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By definition it is the topological type of f (around 0).

Remark 1.1 For two polynomials f and g, the following three

conditions are equivalent.
e { and g have the same topological type.
e The algebraic knots K ¢ and /K, are isotopic.

e There exist homeomorphism germs ¥ and v which
make the following diagram commutative.

(c*+10) —L— (C,0)

v| £

(C"t 0) —— (C,0).
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If two algebraic knots K ; and K, are cobordant , then the

Ki x {1}

topological types of f and g are mildly related.
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(1) determine whether f and g have the same topological
type (i.e. whether K ; and K, are isotopic),

(2) determine whether K ¢ and K, are cobordant.

The answers have been given in terms of Seifert forms , which

are in general very difficult to compute

Even if we know the Seifert forms, it is still difficult to check if

the corresponding knots are isotopic or cobordant.

Today’s Topic : Problem 1.3 (2) for weighted homogeneous
polynomials (in particular, Brieskorn polynomials).
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Let us consider the Milnor fibration associated with f
o5 ST\ Ky — S
defined by ¢ (2) = f(2)/]f(2)].
Fr=¢;' () =¢; (YUE; (1€8

is called the Milnor fiber , which is a compact 2n-dimensional
submanifold of S2"** with OF; = K.
It is known

Fy >~ VviS™.  (homotopy equivalent)

The number i of n-spheres is called the Milnor number of f.
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e a and b are n-cycles representing o, 8 € H,(Fr;Z),

e (. IS obtained by pushing a into the positive normal
direction of Fy C S2"*1,
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The isomorphism class of the Seifert form is a topological
invariant of f.

Theorem 2.1 (Durfee, Kato, 1974) Forn > 3,
two algebraic knots /¢ and kK, are isotopic
<> the Seifert forms L ; and L, are isomorphic.
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<> the Seifert forms L ; and L, are algebraically cobordant.
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then their Seifert forms L ; and L, are Witt equivalent over R.
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Proof. For simplicity, we consider the case of n even.

Let Af(t) be the characteristic polynomial of the
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exceeding .
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We define P)(t) and P, (t) similarly.
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Adding up these two congruences we have
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which implies

Ps(t) = P,(t) mod t+ 1.
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—> f and g have the same equivariant signatures.
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which implies

Ps(t) = P,(t) mod t+ 1.
Conversely , suppose that (2) holds.
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Then, we can prove that they are Witt equivalent over R.

This completes the proof.
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Proposition 2.8

e Proof of
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(Continued)

® Proof of Theorem 2.9
® Open problem
@ Cobordism and

Isotopy for Brieskorn
Polynomials

Proposition 2.8  Let

n+1 n+1

Zz;j and g(z)= ) =z

g=1 g=1

fz) =

be Brieskorn polynomials. Then, their Seifert forms are Witt
equivalent over R iff

n+1 n+1
[ cot ﬂ - HCO 2b
j=1 J

holds for all odd integers /.
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83. Proofs

® Proof of Theorem 2.6 PUt Qf(S) — Pf(t) and QQ(S) — Pg(t)

® Proof of Theorem 2.6

Ceameoemze Then, Py(t) = P,(t) mod t + 1 holds
(oclgrr]ggfusfd)Theorem 2.6 <:> Qf(g) — Qg(g) for a” f Wlth fm — _1

(Continued)

® Proof of Theorem 2.6
(Continued)

® Proof of

Proposition 2.8
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Proposition 2.8
(Continued)

® Proof of Theorem 2.9
e Open problem
@ Cobordism and
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Proof.

P;(t) and P,(t) are polynomials in s = t*/™ for some m.

Put Q¢(s) = P¢(t) and Q,(s) = P,(t).
Then, Pf(t) = P,(t) mod ¢+ 1 holds

— Q&) = Qy(&) for all € with {™ = —1.

Note that ¢ is of the form
exp(mv —14/m)
with ¢ odd and that

—1 —exp(mv/—14/a;) —
exp(mv/—14/a;) —1 V-1

Then, we immediately get Proposition 2.8.
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Polynomials

Theorem 2.9 Suppose that for each of the Brieskorn
polynomials

n+1 n+1
f(z)=) 27 and g(z)=> 2z,
7=1 1=1

no exponent is a multiple of another one.

Then, the knots K ; and K, are cobordant iff
CLj:bj, j:1,2,...,n—|—1,

up to order.
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(Continued)

® Proof of

Proposition 2.8

e Proof of
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(Continued)

® Proof of Theorem 2.9
® Open problem
@ Cobordism and

Isotopy for Brieskorn
Polynomials

Theorem 2.9 Suppose that for each of the Brieskorn
polynomials

n+1 n+1
f(z)=) 27 and g(z)=> 2z,
7=1 1=1

no exponent is a multiple of another one.
Then, the knots K ; and K, are cobordant iff

CLj:bj, j:1,2,...,n—|—1,

up to order.

This is a consequence of the “Fox—Milnor type relation

" for

the characteristic polynomials of cobordant algebraic knots.
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Problem 3.3 Are the exponents cobordism invariants for
Brieskorn polynomials?
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(Continued)

® Proof of
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Problem 3.3 Are the exponents cobordism invariants for
Brieskorn polynomials?

Proposition 2.8 reduces the above problem to a number
theoretical problem involving cotangents.
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@ Proof of Theorem 2.9
® Open problem
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Isotopy for Brieskorn
Polynomials

Problem 3.3 Are the exponents cobordism invariants for

Brieskorn polynomials?

Proposition 2.8 reduces the above problem to a number

theoretical problem involving cotangents.

—

n+1

H cot
j=1

aj:bj

04 el
— = cot
QCLj ];[1

up to order ?

(4
——  Yodd integers /
20, °
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(Continued)

® Proof of Theorem 2.6
(Continued)

® Proof of Theorem 2.6
(Continued)

® Proof of

Proposition 2.8

e Proof of

Proposition 2.8
(Continued)

@ Proof of Theorem 2.9
e Open problem
@ Cobordism and

Isotopy for Brieskorn
Polynomials

Remark 3.4 Theorem 2.9 implies that two algebraic knots /;
and /, associated with certain Brieskorn polynomials are
Isotopic if and only of they are cobordant .
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e Proof of Theorem 2.6
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® Proof of Theorem 2.6
(Continued)

® Proof of Theorem 2.6
(Continued)

® Proof of Theorem 2.6
(Continued)

® Proof of

Proposition 2.8

e Proof of

Proposition 2.8
(Continued)

@ Proof of Theorem 2.9
e Open problem
@ Cobordism and

Isotopy for Brieskorn
Polynomials

Remark 3.4 Theorem 2.9 implies that two algebraic knots /;

and /, associated with certain Brieskorn polynomials are
Isotopic if and only of they are cobordant .

According to Yoshinaga—Suzuki , two algebraic knots

associated with Brieskorn polynomials in general are isotopic if

and only if they have the same set of exponents.
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® Proof of Theorem 2.6
® Proof of Theorem 2.6

(Continued)

® Proof of Theorem 2.6
(Continued)

® Proof of Theorem 2.6
(Continued)

e Proof of Theorem 2.6
(Continued)

® Proof of

Proposition 2.8

e Proof of

Proposition 2.8
(Continued)

@ Proof of Theorem 2.9
e Open problem
@ Cobordism and

Isotopy for Brieskorn
Polynomials

Remark 3.4 Theorem 2.9 implies that two algebraic knots /;

and /, associated with certain Brieskorn polynomials are
Isotopic if and only of they are cobordant .

According to Yoshinaga—Suzuki , two algebraic knots

associated with Brieskorn polynomials in general are isotopic if

and only if they have the same set of exponents.

In fact, they showed that the characteristic polynomials
coincide if and only if the Brieskorn polynomials have the
same set of exponents
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® Proof of Theorem 2.6
® Proof of Theorem 2.6

(Continued)

® Proof of Theorem 2.6
(Continued)

® Proof of Theorem 2.6
(Continued)

® Proof of Theorem 2.6
(Continued)

® Proof of

Proposition 2.8

e Proof of
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@ Proof of Theorem 2.9
® Open problem
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Polynomials

Thank you!

31/31



	§1. Introduction
	Algebraic Knot
	Topological Type
	Cobordism of Knots
	Cobordism vs Isotopy
	Problem

	§2. Results
	Milnor Fibration
	Seifert Form
	Algebraic Cobordism
	Witt Equivalence
	Weighted Homogeneous Polynomials
	Criterion for Witt Equivalence over R
	Criterion for Isomorphism over R
	Brieskorn Polynomials
	Cobordism Invariance of Exponents
	Cobordism Invariance of Multiplicities
	Case of 2 or 3 Variables

	§3. Proofs
	Proof of Theorem 2.6
	Proof of Theorem 2.6 (Continued)
	Proof of Theorem 2.6 (Continued)
	Proof of Theorem 2.6 (Continued)
	Proof of Theorem 2.6 (Continued)
	Proof of Proposition 2.8
	Proof of Proposition 2.8 (Continued)
	Proof of Theorem 2.9
	Open problem
	Cobordism and Isotopy for Brieskorn Polynomials
	


