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We suppose f has an isolated critical point at 0.
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Let f ∈ C[z1, z2, . . . , zn+1] be a polynomial with f(0) = 0.
We suppose f has an isolated critical point at 0.
For 0 < ε << 1, Kf = f−1(0) ∩ S2n+1

ε is the algebraic
knot associated with f .

Kf is a (2n− 1)-dim. closed manifold embedded in S2n+1
ε .
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ε
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(D2n+2
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ε ) does not depend on 0 < ε << 1.
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According to Milnor, the homeomorphism class of
(D2n+2

ε , f−1(0) ∩D2n+2
ε ) does not depend on 0 < ε << 1.

By definition it is the topological type of f (around 0).

Remark 1.1 For two polynomials f and g, the following three
conditions are equivalent.

• f and g have the same topological type.

• The algebraic knots Kf and Kg are isotopic.

• There exist homeomorphism germs Ψ and ψ which
make the following diagram commutative.

(Cn+1,0)
f−−−→ (C, 0)

Ψ





y





y

ψ

(Cn+1,0)
g−−−→ (C, 0).
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Definition 1.2 An m-dimensional knot (m-knot, for short)
is a closed orientedm-dim. submanifold of the oriented Sm+2.
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Definition 1.2 An m-dimensional knot (m-knot, for short)
is a closed oriented m-dim. submanifold of the oriented Sm+2.

Two m-knots K0 and K1 in Sm+2 are cobordant if
∃X ⊂ Sm+2 × [0, 1], a properly embedded oriented
(m+ 1)-dim. submanifold, such that

1. X ∼= K0 × [0, 1] (diffeo.), and

2. ∂X = (K0 × {0}) ∪ (−K1 × {1}).

X is called a cobordism between K0 and K1.
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K0 × {0} K1 × {1}
X

Isotopic
⇓ 6⇑

Cobordant

If two algebraic knots Kf and Kg are cobordant , then the
topological types of f and g are mildly related.



Problem

§1. Introduction

• Algebraic Knot

• Topological Type

• Cobordism of Knots

• Cobordism vs Isotopy

• Problem

§2. Results

§3. Proofs

7 / 31

Problem 1.3 Given f and g,



Problem

§1. Introduction

• Algebraic Knot

• Topological Type

• Cobordism of Knots

• Cobordism vs Isotopy

• Problem

§2. Results

§3. Proofs

7 / 31

Problem 1.3 Given f and g,

(1) determine whether f and g have the same topological
type (i.e. whether Kf and Kg are isotopic),



Problem

§1. Introduction

• Algebraic Knot

• Topological Type

• Cobordism of Knots

• Cobordism vs Isotopy

• Problem

§2. Results

§3. Proofs

7 / 31

Problem 1.3 Given f and g,

(1) determine whether f and g have the same topological
type (i.e. whether Kf and Kg are isotopic),

(2) determine whether Kf and Kg are cobordant.



Problem

§1. Introduction

• Algebraic Knot

• Topological Type

• Cobordism of Knots

• Cobordism vs Isotopy

• Problem

§2. Results

§3. Proofs

7 / 31

Problem 1.3 Given f and g,

(1) determine whether f and g have the same topological
type (i.e. whether Kf and Kg are isotopic),

(2) determine whether Kf and Kg are cobordant.

The answers have been given in terms of Seifert forms , which
are in general very difficult to compute .



Problem

§1. Introduction

• Algebraic Knot

• Topological Type

• Cobordism of Knots

• Cobordism vs Isotopy

• Problem

§2. Results

§3. Proofs

7 / 31

Problem 1.3 Given f and g,

(1) determine whether f and g have the same topological
type (i.e. whether Kf and Kg are isotopic),

(2) determine whether Kf and Kg are cobordant.

The answers have been given in terms of Seifert forms , which
are in general very difficult to compute .
Even if we know the Seifert forms, it is still difficult to check if
the corresponding knots are isotopic or cobordant.



Problem

§1. Introduction

• Algebraic Knot

• Topological Type

• Cobordism of Knots

• Cobordism vs Isotopy

• Problem

§2. Results

§3. Proofs

7 / 31

Problem 1.3 Given f and g,

(1) determine whether f and g have the same topological
type (i.e. whether Kf and Kg are isotopic),

(2) determine whether Kf and Kg are cobordant.

The answers have been given in terms of Seifert forms , which
are in general very difficult to compute .
Even if we know the Seifert forms, it is still difficult to check if
the corresponding knots are isotopic or cobordant.

Today’s Topic : Problem 1.3 (2) for weighted homogeneous
polynomials (in particular, Brieskorn polynomials).
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ϕf : S2n+1
ε \Kf → S1

defined by ϕf (z) = f(z)/|f(z)|.
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Let us consider the Milnor fibration associated with f

ϕf : S2n+1
ε \Kf → S1

defined by ϕf (z) = f(z)/|f(z)|.

Ff = ϕ−1
f (1) = ϕ−1

f (1) ∪Kf (1 ∈ S1)

is called the Milnor fiber , which is a compact 2n-dimensional
submanifold of S2n+1

ε with ∂Ff = Kf .
It is known

Ff ≃ ∨µSn. (homotopy equivalent)

The number µ of n-spheres is called the Milnor number of f .
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The Seifert form associated with f is the bilinear form

Lf : Hn(Ff ;Z) ×Hn(Ff ;Z) → Z define by

Lf (α, β) = lk(a+, b), where
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Lf : Hn(Ff ;Z) ×Hn(Ff ;Z) → Z define by

Lf (α, β) = lk(a+, b), where

• a and b are n-cycles representing α, β ∈ Hn(Ff ;Z),
• a+ is obtained by pushing a into the positive normal

direction of Ff ⊂ S2n+1
ε ,

• lk is the linking number in S2n+1
ε .
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The Seifert form associated with f is the bilinear form

Lf : Hn(Ff ;Z) ×Hn(Ff ;Z) → Z define by

Lf (α, β) = lk(a+, b), where

• a and b are n-cycles representing α, β ∈ Hn(Ff ;Z),
• a+ is obtained by pushing a into the positive normal

direction of Ff ⊂ S2n+1
ε ,

• lk is the linking number in S2n+1
ε .

The isomorphism class of the Seifert form is a topological
invariant of f .

Theorem 2.1 (Durfee, Kato, 1974) For n ≥ 3,
two algebraic knots Kf and Kg are isotopic
⇐⇒ the Seifert forms Lf and Lg are isomorphic.
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Let Li : Gi ×Gi → Z, i = 0, 1, be two bilinear forms defined
on free Z-modules of finite ranks.
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Let Li : Gi ×Gi → Z, i = 0, 1, be two bilinear forms defined
on free Z-modules of finite ranks.
Set G = G0 ⊕G1 and L = L0 ⊕ (−L1).
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Let Li : Gi ×Gi → Z, i = 0, 1, be two bilinear forms defined
on free Z-modules of finite ranks.
Set G = G0 ⊕G1 and L = L0 ⊕ (−L1).

Definition 2.2 Suppose m = rankG is even.
A direct summand M ⊂ G is called a metabolizer
if rankM = m/2 and L vanishes on M .
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L0 is algebraically cobordant to L1 if there exists a
metabolizer satisfying additional properties about
S = L± LT .
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Let Li : Gi ×Gi → Z, i = 0, 1, be two bilinear forms defined
on free Z-modules of finite ranks.
Set G = G0 ⊕G1 and L = L0 ⊕ (−L1).

Definition 2.2 Suppose m = rankG is even.
A direct summand M ⊂ G is called a metabolizer
if rankM = m/2 and L vanishes on M .

L0 is algebraically cobordant to L1 if there exists a
metabolizer satisfying additional properties about
S = L± LT .

Theorem 2.3 (Blanlœil–Michel, 1997) For n ≥ 3,
two algebraic knots Kf and Kg are cobordant
⇐⇒ the Seifert forms Lf and Lg are algebraically cobordant.
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Remark 2.4 At present, there is no efficient criterion for
algebraic cobordism.
It is usually very difficult to determine whether given two forms
are algebraically cobordant or not.
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Remark 2.4 At present, there is no efficient criterion for
algebraic cobordism.
It is usually very difficult to determine whether given two forms
are algebraically cobordant or not.

Two forms L0 and L1 are Witt equivalent over R if there
exists a metabolizer over R for L0 ⊗ R and L1 ⊗ R.
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Remark 2.4 At present, there is no efficient criterion for
algebraic cobordism.
It is usually very difficult to determine whether given two forms
are algebraically cobordant or not.

Two forms L0 and L1 are Witt equivalent over R if there
exists a metabolizer over R for L0 ⊗ R and L1 ⊗ R.

Lemma 2.5 If two algebraic knots Kf and Kg are cobordant,
then their Seifert forms Lf and Lg are Witt equivalent over R.
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Let f be a weighted homogeneous polynomial in Cn+1,
i.e. ∃(w1, w2, . . . , wn+1) ∈ Qn+1

>0 , called weights , such that

for each monomial czk11 z
k2
2 · · · zkn+1

n+1 , c 6= 0, of f , we have

n+1
∑

j=1

kj
wj

= 1.
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f is non-degenerate if it has an isolated critical point at 0.
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f is non-degenerate if it has an isolated critical point at 0.

According to Saito, if f is non-degenerate, then by an analytic
change of coordinates, f can be transformed to a weighted
homogeneous polynomial with all weights ≥ 2.
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f is non-degenerate if it has an isolated critical point at 0.

According to Saito, if f is non-degenerate, then by an analytic
change of coordinates, f can be transformed to a weighted
homogeneous polynomial with all weights ≥ 2.
Furthermore, then the weights ≥ 2 are analytic invariants of
the polynomial.
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Let f be a weighted homogeneous polynomial in Cn+1,
i.e. ∃(w1, w2, . . . , wn+1) ∈ Qn+1

>0 , called weights , such that

for each monomial czk11 z
k2
2 · · · zkn+1

n+1 , c 6= 0, of f , we have

n+1
∑

j=1

kj
wj

= 1.

f is non-degenerate if it has an isolated critical point at 0.

According to Saito, if f is non-degenerate, then by an analytic
change of coordinates, f can be transformed to a weighted
homogeneous polynomial with all weights ≥ 2.
Furthermore, then the weights ≥ 2 are analytic invariants of
the polynomial.
In the following, we will always assume ∀weights ≥ 2.
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Set

Pf (t) =
n+1
∏

j=1

t− t1/wj

t1/wj − 1
.

Pf (t) is a polynomial in t1/m over Z for some integer m > 0.



Criterion for Witt Equivalence over R

§1. Introduction

§2. Results

• Milnor Fibration

• Seifert Form

• Algebraic Cobordism

• Witt Equivalence
• Weighted
Homogeneous
Polynomials

• Criterion for Witt
Equivalence over R

• Criterion for
Isomorphism over R
• Brieskorn
Polynomials

• Cobordism Invariance
of Exponents

• Cobordism Invariance
of Multiplicities

• Case of 2 or 3
Variables

§3. Proofs

14 / 31

Set

Pf (t) =
n+1
∏

j=1

t− t1/wj

t1/wj − 1
.

Pf (t) is a polynomial in t1/m over Z for some integer m > 0.

Two non-degenerate weighted homogeneous polynomials
f and g have the same weights if and only if Pf (t) = Pg(t).
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Set

Pf (t) =
n+1
∏

j=1

t− t1/wj

t1/wj − 1
.

Pf (t) is a polynomial in t1/m over Z for some integer m > 0.

Two non-degenerate weighted homogeneous polynomials
f and g have the same weights if and only if Pf (t) = Pg(t).

Theorem 2.6 Let f and g be non-degenerate weighted
homogeneous polynomials in Cn+1. Then, their Seifert forms
Lf and Lg are Witt equivalent over R iff

Pf (t) ≡ Pg(t) mod t+ 1.
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The above theorem should be compared with the following.

Remark 2.7 The Seifert forms Lf and Lg associated with
non-degenerate weighted homogeneous polynomials f and g
are isomorphic over R iff

Pf (t) ≡ Pg(t) mod t2 − 1.
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Proposition 2.8 Let

f(z) =
n+1
∑

j=1

z
aj

j and g(z) =
n+1
∑

j=1

z
bj
j

be Brieskorn polynomials.
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Proposition 2.8 Let

f(z) =
n+1
∑

j=1

z
aj

j and g(z) =
n+1
∑

j=1

z
bj
j

be Brieskorn polynomials.
Then, their Seifert forms are Witt equivalent over R iff

n+1
∏

j=1

cot
πℓ

2aj
=

n+1
∏

j=1

cot
πℓ

2bj

holds for all odd integers ℓ.
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Theorem 2.9 Suppose that for each of the Brieskorn
polynomials

f(z) =
n+1
∑

j=1

z
aj

j and g(z) =
n+1
∑

j=1

z
bj
j ,

no exponent is a multiple of another one.
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Theorem 2.9 Suppose that for each of the Brieskorn
polynomials

f(z) =
n+1
∑

j=1

z
aj

j and g(z) =
n+1
∑

j=1

z
bj
j ,

no exponent is a multiple of another one.
Then, the knots Kf and Kg are cobordant iff

aj = bj, j = 1, 2, . . . , n+ 1,

up to order.
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Proposition 2.10 Suppose that for each of the Brieskorn
polynomials

f(z) =
n+1
∑

j=1

z
aj

j and g(z) =
n+1
∑

j=1

z
bj
j

the exponents are pairwise distinct.
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Proposition 2.10 Suppose that for each of the Brieskorn
polynomials

f(z) =
n+1
∑

j=1

z
aj

j and g(z) =
n+1
∑

j=1

z
bj
j

the exponents are pairwise distinct.
If Kf and Kg are cobordant , then the multiplicities of f and
g coincide.
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Proposition 2.11 Let f and g be weighted homogeneous
polynomials of two variables with weights (w1, w2) and
(w′

1, w
′
2), respectively, with wj, w

′
j ≥ 2.

If their Seifert forms are Witt equivalent over R, then
wj = w′

j , j = 1, 2, up to order.
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Proposition 2.11 Let f and g be weighted homogeneous
polynomials of two variables with weights (w1, w2) and
(w′

1, w
′
2), respectively, with wj, w

′
j ≥ 2.

If their Seifert forms are Witt equivalent over R, then
wj = w′

j , j = 1, 2, up to order.

Proposition 2.12 Let f(z) = za1

1 + za2

2 + za3

3 and
g(z) = zb11 + zb22 + zb33 be Brieskorn polynomials
of three variables.
If the Seifert forms Lf and Lg are Witt equivalent over R,
then aj = bj , j = 1, 2, 3, up to order.
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Theorem 2.6 Let f and g be non-degenerate weighted
homogeneous polynomials in Cn+1. Then, their Seifert forms
Lf and Lg are Witt equivalent over R iff

Pf (t) ≡ Pg(t) mod t+ 1.
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Theorem 2.6 Let f and g be non-degenerate weighted
homogeneous polynomials in Cn+1. Then, their Seifert forms
Lf and Lg are Witt equivalent over R iff

Pf (t) ≡ Pg(t) mod t+ 1.

Proof. For simplicity, we consider the case of n even.
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Theorem 2.6 Let f and g be non-degenerate weighted
homogeneous polynomials in Cn+1. Then, their Seifert forms
Lf and Lg are Witt equivalent over R iff

Pf (t) ≡ Pg(t) mod t+ 1.

Proof. For simplicity, we consider the case of n even.

Let ∆f (t) be the characteristic polynomial of the
monodromy

h∗ : Hn(Ff ;C) → Hf (Ff ;C),

where h : Ff → Ff is the characteristic diffemorphism of the
Milnor fibration ϕf : S2n+1

ε \Kf → S1.
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We have
Hn(Ff ;C) = ⊕λH

n(Ff ;C)λ,

where λ runs over all the roots of ∆f (t), and Hn(Ff ;C)λ is
the eigenspace of h∗ corresponding to the eigenvalue λ.
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We have
Hn(Ff ;C) = ⊕λH

n(Ff ;C)λ,

where λ runs over all the roots of ∆f (t), and Hn(Ff ;C)λ is
the eigenspace of h∗ corresponding to the eigenvalue λ.

The intersection form Sf = Lf + LTf of Ff on Hn(Ff ;C)
decomposes as the orthogonal direct sum of (Sf )|Hn(Ff ;C)λ

.
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We have
Hn(Ff ;C) = ⊕λH

n(Ff ;C)λ,

where λ runs over all the roots of ∆f (t), and Hn(Ff ;C)λ is
the eigenspace of h∗ corresponding to the eigenvalue λ.

The intersection form Sf = Lf + LTf of Ff on Hn(Ff ;C)
decomposes as the orthogonal direct sum of (Sf )|Hn(Ff ;C)λ

.

Let µ(f)+
λ (resp. µ(f)−λ ) denote the number of positive (resp.

negative) eigenvalues of (Sf )|Hn(F ;C)λ
.
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We have
Hn(Ff ;C) = ⊕λH

n(Ff ;C)λ,

where λ runs over all the roots of ∆f (t), and Hn(Ff ;C)λ is
the eigenspace of h∗ corresponding to the eigenvalue λ.

The intersection form Sf = Lf + LTf of Ff on Hn(Ff ;C)
decomposes as the orthogonal direct sum of (Sf )|Hn(Ff ;C)λ

.

Let µ(f)+
λ (resp. µ(f)−λ ) denote the number of positive (resp.

negative) eigenvalues of (Sf )|Hn(F ;C)λ
.

The integer
σλ(f) = µ(f)+

λ − µ(f)−λ

is called the equivariant signature of f with respect to λ.
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Lemma 3.1 (Steenbrink, 1977)
Set Pf (t) =

∑

cαt
α. Then we have

σλ(f) =
∑

λ=exp(−2πiα)
⌊α⌋: even

cα −
∑

λ=exp(−2πiα),
⌊α⌋: odd

cα

for λ 6= 1, where i =
√
−1, and ⌊α⌋ is the largest integer not

exceeding α.
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Lemma 3.1 (Steenbrink, 1977)
Set Pf (t) =

∑

cαt
α. Then we have

σλ(f) =
∑

λ=exp(−2πiα)
⌊α⌋: even

cα −
∑

λ=exp(−2πiα),
⌊α⌋: odd

cα

for λ 6= 1, where i =
√
−1, and ⌊α⌋ is the largest integer not

exceeding α.

Remark 3.2 The equivariant signature for λ = 1 is always
equal to zero.
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Seifert forms Lf and Lg are Witt equivalent over R.
=⇒ σλ(f) = σλ(g) for all λ.
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Seifert forms Lf and Lg are Witt equivalent over R.
=⇒ σλ(f) = σλ(g) for all λ.

Set
Pf (t) = P 0

f (t) + P 1
f (t), where

P 0
f (t) =

∑

⌊α⌋≡0 (mod 2)

cαt
α,

P 1
f (t) =

∑

⌊α⌋≡1 (mod 2)

cαt
α.

We define P 0
g (t) and P 1

g (t) similarly.
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Seifert forms Lf and Lg are Witt equivalent over R.
=⇒ σλ(f) = σλ(g) for all λ.

Set
Pf (t) = P 0

f (t) + P 1
f (t), where

P 0
f (t) =

∑

⌊α⌋≡0 (mod 2)

cαt
α,

P 1
f (t) =

∑

⌊α⌋≡1 (mod 2)

cαt
α.

We define P 0
g (t) and P 1

g (t) similarly.
Since the equivariant signatures of f and g coincide, we have

tP 0
f (t) − P 1

f (t) ≡ tP 0
g (t) − P 1

g (t) mod t2 − 1,

tP 1
f (t) − P 0

f (t) ≡ tP 1
g (t) − P 0

g (t) mod t2 − 1.
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Adding up these two congruences we have

(t− 1)Pf (t) ≡ (t− 1)Pg(t) mod t2 − 1, (1)
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Adding up these two congruences we have

(t− 1)Pf (t) ≡ (t− 1)Pg(t) mod t2 − 1, (1)

which implies

Pf (t) ≡ Pg(t) mod t+ 1. (2)
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Adding up these two congruences we have

(t− 1)Pf (t) ≡ (t− 1)Pg(t) mod t2 − 1, (1)

which implies

Pf (t) ≡ Pg(t) mod t+ 1. (2)

Conversely , suppose that (2) holds.
=⇒ (1) holds.
=⇒ f and g have the same equivariant signatures.



Proof of Theorem 2.6 (Continued)

§1. Introduction

§2. Results

§3. Proofs

• Proof of Theorem 2.6
• Proof of Theorem 2.6
(Continued)

• Proof of Theorem 2.6
(Continued)

• Proof of Theorem 2.6
(Continued)

• Proof of Theorem 2.6
(Continued)

• Proof of
Proposition 2.8

• Proof of
Proposition 2.8
(Continued)

• Proof of Theorem 2.9

• Open problem

• Cobordism and
Isotopy for Brieskorn
Polynomials

25 / 31

Adding up these two congruences we have

(t− 1)Pf (t) ≡ (t− 1)Pg(t) mod t2 − 1, (1)

which implies

Pf (t) ≡ Pg(t) mod t+ 1. (2)

Conversely , suppose that (2) holds.
=⇒ (1) holds.
=⇒ f and g have the same equivariant signatures.

Then, we can prove that they are Witt equivalent over R.

This completes the proof.
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Proposition 2.8 Let

f(z) =
n+1
∑

j=1

z
aj

j and g(z) =
n+1
∑

j=1

z
bj
j

be Brieskorn polynomials. Then, their Seifert forms are Witt
equivalent over R iff

n+1
∏

j=1

cot
πℓ

2aj
=

n+1
∏

j=1

cot
πℓ

2bj

holds for all odd integers ℓ.



Proof of Proposition 2.8 (Continued)

§1. Introduction

§2. Results

§3. Proofs

• Proof of Theorem 2.6
• Proof of Theorem 2.6
(Continued)

• Proof of Theorem 2.6
(Continued)

• Proof of Theorem 2.6
(Continued)

• Proof of Theorem 2.6
(Continued)

• Proof of
Proposition 2.8

• Proof of
Proposition 2.8
(Continued)

• Proof of Theorem 2.9

• Open problem

• Cobordism and
Isotopy for Brieskorn
Polynomials

27 / 31

Proof.
Pf (t) and Pg(t) are polynomials in s = t1/m for some m.
Put Qf (s) = Pf (t) and Qg(s) = Pg(t).

Then, Pf (t) ≡ Pg(t) mod t+ 1 holds
⇐⇒ Qf (ξ) = Qg(ξ) for all ξ with ξm = −1.
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Proof.
Pf (t) and Pg(t) are polynomials in s = t1/m for some m.
Put Qf (s) = Pf (t) and Qg(s) = Pg(t).

Then, Pf (t) ≡ Pg(t) mod t+ 1 holds
⇐⇒ Qf (ξ) = Qg(ξ) for all ξ with ξm = −1.

Note that ξ is of the form

exp(π
√
−1ℓ/m)

with ℓ odd and that

−1 − exp(π
√
−1ℓ/aj)

exp(π
√
−1ℓ/aj) − 1

=
√
−1 cot

πℓ

2aj
.

Then, we immediately get Proposition 2.8.
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Theorem 2.9 Suppose that for each of the Brieskorn
polynomials

f(z) =
n+1
∑

j=1

z
aj

j and g(z) =
n+1
∑

j=1

z
bj
j ,

no exponent is a multiple of another one.
Then, the knots Kf and Kg are cobordant iff

aj = bj, j = 1, 2, . . . , n+ 1,

up to order.



Proof of Theorem 2.9

§1. Introduction

§2. Results

§3. Proofs

• Proof of Theorem 2.6
• Proof of Theorem 2.6
(Continued)

• Proof of Theorem 2.6
(Continued)

• Proof of Theorem 2.6
(Continued)

• Proof of Theorem 2.6
(Continued)

• Proof of
Proposition 2.8

• Proof of
Proposition 2.8
(Continued)

• Proof of Theorem 2.9

• Open problem

• Cobordism and
Isotopy for Brieskorn
Polynomials

28 / 31

Theorem 2.9 Suppose that for each of the Brieskorn
polynomials

f(z) =
n+1
∑

j=1

z
aj

j and g(z) =
n+1
∑

j=1

z
bj
j ,

no exponent is a multiple of another one.
Then, the knots Kf and Kg are cobordant iff

aj = bj, j = 1, 2, . . . , n+ 1,

up to order.

This is a consequence of the “Fox–Milnor type relation ” for
the characteristic polynomials of cobordant algebraic knots.



Open problem

§1. Introduction

§2. Results

§3. Proofs

• Proof of Theorem 2.6
• Proof of Theorem 2.6
(Continued)

• Proof of Theorem 2.6
(Continued)

• Proof of Theorem 2.6
(Continued)

• Proof of Theorem 2.6
(Continued)

• Proof of
Proposition 2.8

• Proof of
Proposition 2.8
(Continued)

• Proof of Theorem 2.9

• Open problem

• Cobordism and
Isotopy for Brieskorn
Polynomials

29 / 31

Problem 3.3 Are the exponents cobordism invariants for
Brieskorn polynomials?
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Problem 3.3 Are the exponents cobordism invariants for
Brieskorn polynomials?

Proposition 2.8 reduces the above problem to a number
theoretical problem involving cotangents.
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Problem 3.3 Are the exponents cobordism invariants for
Brieskorn polynomials?

Proposition 2.8 reduces the above problem to a number
theoretical problem involving cotangents.

n+1
∏

j=1

cot
πℓ

2aj
=

n+1
∏

j=1

cot
πℓ

2bj
∀odd integers ℓ

=⇒ aj = bj up to order ?
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Remark 3.4 Theorem 2.9 implies that two algebraic knots Kf

and Kg associated with certain Brieskorn polynomials are
isotopic if and only of they are cobordant .
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Remark 3.4 Theorem 2.9 implies that two algebraic knots Kf

and Kg associated with certain Brieskorn polynomials are
isotopic if and only of they are cobordant .

According to Yoshinaga–Suzuki , two algebraic knots
associated with Brieskorn polynomials in general are isotopic if
and only if they have the same set of exponents.
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Remark 3.4 Theorem 2.9 implies that two algebraic knots Kf

and Kg associated with certain Brieskorn polynomials are
isotopic if and only of they are cobordant .

According to Yoshinaga–Suzuki , two algebraic knots
associated with Brieskorn polynomials in general are isotopic if
and only if they have the same set of exponents.

In fact, they showed that the characteristic polynomials
coincide if and only if the Brieskorn polynomials have the
same set of exponents .
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Thank you!
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