinear forms defined on free Z-modules of finite ranks.
Set $G=G_{0} \oplus G_{1}$ and $L=L_{0} \oplus\left(-L_{1}\right)$.
Definition 3.4 Suppose $m=\operatorname{rank} G$ is even.
A direct summand $M \subset G$ is called a metabolizer
if $\operatorname{rank} M=m / 2$ and L vanishes on M.
L_{0} is algebraically cobordant to L_{1} if there exists a metabolizer satisfying certain additional conditions about $S=L \pm L^{T}$.

Algebraic cobordism

Let $L_{i}: G_{i} \times G_{i} \rightarrow \mathbf{Z}, i=0,1$, be two bilinear forms defined on free Z-modules of finite ranks.
Set $G=G_{0} \oplus G_{1}$ and $L=L_{0} \oplus\left(-L_{1}\right)$.
Definition 3.4 Suppose $m=\operatorname{rank} G$ is even.
A direct summand $M \subset G$ is called a metabolizer
if rank $M=m / 2$ and L vanishes on M.
L_{0} is algebraically cobordant to L_{1} if there exists a metabolizer satisfying certain additional conditions about $S=L \pm L^{T}$.

Theorem 3.5 (Blanlœil-Michel, 1997) For $n \geq 3$, two algebraic knots K_{f} and K_{g} are cobordant \Longleftrightarrow Seifert forms L_{f} and L_{g} are algebraically cobordant.

Witt equivalence

Remark 3.6

At present, there is no efficient criterion for algebraic cobordism. It is usually very difficult to determine whether given two forms are algebraically cobordant or not.

Witt equivalence

Remark 3.6

At present, there is no efficient criterion for algebraic cobordism. It is usually very difficult to determine whether given two forms are algebraically cobordant or not.

Two forms L_{0} and L_{1} are Witt equivalent over \mathbf{R} if there exists a metabolizer over \mathbf{R} for $L_{0} \otimes \mathbf{R}$ and $L_{1} \otimes \mathbf{R}$.

Witt equivalence

Remark 3.6

At present, there is no efficient criterion for algebraic cobordism. It is usually very difficult to determine whether given two forms are algebraically cobordant or not.

Two forms L_{0} and L_{1} are Witt equivalent over \mathbf{R} if there exists a metabolizer over \mathbf{R} for $L_{0} \otimes \mathbf{R}$ and $L_{1} \otimes \mathbf{R}$.

Lemma 3.7 If two algebraic knots K_{f} and K_{g} are cobordant, then their Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R}.

Criterion for Witt equiv. over R

§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

Theorem 3.8 (Blanlœil-S., 2011) Let f and g be quasihomogeneous polynomials. Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R} iff $P_{f}(t) \equiv P_{g}(t) \bmod t+1$.

Criterion for Witt equiv. over R

Theorem 3.8 (Blanlœil-S., 2011) Let f and g be quasihomogeneous polynomials. Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R} iff $P_{f}(t) \equiv P_{g}(t) \bmod t+1$.

$$
\text { Here, } \quad P_{f}(t)=\prod_{j=1}^{n+1} \frac{t-t^{1 / w_{j}}}{t^{1 / w_{j}}-1}
$$

The above theorem should be compared with the following.

Criterion for Witt equiv. over R

Theorem 3.8 (Blanlœil-S., 2011) Let f and g be quasihomogeneous polynomials. Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R} iff $P_{f}(t) \equiv P_{g}(t) \bmod t+1$.

Here, $\quad P_{f}(t)=\prod_{j=1}^{n+1} \frac{t-t^{1 / w_{j}}}{t^{1 / w_{j}}-1}$.
The above theorem should be compared with the following.
Theorem 3.9 (S., 2000) For f, g as above, L_{f} and L_{g} are isomorphic over \mathbf{R} iff $P_{f}(t) \equiv P_{g}(t) \bmod t^{2}-1$.

Cobordism of B-P polynomials

Proposition 3.10 (Blanlœil-S., 2011) Let

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}}
$$

be Brieskorn-Pham polynomials.
Then, their Seifert forms are Witt equivalent over \mathbf{R} iff

$$
\prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2 a_{j}}=\prod_{j=1}^{n+1} \cot \frac{\pi \ell}{2 b_{j}}
$$

holds for all odd integers ℓ.

Cobordism invariance of exponents

Theorem 3.11 (Blanlœil-S., 2011) Suppose that for each of the Brieskorn-Pham polynomials

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}},
$$

no exponent is a multiple of another one.
Then, the knots K_{f} and K_{g} are cobordant iff

$$
a_{j}=b_{j}, \quad j=1,2, \ldots, n+1,
$$

up to order.

Cobordism invariance of exponents

Theorem 3.11 (Blanlœil-S., 2011) Suppose that for each of the Brieskorn-Pham polynomials

$$
f(z)=\sum_{j=1}^{n+1} z_{j}^{a_{j}} \quad \text { and } \quad g(z)=\sum_{j=1}^{n+1} z_{j}^{b_{j}},
$$

no exponent is a multiple of another one.
Then, the knots K_{f} and K_{g} are cobordant iff

$$
a_{j}=b_{j}, \quad j=1,2, \ldots, n+1,
$$

up to order.
Problem 3.12 Are the exponents cobordism invariants for Brieskorn-Pham polynomials in general?

Case of two or three variables

Proposition 3.13 (Blanlœil-S., 2011) Let f and g be quasihomogeneous polynomials of two variables with weights $\left(w_{1}, w_{2}\right)$ and

 $\left(w_{1}^{\prime}, w_{2}^{\prime}\right)$.If their Seifert forms are Witt equivalent over \mathbf{R}, then $w_{j}=w_{j}^{\prime}, j=1,2$, up to order.

Case of two or three variables

Proposition 3.13 (Blanlœil-S., 2011) Let f and g be quasihomogeneous polynomials of two variables with weights $\left(w_{1}, w_{2}\right)$ and $\left(w_{1}^{\prime}, w_{2}^{\prime}\right)$.
If their Seifert forms are Witt equivalent over \mathbf{R}, then $w_{j}=w_{j}^{\prime}, j=1,2$, up to order.

Proposition 3.14 (Blanlœil-S., 2011)

Let $f(z)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+z_{3}^{a_{3}}$ and $g(z)=z_{1}^{b_{1}}+z_{2}^{b_{2}}+z_{3}^{b_{3}}$ be BrieskornPham polynomials of three variables.
If the Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R}, then $a_{j}=b_{j}, j=1,2,3$, up to order.

Case of two or three variables

Proposition 3.13 (Blanlœil-S., 2011) Let f and g be quasihomogeneous polynomials of two variables with weights $\left(w_{1}, w_{2}\right)$ and $\left(w_{1}^{\prime}, w_{2}^{\prime}\right)$.
If their Seifert forms are Witt equivalent over \mathbf{R}, then $w_{j}=w_{j}^{\prime}, j=1,2$, up to order.

Proposition 3.14 (Blanlœil-S., 2011)

Let $f(z)=z_{1}^{a_{1}}+z_{2}^{a_{2}}+z_{3}^{a_{3}}$ and $g(z)=z_{1}^{b_{1}}+z_{2}^{b_{2}}+z_{3}^{b_{3}}$ be BrieskornPham polynomials of three variables.
If the Seifert forms L_{f} and L_{g} are Witt equivalent over \mathbf{R}, then $a_{j}=b_{j}, j=1,2,3$, up to order.

These imply that weights and exponents are cobordism invariants!

Example

§1. Topology of Complex Hypersurface Singularities §2. Quasi-homogeneous Polynomials §3. Cobordism

Set $f=z_{1}^{5}+z_{2}^{31}+z_{2} z_{3}^{75}, \quad g=z_{1}^{7}+z_{2}^{11}+z_{3}^{154}$, which are quasi-homogeneous of weights ($5,31,155 / 2$) and ($7,11,154$), respectively.

Example

Set $f=z_{1}^{5}+z_{2}^{31}+z_{2} z_{3}^{75}, \quad g=z_{1}^{7}+z_{2}^{11}+z_{3}^{154}$, which are quasi-homogeneous of weights $(5,31,155 / 2)$ and ($7,11,154$), respectively.
We can show that the 3 -manifolds K_{f} and K_{g} are diffeomorphic. (In fact, they are "Seifert 3-manifolds" with the same Seifert invariants.)

Example

Set $f=z_{1}^{5}+z_{2}^{31}+z_{2} z_{3}^{75}, \quad g=z_{1}^{7}+z_{2}^{11}+z_{3}^{154}$, which are quasi-homogeneous of weights ($5,31,155 / 2$) and ($7,11,154$), respectively.
We can show that the 3 -manifolds K_{f} and K_{g} are diffeomorphic.
(In fact, they are "Seifert 3-manifolds" with the same Seifert invariants.)
Furthermore, the Milnor numbers coincide (=9180).
The signatures also coincide.

Example

Set $f=z_{1}^{5}+z_{2}^{31}+z_{2} z_{3}^{75}, \quad g=z_{1}^{7}+z_{2}^{11}+z_{3}^{154}$, which are quasi-homogeneous of weights ($5,31,155 / 2$) and ($7,11,154$), respectively.
We can show that the 3 -manifolds K_{f} and K_{g} are diffeomorphic.
(In fact, they are "Seifert 3-manifolds" with the same Seifert invariants.)
Furthermore, the Milnor numbers coincide (=9180).
The signatures also coincide.
However, the algebraic knots are not cobordant to each other, since $\Delta_{f}(t)$ and $\Delta_{g}(t)$ do not satisfy the so-called "Fox-Milnor relation".

Example

Set $f=z_{1}^{5}+z_{2}^{31}+z_{2} z_{3}^{75}, \quad g=z_{1}^{7}+z_{2}^{11}+z_{3}^{154}$, which are quasi-homogeneous of weights $(5,31,155 / 2)$ and ($7,11,154$), respectively.
We can show that the 3 -manifolds K_{f} and K_{g} are diffeomorphic. (In fact, they are "Seifert 3-manifolds" with the same Seifert invariants.) Furthermore, the Milnor numbers coincide ($=9180$).
The signatures also coincide.
However, the algebraic knots are not cobordant to each other, since $\Delta_{f}(t)$ and $\Delta_{g}(t)$ do not satisfy the so-called "Fox-Milnor relation".

Problem 3.15 Are weights cobordism invariants for quasihomogeneous polynomials of 3 variables?

鈴木先生，還暦おめでとうございます！

