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Abstract

We generalize the characterization of elementary equivalence by Ehrenfeucht-Fräıssé games

to arbitrary institutions whose sentences are finitary. These include many-sorted first-order

logic, higher-order logic with types, as well as a number of other logics arising in connection

to specification languages. The gain for the classical case is that the characterization is

proved directly for all signatures, including infinite ones.

1 Introduction

A classical model theorist or logician is dimly aware that in applications it is conve-
nient to have sorts (say, the boolean sort, lists, and the natural numbers), possibly
some higher-order ingredients (say, a collection of subsets of N), and perhaps partial
functions (square root, for example), but he dismisses these things as trivial nui-
sances, which, with some effort and perhaps a little cleverness, can be simulated in
the classical one sorted first-order setting. An applied logician replies that although
simulations are fine in principle, they are not always reasonable in practice, and ‘prac-
tice’ includes the ordinary work of a mathematician. Reverse mathematics is a case
in point. Roughly, one considers there extensions of Peano Arithmetic obtained by
adding some collections of subsets of N. The resulting structures, although called
second-order arithmetics, are in fact two-sorted first-order. Example 8 below gives
more details about these two-sorted structures.

The two authors represent these two parties (no prizes for guessing whom which),
so this article is also an exercise in reconciliation. One result of this is that the reader
familiar with institution theory will find parts of what we say trivial, and the reader
familiar with classical model theory will also find parts of what we say trivial. We
hope these will not be the same parts.

Institutions. Institution theory arose in response to practical considerations; specif-
ically, as a reaction to a proliferation of algebraic specification languages which did
essentially the same in different ways, so the same theorems had to be proved for
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each, over and over. Tired of this, Goguen and Burstall in [12] introduced institu-
tions, an abstract framework for reasoning about properties of logical systems from a
meta-perspective. Isolating the essence of a logical system in the abstract satisfaction
relation, whose essence in turn is that truth is invariant under change of notation,
and leaving the details open, institutions achieve an appropriate level of generality
for the development of abstract model theory, independent of the specific nature of
the underlying logic.

Intuitively, an institution can be likened to a high-level programming language: it
comes with a syntax, a semantics, and a satisfaction relation linking the two. As we
will see later in detail, first-order logic can be presented as an institution: its syntax
is what you expect, its semantics is the class of all models in the usual sense, and
the satisfaction relation is Tarski’s satisfiability. Many other logical systems can be
so presented: partial algebras, higher-order logics, intuitionistic logic, modal logics,
many-valued logics, in fact any logical framework with a satisfaction relation can
be presented as an institution. Institutions may be quite unlike one another, but
they share some theorems: these that can be proved independently of any assump-
tions specific to a particular institution. Proving classical theorems in an institution
independent way has been a theme in institution theory from its early days, start-
ing from meta-level theorems about algebraic specification languages. A large body
of institution independent proofs of classical theorems exists: interpolation and re-
lated properties of Beth definability and Robinson joint consistency were studied
in [6, 27, 21, 13, 16], ultraproducts and saturated models in [5, 11], model theo-
retic forcing in [19, 14, 17], elementary chains in [20], quasivarieties and free models
in [30, 32, 7, 18], and proof theory in [8, 4, 19, 15]. For a monograph on institution
theory, we refer the reader to [9].

However, a classical result in model theory stating that elementary equivalence
can be characterized in terms of finite Ehrenfeucht-Fräıssé games has so far not been
given an institution independent treatment. The present article fills this gap.

Although the above characterization is commonly called Fräıssé-Hintikka Theo-
rem, we will follow [26] in using the name for something more technical (Theorem 34),
of which the game characterization is a corollary (Corollary 35). Since finite games are
quite intuitive and easy to describe, Fräıssé-Hintikka Theorem gives a better handle
on elementary equivalence than Keisler-Shelah Theorem characterizing elementary
equivalence via ultrapowers. A typical example given to illustrate this point is the
following. Let N ⊕ Z be the linear sum of N and Z as ordered sets: a copy of Z
on top of a copy of N. It is a nontrivial exercise to find an ultrapower of N ⊕ Z
isomorphic to an ultrapower of N, whereas the fact that the ‘existential’ player has
a winning strategy in all finite games is just staring one in the face: for a fixed k,
choose the response high enough in N (2k+1 should suffice) so that you could survive
k further steps. Numerous celebrated results were proved using Ehrenfeucht-Fräıssé
games: see, e.g., [33] for a quick introduction and survey of three examples important
in theoretical computer science.

One of the things required for an institution independent proof of Fräıssé-Hintikka
Theorem is a description of Ehrenfeucht-Fräıssé games at an abstract level. We give a
suitable description, revealing in the process that a naive generalization of the games
for elementary equivalence from single first-order logic to many-sorted first-order logic
and higher-order logic setting runs into problems related to infinite signatures.
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Notational conventions. The notation we use is standard in institution theory,
but since institution theory is nonstandard in logic, we give a few warnings below.
Generally, institution theory assumes categorical background, so if any piece of no-
tation seems unclear, an interpretation from category theory (if there is one) will be
right. Thus, |C| stands for the set of objects of C; the collection of all signatures and
signature morphisms, in particular, forms a category. Composition of morphisms and
functors is denoted using the symbol ‘;’ and is considered in diagrammatic order. The
word ‘arity’ in institution theory is used to denote a finite string over the alphabet
whose letters are the sorts. So, against etymology, arities formally are not numbers.
However, the set of finite strings over a set S is denoted by the standard S∗. We will
still say e.g., ‘a ternary relation’ informally with the usual meaning.

2 Preliminaries

We said that institutions focus on the satisfaction relation, leaving other details open.
We did not say details of what. We will do it now. Crucial to the concept of institution
is a notion of signature, which is more or less what it is in model theory, but whereas
in model theory signatures are grudgingly acknowledged and ignored as much as they
can be, in institution theory they come to the forefront.

Definition 1 (Institution). An institution I = (SigI, SenI, ModI, |=I) consists of:

1. A category SigI, whose objects are called signatures.

2. A functor SenI : SigI → Set, providing for each signature Σ a set whose ele-
ments are called (Σ-)sentences.

3. A functor ModI : SigI → Catop, providing for each signature Σ a category whose
objects are called (Σ-)models and whose arrows are called (Σ-)homomorphisms.

4. A family of relations |=I= {|=I
Σ}Σ∈|SigI|, where |=I

Σ⊆ |Mod(Σ)|×SenI(Σ) is called
(Σ-)satisfaction for all signatures Σ ∈ |Sig|, such that the following satisfaction
condition holds:

A′ |=Σ′ Sen(ϕ)(e) iff Mod(ϕ)(A′) |=Σ e

for all ϕ : Σ→ Σ′ ∈ SigI, A′ ∈ |Mod(Σ′)| and e ∈ Sen(Σ).

Note that the notion of valuation is conspicuously absent from institutions. Indeed,
in institution theory all variables are (treated as) constants, and thus there are no
open formulas. Quantification has to be defined accordingly, and it takes some work.
See Section 3.2.

In concrete examples, the category of signatures Sig provides the vocabularies over
which the sentences are built and the morphisms in SigI, which we will simply call
signature morphisms, represent a change of notation. Signature morphisms act covari-
antly on sentences, and contravariantly on models. More concretely, given a signature
morphism ϕ : Σ→ Σ′ the sentences over the signature Σ are mapped to the sentences
over the signature Σ′ by the function Sen(ϕ) : Sen(Σ)→ Sen(Σ′). The Σ′-models are
‘reduced’ to the signature Σ by the functor Mod(ϕ) : Mod(Σ′) → Mod(Σ). We denote
the reduct functor Mod(ϕ) by �ϕ and the function Sen(ϕ) by ϕ. If A = A′ �ϕ we say
that A is the ϕ-reduct of A′, and A′ is a ϕ-expansion of A.
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When there is no danger of confusion, we omit the superscript I from the notations
of the institution components; for example SigI may be simply denoted by Sig. The
notation surrounding the satisfaction relation is standard. Namely, for all signatures
Σ, sets of Σ-sentences Γ and E, we have

1. For all Σ-models A, (A |= E) iff (A |= e for all e ∈ E);

2. Γ |= E iff for all Σ-models A we have A |= Γ implies A |= E;

3. Γ |=| E iff Γ |= E and E |= Γ.

2.1 Examples

We give a few examples of institutions frequently occurring in algebraic specification
literature.

Example 2 (First-order logic (FOL) [12]).

Signatures. Signatures are of the form (S, F, P ), where S is a set of sorts, F =
{Far→s}(ar,s)∈S∗×S is a (S∗×S -indexed) set of operation symbols, and P = {Par}ar∈S∗
is a (S∗-indexed) set of relation symbols. If ar = ε then an element of Far→s is called
a constant symbol. Generally, ar ranges over arities, which are understood here as
strings of sorts; in other words an arity gives the number of arguments together with
their sorts. We overload the notation and let F and P also denote

⊎
(ar,s)∈S∗×S Far→s

and
⊎

ar∈S∗ Par, respectively. Therefore, we may write σ ∈ Far→s or (σ : ar→ s) ∈ F ;
both have the same meaning, which is: σ is an operation symbol of type ar→ s.

A number of usual tricks, such as adding constants, but also, importantly, quan-
tification, are viewed as expansions of the signature, so moving between signatures is
common. To make such transitions smooth, the notion of a signature morphism is
introduced. Formally, a signature morphism ϕ : Σ → Σ′, where Σ = (S, F, P ) and
Σ′ = (S′, F ′, P ′), is a triple ϕ = (ϕst, ϕop, ϕrl) of maps:

• ϕst : S → S′,

• ϕop = {ϕopar→s : Far→s → F ′ϕst(ar)→ϕst(s) | ar ∈ S
∗, s ∈ S},

• ϕrl = {ϕrlar : Par → P ′ϕst(ar) | ar ∈ S
∗}.

When there is no danger of confusion, we may let ϕ denote either of ϕst, ϕopar→s, ϕ
rl
ar.

Models. Given a signature Σ = (S, F, P ), a Σ-model is a triple

A = ({As}s∈S , {σA}(ar,s)∈S∗×S,σ∈Far→s
, {πA}ar∈S∗,π∈Par

)

interpreting each sort s as a set As, each operation symbol σ ∈ Far→s as a function
σA : Aar → As (where Aar stands for As1 × . . . × Asn if ar = s1 . . . sn), and each
relation symbol π ∈ Par as a relation πA ⊆ Aar. Morphisms between models are the
usual Σ-homomorphisms, i.e., S-sorted functions that preserve the structure. For any
signature morphism ϕ : Σ→ Σ′, where Σ = (S, F, P ) and Σ′ = (S′, F ′, P ′), the model
functor Mod(ϕ) : Mod(Σ′)→ Mod(Σ) is defined as follows:
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1. The reduct A′ �ϕ of a Σ′-model A′ is a defined by (A′ �ϕ)s = A′ϕ(s) for each sort

s ∈ S, and xA
′�ϕ = ϕ(x)A

′
, for each operation symbol x ∈ F or relation symbol

x ∈ P . Since the models are many-sorted it is useful to have a terminological
distinction between carrier sets As of individual sorts, and the universe {As}s∈S
of the entire model. With this distinction at hand, note that the reduct functor
does not modify carrier sets of the sorts, but it can modify the universes of
models. For the universe of A′ � ϕ is {A′ϕ(s)}s∈S, which means that the sorts
outside the image of S are discarded. Otherwise, the notion of reduct is standard.

2. The reduct h′ � ϕ of a homomorphism h′ is defined by (h′ � ϕ)s = h′ϕ(s) for all
sorts s ∈ S.

One important example of Σ-model is the absolutely free first-order Σ-structure of
terms TΣ that interprets each relation as the empty set.

Sentences. The set of Σ-sentences is given by the following grammar:

e ::= t =s t
′ | π(t1, . . . , tn) | ¬e | ∧E | ∃X · e′

where (i) t =s t
′ is an equation with t, t′ ∈ TΣ,s and s ∈ S, (ii) π(t1, . . . , tn) is a

relational atom with π ∈ Ps1...sn , ti ∈ TΣ,si and si ∈ S, (iii) E is a finite set of
Σ-sentences, (iv) X is a finite set of variables for Σ, (v) ∃X · is just an abbreviation
for ∃χ · such that χ : Σ ↪→ Σ[X] is an inclusion, Σ[X] = (S, F [X], P ), and F [X] is
the family of operation symbols obtained by adding the variables in X as constants to
F , (vi) e′ is a Σ[X]-sentence. For any signature morphism ϕ : Σ → Σ′ the function
SenFOL(ϕ) : SenFOL(Σ)→ SenFOL(Σ′) translates sentences symbolwise. In Section 3.2
we will give more details about quantification as a signature morphism, and sets of
variables for a given signature.

Satisfaction relation. Satisfaction is the usual first-order satisfaction and it is
defined using the natural interpretations of ground terms t as elements tA in models
A. For example, A |= t1 =s t2 iff tA1 = tA2 .

Example 3 (Finitary first-order logic (FOLf )). This institution is obtained from
FOL by restricting the semantics to models with finite carrier sets. More concretely,
FOLf = (SigFOL, SenFOL, ModFOLf , |=FOL), where ModFOLf is a subfunctor of ModFOL

(i.e. ModFOLf (Σ) ⊆ ModFOL(Σ) for all Σ ∈ |SigFOL|) such that for all first-order
signatures Σ = (S, F, P ) we have: A ∈ |ModFOLf (Σ)| iff A ∈ |ModFOL(Σ)| and As is
finite for all sorts s ∈ S.

Example 4 (Partial algebra (PA)). Here we consider the institution PA as employed
by the specification language CASL [1].

A partial algebraic signature is a tuple (S, TF, PF ) such that (S, TF ∪ PF ) is
an algebraic signature. Then TF is the set of total operations and PF is the set of
partial operations. A morphism of PA signatures ϕ : (S, TF, PF ) → (S, TF ′, PF ′) is
just a morphism of algebraic signatures (S, TF ∪ PF ) → (S, TF ′ ∪ PF ′) such that
ϕ(TF ) ⊆ TF ′ and ϕ(PF ) ⊆ PF ′.

A partial algebra A for a PA signature (S, TF, PF ) is just like an ordinary algebra
but interpreting the operations of PF as partial rather than total functions, which
means that σA might be undefined for some arguments. A partial algebra homomor-
phism h : A → B is a family of (total) functions {hs : As → Bs}s∈S indexed by the
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set of sorts S of the signature such that hs(σ
A(a)) = σB(hs(a)) for each operation

symbol σ : ar→ s and each string of arguments a ∈ Aar for which σA(a) is defined.

The sentences have three kinds of atoms: definedness def( ), strong equality
s
= and

existence equality
e
=. The definedness def(t) of a term t holds in a partial algebra

A when the interpretation tA of t is defined. The strong equality t1
s
= t2 holds when

both terms are undefined or both of them are defined and are equal. The existence
equality t1

e
= t2 holds when both terms are defined and are equal. The sentences are

formed from these atoms by means of Boolean connectives and quantification over
total (first-order) variables. Note that each definedness atom def(t) is semantically

equivalent with t
e
= t and any strong equality t1

s
= t2 is semantically equivalent with

(def(t1) ∨ def(t2))⇒ t1
e
= t2.

Example 5 (Higher-order logic (HOL)). This is a simplified version of higher-order
logic which does not consider λ-abstraction. One could say HOL is λ-calculus without
λ, but nobody does. Probably because HOL is not calculus.

For any set S of sorts, let Type(S) be the set of S-types defined as the least set
such that S ⊆ Type(S) and s1 → s2 ∈ Type(S) when s1, s2 ∈ Type(S). A HOL-
signature is a tuple (S, F ), where S is a set of sorts and F is a family of sets of
constants F = {Fs}s∈Type(S). A signature morphism ϕ : (S, F )→ (S′, F ′) consists of a
function ϕst : S → S′ and a family of functions between operation symbols {ϕops : Fs →
F ′ϕtype(s)}s∈Type(S) where ϕtype : Type(S) → Type(S′) is the natural extension of ϕst

to Type(S). For every signature (S, F ), a (S, F )-model A interprets each

(a) sort s ∈ S as a set As, and

(b) function symbol σ ∈ Fs as an element of As, where for all types s1, s2 ∈ Type(S),
As1→s2 = [As1 → As2 ] = {f function | f : As1 → As2}.

An (S, F )-model morphism h : A→ B interprets each type s ∈ Type(S) as a function
hs : As → Bs such that h(σA) = σB, for all function symbols σ ∈ F , and the following
diagram commutes

As1
f //

hs1

��

As2

hs2

��
Bs1 hs1→s2

(f)
// Bs2

for all types s1, s2 ∈ Type(S) and functions f ∈ As1→s2 .
An (S, F )-equation is an equation of the form t1 = t2, where t1 and t2 are terms

of the same type. Sentences are constructed from equations by iteration of Boolean
connectives and higher-order quantification over sets of variables of any type (which
is defined similarly to the first-order quantification).

Example 6 (Higher-order logic with Henkin semantics (HNK)). This institution ex-
tends HOL by relaxing the condition As1→s2 = [As1 → As2 ] to As1→s2 ⊆ [As1 → As2 ].
HNK has been introduced and studied in [3] and [24]. Again, we consider a simplified
version close to the “higher-order algebra” of [28] without λ-abstraction.

Example 7 (Institution of presentations). In any institution I = (Sig, Sen, Mod, |=),
a presentation is a pair (Σ, E) consisting of a signature Σ ∈ |Sig| and a set of
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Σ-sentences E. A presentation morphism ϕ : (Σ, E) → (Σ′, E′) is a signature
morphism ϕ : Σ → Σ′ such that E′ |=Σ′ ϕ(E). Note that presentation morphisms
are closed under composition. The institution of presentations over I, denoted by
Ipres = (Sigpres, Senpres, Modpres, |=pres) is defined as follows:

• Sigpres is the category of presentations of I,

• Senpres(Σ, E) = Sen(Σ),

• Modpres(Σ, E) is the full subcategory of Mod(Σ) of models satisfying E, and

• A |=pres
(Σ,E) e iff A |=Σ e, for each (Σ, E)-model A and Σ-sentence e.

Institutions of presentations include presentations of FOL (HNK, PA) with a par-
ticular set of axioms, but also, importantly, theories over FOL (HNK, PA).

Example 8 (Subsystems of second-order arithmetic). A concrete example of pre-
sentation is second-order arithmetic Z2. It is defined over a first-order signature
Σ = (S, F, P ), with sorts Nat and Set, function symbols 0 :→ Nat, s : Nat → Nat

+ : Nat Nat → Nat and × : Nat Nat → Nat, and membership relation ∈: Nat Set.
The number variables are usually denoted by lower case letters x, y, . . . , while set
variables are usually denoted by upper case letters X,Y, . . . . The axioms Γ of Z2 are
the usual Peano axioms, together with

• the induction axiom ∀X ·
(
0 ∈ X ∧ ∀x · (x ∈ X ⇒ s x ∈ X)⇒ ∀x ·x ∈ X

)
, and

• universal closures of the comprehension scheme ∃X · ∀x · (x ∈ X ⇔ ρ[x]), for
any sentence ρ over the signature Σ[x], such that X does not occur in ρ.1

Subsystems of Z2 are obtained by restricting the formula ρ[x] in certain ways. These
systems are central to reverse mathematics. A comprehensive handbook of reverse
mathematics is [29]. Clearly, any subsystem of Z2 is a presentation over FOL.

3 Institution independent concepts

In this section, we introduce some concepts necessary to prove our abstract results.

3.1 Internal logic

The following institutional notions dealing with the semantics of Boolean connectives
and quantifiers were defined in [31].

Definition 9 (Internal logic). Given a signature Σ in an institution, a Σ-sentence γ
is a semantic

1. negation of a Σ-sentence e if for each Σ-model A,

A |= γ iff A 6|= e;

1If X could occur in ρ, then the formula x 6∈ X would produce an inconsistent comprehension
axiom ∃X · ∀x · (x ∈ X ⇔ x 6∈ X).
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2. conjunction of a (finite) set of Σ-sentences E if for each Σ-model A,

A |= γ iff A |= e for all e ∈ E;

3. universal χ-quantification of a Σ′-sentence e′, where χ : Σ → Σ′, if for each
Σ-model A,

A |= γ iff A′ |=Σ′ e
′ for all χ-expansions A′ of A.

Distinguished negation is usually denoted by ¬ , distinguished conjunction by ∧ , and
distinguished universal χ-quantification by ∀χ · .

One should notice a peculiar treatment of quantifiers here, because it is one of dis-
tinctive characteristics of institution theory. Intuitively, the sentence ∀x · e[x] should
hold in A if and only if the open formula e[x] is satisfied by A on all valuations v into
A. This is equivalent to saying that for all expansions (A, a) of A, we have that (A, a)
satisfies e[x/a]; and it is the way quantification is rendered in institutions. Namely,
let χ : Σ→ Σ[x] be a signature morphism that adds the variable x as a new constant
to Σ. The sentence ∀x · e′ is an abbreviation of ∀χ · e′ and the third clause in Defini-
tion 9 ensures that we consider all χ-expansions of A. Thus, the classical notion of
valuation is incorporated into expansions. Variables do not belong to the language:
they can be imagined as coming from some external pool, but technically variables
are just special constants. Succinctly, one can say that variables in institutions are
arbitrary constants, and so the usual messy caveats about avoiding accidental binding
of free variables are not needed. We devote Section 3.2 below to precise institutional
treatment of quantifiers.

Sentence building operators such as Boolean connectives and quantifiers are part
of the metalanguage and they are used to construct sentences which belong to the
internal language of individual institutions using the universal semantics presented
above. One can also define ∨ , ∃χ · using the classical definitions. For example,
∃χ · e′ := ¬∀χ · ¬e′ and > := ∧∅.

In this article, we consider conjunctions only over finite sets of sentences. The
concept of quantification we use is very general, and it can cover second order quan-
tification in classical model theory. The universal quantifier ∀X · is regarded as an
abbreviation for ∀χ · , where χ : Σ ↪→ Σ[X] is an inclusion of signatures and Σ[X]
denotes the extension of Σ with the variables from X as constants.

An institution I is said to be semantically closed under negation (conjunction, uni-
versal quantification, etc.) if every sentence in I has a semantic negation (conjunction,
universal quantification, etc.) according to Definition 9.

Dealing with standard logical operators, we adopt the following convention about
their binding strength: ¬ binds stronger than ∧, which binds stronger than ∨, which
binds stronger than ⇒, which binds stronger than quantifiers; quantifiers ∃ and ∀
have the same binding strength.

3.2 Quantification space

Quantification comes with some subtle issues related to the translation of quantified
sentences along signature morphisms. We alluded to that in Section 3.1; now we will
make it precise. Let us begin by a motivating example. Consider a first-order signa-
ture Σ and a Σ-sentence ∀x · ρ. In institutional model theory, ∀x · ρ is an abbreviation
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Σ′
ϕ[χ] // Σ′1

Σ

χ

OO

ϕ
// Σ1

χ(ϕ)

OO
Σ′

ϕ[χ] // Σ′1
ψ[χ(ϕ)]// Σ′2

Σ

χ

OO

ϕ
// Σ1

χ(ϕ)

OO

ψ
// Σ2

χ(ϕ)(ψ)

OO

Figure 1: Quantification pushouts

for ∀χ · ρ, where χ : Σ ↪→ Σ[x] is an inclusion of signatures, Σ[x] is the signature ob-
tained from Σ by adding the variable x as a constant, and ρ is a sentence over Σ[x].
Clearly, ∀χ · ρ is not a sentence over Σ[x] because the domain of χ is not Σ[x] but
Σ. If we want a counterpart of ∀x · ρ in Σ[x] we need to translate it along χ, and to
do that, we need to rename x. The need to rename x can happen for essentially any

signature morphism ϕ, not only for χ. Diagramatically, we have Σ[x]
χ
←↩ Σ

ϕ→ Σ1, and
a variable x1 for Σ1. This implies that there are two further signature morphisms:

1. χ(ϕ) : Σ1 ↪→ Σ1[x1], which adds the variable x1 to Σ1, and

2. ϕ[χ] : Σ[x]→ Σ1[x1], which extends ϕ by maping x to x1.

making {Σ[x]
χ
←↩ Σ

ϕ→ Σ1,Σ[x]
ϕ[χ]→ Σ1[x1]

χ(ϕ)
←↩ Σ1} a pushout of signatures, which

with Σ[x] = Σ′ and Σ1[x1] = Σ′1 is precisely the left-hand side diagram in Figure 1.
The renaming procedure can be iterated. In terms of diagrams: composing such

pushouts horizontally produces such pushouts again. Now for the definition.

Definition 10 (Quantification space [10]). Given a category Sig, a subclass of arrows
Q ⊆ Sig is called a quantification space if,

1. for any signature morphisms Σ
χ→ Σ′ ∈ Q and Σ

ϕ→ Σ1 ∈ Sig there is a
designated pushout depicted on the left in Figure 1 such that χ(ϕ) ∈ Q, and

2. the horizontal composition of such designated pushouts is again a designated
pushout:

(a) χ(1Σ) = χ, 1Σ[χ] = 1Σ′ , and

(b) for all pushouts such as the ones depicted on the right in Figure 1 we have
ϕ[χ];ψ[χ(ϕ)] = (ϕ;ψ)[χ] and χ(ϕ)(ψ) = χ(ϕ;ψ).

In concrete examples of institutions, the quantification space is fixed and the
translation of a quantified sentence ∃χ · ρ ∈ Sen(Σ) along ϕ is ∃χ(ϕ) ·ϕ[χ](ρ). The
second condition in Definition 10 is required by the functoriality of the translations.

3.2.1 Examples

We give some examples of quantification spaces for the institutions defined above. To
this end, we fix a countably infinite set {xi | i ∈ N} of variable names.

Example 11 (QFOL). A FOL variable for a signature Σ = (S, F, P ) is a triple (xi, s,Σ),
where (a) i ∈ N and xi is the name of the variable, and (b) s ∈ S is the sort of
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the variable. In FOL, the quantification space QFOL consists of signature extensions
with a finite number of variables χ : Σ ↪→ Σ[X], where Σ is a first-order signature
and X = {Xs}s∈S is a finite set of variables for Σ. Given a signature morphism
ϕ : Σ→ Σ1 in FOL, where Σ1 = (S1, F1, P1), then

• χ(ϕ) : Σ1 ↪→ Σ1[Xϕ] is an inclusion, where Xϕ = {(xi, ϕ(s),Σ1) | (xi, s,Σ) ∈ X},

• ϕ[χ] is the extension of ϕ that maps each (xi, s,Σ) to (xi, ϕ(s),Σ1).

Example 12 (QPA). A PA variable for a signature Σ = (S, TF, PF ) is a triple
(xi, s,Σ), where (a) i ∈ N and xi is the name of the variable, and (b) s ∈ S is the sort
of the variable. The quantification space QPA consists of signature extensions with a
finite number of variables χ : Σ ↪→ Σ[X], where Σ is a PA signature, X = {Xs}s∈S
is a finite set of variables for Σ, and Σ[X] = (S, TF ∪ X,PF ). The translation of
variables along signature morphisms is defined as in the case of FOL.

Example 13 (QHNK). A HNK variable for a signature Σ = (S, F ) is a triple (xi, s,Σ),
where (a) i ∈ N and xi is the name of the variable, and (b) s ∈ Type(S) is the
type of the variable. The quantification space QHNK consists of signature extensions
with a finite number of variables χ : Σ ↪→ Σ[X], where Σ is a HNK signature, X =
{Xs}s∈Type(S) is a finite set of variables for Σ such that Σ[X] = (S, F ∪ X). The
translation of variables along signature morphisms is defined as in the case of FOL.

4 Fräıssé-Hintikka Theorem

In this section we prove an institution independent version of Fräıssé-Hintikka Theo-
rem .

Definition 14 (Unnested terms and unnested first-order atomic sentences). For any
first-order signature Σ = (S, F, P ), the set of unnested terms TuΣ is defined as follows:

1. c ∈ TuΣ,s for all constants (c :→ s) ∈ F , and

2. σ(c1, . . . , cn) ∈ TuΣ,s for all operation symbols (σ : s1 . . . sn → s) ∈ F and all
constants (c1 :→ s1), . . . , (cn :→ sn) ∈ F .

An unnested atomic Σ-sentence is any atomic Σ-sentence of the form:

1. t = c, where s ∈ S, t ∈ TuΣ,s and (c→ s) ∈ F , or

2. π(c1, . . . , cn), where (π : s1 . . . sn) ∈ P and (ci :→ si) ∈ F .

Note that the translation of any unnested atomic sentence along a first-order
signature morphism is also atomic and unnested. This means that the institutions
described in the following example are well-defined.

Example 15 (Unnested first-order logic (FOLu)). The following institutions are ob-
tained from first-order logic by restricting the syntax:

1. FOL0, the restriction of FOL to unnested atomic sentences, and

2. FOLu, the restriction of FOL to sentences obtained from the sentences in FOL0

by applying Boolean connectives and quantification over QFOL.
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Similarly, one can define PA0, PAu and HNK0, HNKu.

Definition 16 (Equally strong institutions, I ∼ I′). Let I = (Sig, Sen, Mod, |=) and
I′ = (Sig, Sen′, Mod, |=′) be two institutions that share Mod : Sig→ Catop.

1. I′ is at least as strong as I, in symbols I . I′, iff for every signature Σ ∈ |Sig|
and every sentence ρ ∈ Sen(Σ) there exists a sentence ρ′ ∈ Sen′(Σ) such that
|Mod(Σ, ρ)| = |Mod(Σ, ρ′)|.

2. I and I′ are equally strong, in symbols I ∼ I′, iff I . I′ and I′ . I.

Lemma 17. We have FOLu ∼ FOL, PAu ∼ PA and HNKu ∼ HNK.

Proof. We focus on first-order case as the other two cases are analogous.
It suffices to show that any first-order atomic sentence is semantically equivalent

to a sentence obtained from the sentences in FOL0 by applying Boolean connectives
and quantification over finite sets of variables. There are two cases to consider.

1. For equations we proceed by induction on the structure of the terms. The base
case c1 = c2, where (c1 :→ s), (c2 :→ s) ∈ F , is ensured by the fact that c1 = c2 is
unnested.

For the induction step, we prove the statement for σ(t1, . . . , tn) = t assuming that
it holds for all equations constructed from terms that have a depth less or equal
than the maximum depth of the terms t1, . . . , tn, t:

1 σ(t1, . . . , tn) = t |=| ∀x1, . . . , xn, x ·
n∧
i=1

(ti = xi) ∧ (t = x) ⇒

σ(x1, . . . , xn) = x

2 there exist ρi, ρ ∈ SenFOLu(Σ[x1, . . . , xn, x]) such that
ti = xi |=| ρi and t = x |=| ρ

by induction
hypothesis

3 σ(t1, . . . , tn) = t |=| ∀x1, . . . , xn, x ·
n∧
i=1

ρi∧ρ⇒ σ(x1, . . . , xn) = x

2. For relations π(t1, . . . , tn):

1 π(t1, . . . , tn) |=| ∀x1 . . . xn ·
n∧
i=1

(ti = xi)⇒ π(x1, . . . , xn)

2 there exist ρi ∈ SenFOLu(Σ[x1, . . . , xn]) such that ρi |=| t = xi by the proof
above

3 π(t1, . . . , tn) |=| ∀x1 . . . xn ·
n∧
i=1

ρi ⇒ π(x1, . . . , xn)

Definition 18 (Institution with structured syntax). An institution of the form I =
(Sig, Sen, Mod, |=) has a structured syntax if it is equipped with (a) a subfunctor
Senb : Sig → Set of Sen : Sig → Set (i.e. Senb(Σ) ⊆ Sen(Σ) for all signatures
Σ ∈ |Sig|), and (b) a quantification space Q ⊆ Sig such that

1. I is semantically closed under Boolean connectives and quantification over the
signature morphisms in Q, and

11



2. I ∼ Iu, where Iu is obtained from I by restricting the syntax to sentences
obtained from the sentences of Ib = (Sig, Senb, Mod, |=) by applying Boolean
connectives and quantification over Q.

An example of institution with structured syntax, or, as we will also say, syntac-
tically structured institution, is FOL.

Example 19. FOL is a syntactically structured institution, where

1. Ib is FOL0, the restriction of FOL to unnested atomic sentences, and

2. Q is QFOL, the quantification space defined in Example 11.

By Lemma 17, PA and HNK are also syntactically structured.

Lemma 20. Let I = (Sig, Sen, Mod, |=) be a syntactically structured institution as
described in Definition 18. Then Ipres = (Sigpres, Senpres, Modpres, |=pres) is a syn-
tactically structured institution with the following parameters:

1. the sentence functor Sen
pres
b : Sigpres → Set is defined by Sen

pres
b (Σ, E) =

Senb(Σ) for all presentations (Σ, E) ∈ |Sigpres|, and

2. the quantification space Qpres consists of all presentation morphisms χ : (Σ, E)→
(Σ′, χ(E)) with χ : Σ→ Σ′ ∈ Q.

Proof. Let Iu = (Sig, Senu, Mod, |=) be as described in Definition 18, and Ipresu the
institution obtained from Ipres by restricting the syntax to the sentences obtained
from the sentences of Ipresb = (Sigpres, Senpresb , Modpres, |=pres) by applying Boolean
connectives and quantification over Qpres. Ipres is semantically closed under Boolean
connectives, as I is semantically closed under Boolean connectives. We show that
Ipres ∼ Ipresu :

1 let (Σ, E) ∈ |Sigpres| and ρ ∈ Sen(Σ)

2 ρ |=Σ γ and γ |=Σ ρ for some γ ∈ Senu(Σ) since I ∼ Iu

3 ρ |=pres
(Σ,E) γ and γ |=pres

(Σ,E) ρ for some γ ∈ Senu(Σ) by the definition of |=pres

4 Ipres ∼ Ipresu since (Σ, E) ∈ |Sigpres| and
ρ ∈ Sen(Σ) were arbitrarily chosen

Hence, Ipres is syntactically structured.

A direct consequence of Lemma 17 and Lemma 20 is the following corollary.

Corollary 21. FOLpres ∼ FOLpresu , PApres ∼ PApresu and HNKpres ∼ HNKpresu .

Another important class of institutions that fall under the framework developed
in the present contribution are the institutions obtained by restricting the semantics
of some standard logical system.

Lemma 22. Let I = (Sig, Sen, Mod, |=) and I′ = (Sig, Sen, Mod′, |=) be two institu-
tions such that Mod′ is a subfunctor of Mod. If I is syntactically structured then I′ is
syntactically structured as well.

Proof. Assume that I is syntactically structured with the following parameters: (a) the
sentence functor is Senb, and (b) the quantification space is Q. We show that I is syn-
tactically structured with the same parameters. Since I is semantically closed under

12



Boolean connectives and quantification over Q, I′ is semantically closed under Boolean
connectives and quantification over Q. Let Iu = (Sig, Senu, Mod, |=) be as described
in Definition 18, and I′u = (Sig, Senu, Mod

′, |=). Then:

1 let Σ ∈ |Sig| and ρ ∈ Sen(Σ)

2 |Modpres(Σ, ρ)| = |Modpres(Σ, γ)| for some γ ∈ Senu(Σ) since I ∼ Iu

3 |Mod′pres(Σ, ρ)| = |Mod′(Σ)| ∩ |Modpres(Σ, ρ)| by the definition of Mod′pres

4 |Mod′pres(Σ, γ)| = |Mod′(Σ)| ∩ |Modpres(Σ, γ)| by the definition of Mod′pres

5 |Mod′pres(Σ, ρ)| = |Mod′pres(Σ, γ)| from 2, 3 and 4

6 I′ ∼ I′u since Σ and ρ were
arbitrarily chosen

Hence, I′ is syntactically structured.

A direct consequence of Lemma 17 and Lemma 22 is the following corollary.

Corollary 23. FOLf and HOL are syntactically structured.

Proof. By noting that FOLf are HOL are obtained by restricting the semantics of FOL
and HNK, respectively.

Ehrenfeucht-Fräıssé games in institutions. We now define an abstract equiva-
lence between models of a syntactically structured institution, based on Ehrenfeucht-
Fräıssé games.

Definition 24 (Trees). Given a syntactically structured institution I as described in
Definition 18, a Q-tree tr is inductively defined as follows:

1. any signature Σ is a Q-tree with the root Σ and height 0;

2. if λ is a nonzero cardinal, {χi : Σ→ Σi}i<λ is a family of signature morphisms
from Q and {tri}i<λ is a family of Q-trees of height at most k such that

(a) the root of tri is Σi for all i < λ, and

(b) the height of trj is k for some j < λ,

then Σ{
χi

( tri}i<λ is a Q-tree with root Σ and height k + 1.

The definition above formalizes trees of finite height and possibly infinitely branched
with nodes signatures and edges signature morphisms used for quantification.

Definition 25 (Game equivalence). Let I be a syntactically structured institution as
described in Definition 18. The game equivalence between two models A and B over
the same signature Σ is defined via Q-trees tr with the root Σ:

[ height(tr) = 0 ] A ≈tr B iff the following property holds:

A |= ρ iff B |= ρ, for all ρ ∈ Senb(Σ).

[ height(tr) > 0 ] Let tr = Σ{
χi

( tri}i<λ and assume that the relation Ai ≈tri Bi

has been defined for all i < λ and any Σi-models Ai and Bi, where Σi = root(tri).
Then A ≈tr B iff the following properties hold:
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1. for any i < λ and all χi-expansions Ai of A there exists a χi-expansion Bi of
B such that Ai ≈tri Bi, and

2. for any i < λ and all χi-expansions Bi of B there exists a χi-expansion Ai of
A such that Ai ≈tri Bi.

The definition of game equivalence is stated, of course, with Ehrenfeucht-Fräıssé
games in mind. In the abstract institutional setting, the game Etr(A,B) is param-
eterized by two models A and B and a Q-tree tr. We think of the models A and
B as game pieces, and of the tree as a gameboard. The play of the game proceeds
in stages, corresponding to the levels of tr; at each stage the play climbs one level
up the tree. The image here is that the pieces (models) move on a board consisting
of signature morphisms: each move along a morphism corresponds to picking an ele-
ment. This image is in stark contrast to the classical image where models themselves
are the board, and moves are choices of elements. Although either image is just a
visualization, we claim that our image agrees better with the inner workings of insti-
tutions. After all, “picking an element” must be rendered as a signature morphism
(nothing else is there to play that role); a signature morphism is an arrow, and each
move consists in a piece moving along an arrow.

The play starts at the root, labelled by Σ. At the initial (0th) stage of the play,
the universal quantifier player (∀belard, as tradition has it) picks the structure A
or B and if A and B do not satisfy precisely the same sentences from Senb(Σ) the
existential quantifier player (∃loise, of course) loses immediately. Otherwise the play
continues, and at the end of stage j, say, it has reached a node labelled by a signature
Σ′ at level j with some expansions A′ and B′ of A and B, such that A′ and B′ satisfy
precisely the same sentences from Senb(Σ

′). Now, if Σ′ is a leaf node, ∀belard loses.
Otherwise, he picks a signature morphism χi labelling an upward edge of Σ′ and a
χi-expansion A′i of A′ (or a χi-expansion B′i of B′; we will stick to A′ for brevity).
∃loise has to respond with a χi-expansion B′i of B′ in such a way that the expansions
A′i and B′i satisfy precisely the same sentences from Senb(Σ

′). If she cannot do it, she
loses; if she can, the play climbs up the edge χi and continues at the node one level
higher.

As usual, we say that ∃loise has a winning strategy in Etr(A,B), if she can win
regardless of the moves ∀belard makes. We should remark here that our abstract
definition of Ehrenfeucht-Fräıssé games differs from what the reader may expect in
that the Q-tree for the game is given beforehand, generally limiting ∀belard’s choices.
We do not do it to give female players an edge, but because we wish to apply the
games to logics with infinite signatures, for which certain restrictions of the possible
moves are necessary in order to define game sentences (to come shortly).

Definition 26 (Perfect trees). A perfect λ-ary tree, where λ is a cardinal, is a tree
of finite height such that (a) every node has λ descendants, and (b) each leaf node is
at the same height.

Since every tree of finite height is a subtree of a perfect tree, it suffices to consider
only perfect Q-trees. The lemma below makes it explicit.

Lemma 27. ∃loise has a winning strategy for all games Etr(A,B) with arbitrary QI-
trees tr if and only if she has a winning strategy for all games Etr(A,B) with perfect
Q-trees tr.
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Σ
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Σ[x2, x7]
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Σ[x3]

Σ[x3, x10]

χ10

Σ[x3, x11]

χ11

Σ[x3, x12]

χ12

χ3

Figure 2: Perfect ternary tree of height 2

Ehrenfeucht-Fräıssé games in first-order logic. We will now instantiate our
abstract description of Ehrenfeucht-Fräıssé games in first-order logic. It will turn out
that in the single-sorted case we get precisely the usual Ehrenfeucht-Fräıssé games,
whereas in many-sorted case we obtain a notion slightly different from the usual one.

Definition 28 (First-order gameboard trees). Let Σ be a FOL signature with a (pos-
sibly infinite) set S of sorts. A gameboard QFOL-tree tr with the root Σ is a perfect
λ-ary tree such that (a) λ ≤ card(S), and (b) for each internal node Σ′ the upward
edges of Σ′ are signature morphisms of the form χi : Σ′ ↪→ Σ′[xi], for all i < λ, such
that for any i 6= j, xi and xj are variables of different sorts.

Let Σ = (S, F, P ) be a FOL signature such that S = {s1, s2, s3}. A perfect ternary
tree of height 2 is depicted in Figure 2. The labels χ1, . . . , χ12 are signature extensions
with one variable; the variables x1, x2, x3 have sorts s1, s2, s3, respectively; similarly,
the variables x4, x5, x6 have sorts s1, s2, s3, respectively.

Let A and B be two first-order structures over the same signature Σ = (S, F, P ).
The unnested Ehrenfeucht-Fräıssé game Ek(A,B) of length k ∈ N, is played in k
steps, as follows. At the jth step of a play, ∀belard takes one of the structures A or
B, say A, and chooses an element a of any sort s of this structure. Then ∃loise chooses
an element of the same sort from B. At the jth step of the play, both players have
chosen sequences of elements a1 . . . aj and b1 . . . bj such that ai and bi have the same
sorts si, for all i ∈ {1, . . . , j}. In the argot of institutions, this amounts to choosing j
variables x1, . . . , xj of sorts s1, . . . , sj , respectively, and the expansions (A, a1, . . . , aj)
and (B, b1, . . . , bj) of A and B to the signature Σ[x1, . . . , xj ]. Proceeding this way, at
the end of the play, sequences a = a1 . . . ak and b = b1 . . . bk have been chosen. The
play with these choices is a win for ∃loise, if (A, a) ≈Σ[x1,x2...,xk] (B, b), that is (A, a)

and (B, b) satisfy the same unnested atomic sentences.
What we have just described is an instance of the definition of Ehrenfeucht-Fräıssé

games in institutions, which corresponds to the classical definition of Ehrenfeucht-
Fräıssé games in first-order logic. In other words, Ek(A,B) denotes the game Etr(A,B),
where tr is a gameboard tree of height k with branching λ, where λ = card(S). The
reader can consult [26] for (much) more on games for elementary equivalence in single-
sorted first-order logic. In many-sorted case (if you treat sorts seriously, as it is done
in most computer science applications), our definition of the game differs from the
usual one. To see where the difference lies, here is a simple example.
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Example 29. Let k ≥ 2 be a natural number. Let a first-order signature Σ = (S, F, P )
be: (a) S = {s1, . . . , sk, s

′
k}, (b) F = ∅, and (c) P = {(π : s1 . . . sk), ($ : s1 . . . sk−1s

′
k)}.

Next, we define two Σ-models A and B putting:

(a) As1 = {a1, c1}, As2 = {a2}, . . . , Ask = {ak}, As′k = {a′k} and

πA = {(a1, . . . , ak)}, $A = {(a1, . . . , ak−1, a
′
k)}.

(b) Bs1 = {b1, d1}, Bs2 = {b2} . . . , Bsk = {bk}, Bs′k
= {b′k} and

πB = {(d1, b2, . . . , bk)}, $B = {(b1, . . . , bk−1, b
′
k)}.

Lemma 30. If A and B are the models defined in Example 29 then A ≈c B for all
chains of length at most k, but A 6≈tr B for a perfect gameboard tree of height k.

Proof. For the sake of simplicity, we assume that k = 2, as the generalization to any
natural number k is straightforward.

Firstly, we show that A 6≈tr B, where tr is the perfect 3-ary tree of height 2
depicted in Figure 2 such that (a) the leftmost variable has the sort s1, (b) the
variable in the middle has the sort s2, and (c) the rightmost variable has the sort s′2.
Now, suppose ∀belard chooses a1 then ∃loise can chose either b1 or d1:

1. if ∃loise chooses b1 then ∀belard can choose a2. In this case, the only possible
choice for ∃loise is b2. Hence, A |= π(a1, a2) but B 6|= π(b1, b2)

2. if ∃loise chooses d1 then ∀belard can choose a′2. In this case, the only possible
choice for ∃loise is b′2. Hence, A |= $(a1, a

′
2) but B 6|= $(d1, b

′
2).

Secondly, we show that A ≈c B for any chain c of length 2. The interesting cases
are when the variables added are of different sorts. We enumerate the non-trivial
cases below:

1. c := Σ ↪→ Σ[x1] ↪→ Σ[x1, x2], where x1 is of sort s1 and x2 is of sort s2. All
unnested atoms over Σ[x1, x2] are x1 = x1, x2 = x2 and π(x1, x2). The identities
x1 = x1 and x2 = x2 are not relevant as they are satisfied by all models. There
are only two expansions of A, (A, a1, a2) and (A, c1, a2), and two expansions
of B, (B, b1, b2) and (B, d1, b2). The game is won by ∃loise, as all choices of
∀belard lead to the following expansions:

(a) (A, a1, a2) which can be matched by (B, d1, b2), that is A |= π(a1, a2) and
B |= π(d1, b2),

(b) (A, c1, a2) which can be matched by (B, b1, b2), that is A 6|= π(c1, a2) and
B 6|= π(b1, b2), and

(c) (B, d1, b2) which can be matched by (A, a1, a2),

(d) (B, b1, b2) which can be matched by (A, c1, a2).

2. c := Σ ↪→ Σ[x1] ↪→ Σ[x1, x
′
2], where x1 is of sort s1 and x′2 is of sort s′2. As

in the case above, all unnested atoms over Σ[x1, x2] are x1 = x1, x′2 = x′2 and
$(x1, x

′
2). There are only two expansions of A, (A, a1, a

′
2) and (A, c1, a

′
2), and

two expansions of B, (B, b1, b
′
2) and (B, d1, b

′
2). The game is won by ∃loise, as

all ∀belard’s choices lead to the following expansions:
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(a) (A, a1, a
′
2) which can be matched by (B, d1, b

′
2), that is A |= $(a1, a

′
2) and

B |= π(d1, b
′
2),

(b) (A, c1, a
′
2) which can be matched by (B, b1, b

′
2), that is A 6|= π(c1, a

′
2) and

B 6|= π(b1, b
′
2), and

(c) (B, d1, b
′
2) which can be matched by (A, a1, a

′
2),

(d) (B, b1, b
′
2) which can be matched by (A, c1, a

′
2).

The reason for the difference is that some trees that are not perfect (such as chains)
limit severely the choices ∀belard can make. Of course, knowing the tree beforehand
∃loise can adjust her strategy accordingly. Two more remarks are in order.

1. In single-sorted first-order logic, any gameboard tree tr is a chain, and Etr(A,B)
always coincides with the usual game, so our formulation agrees with the clas-
sical formulation.

2. For two first-order structures over a signature with a set of sorts with at least
two elements, the game which is equivalent to the “classically expected game”
is the game over a perfect λ-ary tree, where λ is the cardinal of the set of sorts:
at any point during the game, ∀belard can choose any element of any sort from
the (many-sorted) universes of two models; in order to make this possible, any
inner node of the gameboard tree needs a λ-ramification such that each child
adds (to the parent signature) exactly one variable and the sorts of the added
variables cover all sorts of the signature.

To sum up, we see the perfect gameboard trees as stepping stones from intuition
to formalization. We could formalize the games differently, yet some generalizations
are necessary in dealing with infinite signatures. We chose infinite branching, as we
believe it maintains balance between intuition and formalization.

PA and HNK gameboard trees are defined analogously to first-order logic case.
In HNK, there are infinitely branching gameboard trees for each signature with at
least one sort, since the set of types over such signatures is infinite. Instantiating
the abstract description of Ehrenfeucht-Fräıssé games to these concrete institutions,
using only gameboard trees, is straightforward.

Finite trees and game sentences. With finitely branching Q-trees of height k, one
can associate special sentences, usually called game formulas, characterizing winning
strategies in Ehrenfeucht-Fräıssé games up to length k. For single sorted FOL it was
done by Hintikka in [25]. Note that in single-sorted FOL, gameboard trees are actually
finite chains.

As we mentioned a number of times already, in order to define game formulas, we
need to restrict the signatures so that the set of unnested atomic sentences is finite.

Definition 31 (Finitary signatures). Let I be a syntactically structured institution
as described in Definition 18. A signature Σ in I is finitary iff for all Q-chains
c = {χi : Σi → Σi+1}i<k with k ∈ N and Σ0 = Σ, the set Senb(Σk) is finite.

In concrete examples, finitary signatures have the set of function and relation
symbols finite, however, the set of sorts of finitary signatures may be infinite as the
next lemma shows.

Lemma 32 (First-order finitary signatures). A first-order signature Σ = (S, F, P ) is
finitary iff both sets F and P are finite.
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Proof. The forward implication is straightforward. We focus on the converse impli-
cation. It suffices to prove that for any finite set of variables X for Σ, the set of
unnested atomic sentences SenFOL0(Σ) is finite. Since F ∪X is finite, the set of terms
of depth less than or equal to two is finite. Since P is finite, the set of unnested
atomic sentences over Σ[X] is finite too.

In all examples of institutions given in this article, sentences are built from a finite
number of symbols. Therefore, any sentence is included in a signature with a finite
number of symbols.

Definition 33 (Game sentences). Let I = (Sig, Sen, Mod, |=) be a syntactically struc-
tured institution as described in Definition 18. For all finite Q-trees tr such that
root(tr) is finitary, the finite set of sentences Θtr is defined as follows:

[ height(tr) = 0 ] In this case, tr consists of a single root node, labelled by Σ, and

Θtr =
{ ∧
e∈Senb(Σ)

ef(e) | f : Senb(Σ)→ {0, 1}
}

,

where e1 stands for e and e0 stands for ¬e for all e ∈ Senb(Σ).

[ height(tr) > 0 ] Let tr = Σ{
χ1

( tr1, . . . ,
χn

( trn} be a tree and assume that the
finite set of sentences Θtri has been defined for all i ∈ {1, . . . , n}. Then:

• Θtr = {γE1
∧ . . . ∧ γEn

| E1 ⊆ Θtr1 , . . . , En ⊆ Θtrn}, where

• γEi
= (

∧
e∈Ei

∃χi · e) ∧ ∀χi ·
∨
Ei for all i ∈ {1, . . . , n}.

The sentences in Θtr will be referred to as sentences in game-normal form, or
more briefly game-normal sentences.

Theorem 34 (Fräıssé-Hintikka Theorem). Consider a syntactically structured insti-
tution I = (Sig, Sen, Mod, |=) with the following parameters: (a) Senb : Sig → Set is
the sentence subfunctor which maps signatures to sets of ‘unnested atomic’ sentences,
and (b) Q is the quantification space. Let Σ be a finitary signature in I.

T1) For each Σ-model A and all finite Q-trees tr, there exists a unique sentence
γ(A,tr) ∈ Θtr such that A |= γ(A,tr).

T2) A ≈tr B iff there exists a unique ρ ∈ Θtr such that A |= ρ and B |= ρ,

for all Σ-models A,B and finite Q-trees tr with root Σ.

T3) For all sentences ρ ∈ Sen(Σ), there exist a finite chain of signature morphisms
in Q and a subset Γρ ⊆ Θc such that ρ |=|

∨
Γρ.

Proof.

T1) We proceed by induction on the structure of tr:

[ height(tr) = 0 ] This case is straightforward.
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[ height(tr) > 0 ] Let k = height(tr), tr = Σ{
χ1

( tr1, . . . ,
χn

( trn}, and Σi =
root(tri) for all i ∈ {1, . . . , n}.
By the induction hypothesis, for each i ∈ {1, . . . , n} and any χi-expansion Ai
of A there exists a unique sentence γ(Ai,tri) ∈ Θtri such that Ai |= γ(Ai,tri).

• Let Γ(A,tr,i) ⊆ Θtri be the set of sentences consisting of all γ(Ai,tri) ∈ Θtri ,
where Ai is some χi-expansion of A.

• Let γ(A,tr) =

n∧
i=1

{γEi
| Ei = Γ(A,tr,i)}.

It is straightforward to check that A |= γ(A,tr).

If A |=
n∧
i=1

γEi ∈ Θtr then we show that Ei = Γ(A,tr,i) for all i ∈ {1, . . . , n}:

1 let i ∈ {1, . . . , n} and note that γEi = (
∧
e∈Ei

∃χi · e) ∧ ∀χi ·
∨
Ei

2 Ei ⊆ Γ(A,tr,i) since A |= γEi
, we have A |=

∧
e∈Ei

∃χi · e

3 Γ(A,tr,i) ⊆ Ei since A |= γEi
, we have A |= ∀χi ·

∨
Ei

4 Γ(A,tr,i) = Ei from 2 and 3

T2) We proceed by induction on the structure of tr.

[ height(tr) = 0 ] This case is straightforward.

[ height(tr) > 0 ] Let k = height(tr), tr = Σ{
χ1

( tr1, . . . ,
χn

( trn}, and Σi =
root(tri) for all i ∈ {1, . . . , n}.
For the forward implication, assume that A ≈tr B. We show that γ(A,tr) =
γ(B,tr), which is equivalent to Γ(A,tr,i) = Γ(B,tr,i) for all i ∈ {1, . . . , n}:
• Γ(A,tr,i) ⊆ Γ(B,tr,i):

1 let e ∈ Γ(A,tr,i)

2 Ai |= e for some χi-expansion Ai of A by the definition of Γ(A,tr,i)

3 Ai ≈tri Bi for some χi-expansion of B by Definition 25

4 Ai |= ρ and Bi |= ρ for some unique ρ ∈ Θtri by the induction hypothesis

5 ρ = e by statement T1 above

6 e ∈ Γ(B,tr,i) since Bi |= e and Bi is a
χi-expansion of B

• Γ(B,tr,i) ⊆ Γ(A,tr,i): similarly as above.

For the converse implication, assume that A |= ρ and B |= ρ for some ρ ∈ Θtr.

By Definition 33, we have ρ =

n∧
i=1

γEi
, where Ei ⊆ Θtri for all i ∈ {1, . . . , n}.

• We show that for each i ∈ {1, . . . , n} and any χi-expansion Ai of A there
exists a χi-expansion Bi of B such that Ai ≈tri Bi:

1 let i ∈ {1, . . . , n} and let Ai be a χi-expansion of A

2 A |= ∀χi ·
∨
Ei since A |= γEi

3 Ai |=
∨
Ei since Ai is a χi-expansion of A
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4 Ai |= e for some e ∈ Ei by the semantics of
∨

5 B |=
∧
e′∈Ei

∃χi · e′ since B |= γEi

6 B |= ∃χi · e since e ∈ Ei
7 Bi |= e for some χi-expansion Bi of B by the semantics of ∃
8 Ai ≈tri Bi by the induction hypothesis, since

Ai |= e and Bi |= e

• Similarly, one can show that for each i ∈ {1, . . . , n} and any χi-expansion Bi

of B there exists a χi-expansion Ai of A such that Ai ≈tri Bi

T3) Since I syntactically structured, it suffices to consider only sentences ρ obtained
from the sentences in Ib by applying Boolean connectives and quantification over
the signature morphisms in Q. We proceed by induction on the structure of ρ:

[ For ρ ∈ Senb(Σ) ] Let Γρ ⊆ ΘΣ be the subset of all sentences in ΘΣ which contain
ρ without negation. It is straightforward to show that ρ |=|

∨
Γρ.

[ For ¬ρ ] By the induction hypothesis, ρ |=|
∨

Γρ for some Q-chain c and subset
Γρ ⊆ Θc. Let Γ(¬ρ) = Θc \Γρ be the complement of Γρ in Θc. It is straightfor-
ward to show that ¬ρ |=|

∨
Γ(¬ρ).

[ For ρ1 ∧ ρ2 ] By the induction hypothesis, ρi |=|
∨

Γρi for some Q-chain c and
some subset Γρi ⊆ Θc. It is straightforward to show that ρ1∧ρ2 |=|

∨
(Γρ1∩Γρ2).

[ For ∃χ · ρ, where χ : Σ→ Σ1 ] By the induction hypothesis, ρ |=|
∨

Γρ for some
Q-chain c1 = {χi : Σi → Σi+1}1≤i<k and subset Γρ ⊆ Θc1 . We define the
Q-chain c = {χi : Σi → Σi+1}i<k, where Σ0 = Σ and χ0 = χ.

Let Γ(∃χ · ρ) = {γE | E ⊆ Θc1 and E ∩ Γρ 6= ∅}.
• We show that ∃χ · ρ |=

∨
Γ(∃χ · ρ):

1 assume that A |= ∃χ · ρ
2 A1 |= ρ for some χ-exp. A1 of A by the semantics of ∃
3 A1 |=

∨
Γρ since ρ |=|

∨
Γρ

4 A1 |= e for some e ∈ Γρ by the semantics of
∨

5 e ∈ Γ(A,c) ∩ Γρ since Γ(A,c) consists of all sentences in
Θc1 satisfied by some expansion of A

6 γ(A,c) = γΓ(A,c)
∈ Γ(∃χ · ρ) by the definition of Γ(∃χ · ρ)

7 A |=
∨

Γ(∃χ · ρ) since A |= γ(A,c) and γ(A,c) ∈ Γ(∃χ · ρ)

• We show that
∨

Γ(∃χ · ρ) |= ∃χ · ρ:

1 assume that A |=
∨

Γ(∃χ · ρ)

2 A |= γE for some E ⊆ Θc1 such that
E ∩ Γρ 6= ∅

by the definition of Γ(∃χ · ρ)

3 γE = γ(A,c) by statement T2 above

4 Γ(A,c) ∩ Γρ 6= ∅ since Γ(A,c) = E and E ∩ Γρ 6= ∅
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5 A1 |= e for some χ-expansion A1 of
A and some e ∈ Γ(A,c) ∩ Γρ

since Γ(A,c) consists of all sentences in
Θc1 satisfied by some χ-expansion of A

6 A1 |=
∨

Γρ since e ∈ Γρ

7 A1 |= ρ since
∨

Γρ |=| ρ
8 A |= ∃χ · ρ since A1 is a χ-expansion of A

[ For ∀χ · ρ, where χ : Σ→ Σ1 ] By the induction hypothesis, ρ |=|
∨

Γρ for some
Q-chain c1 = {χi : Σi → Σi+1}1≤i<k and subset Γρ ⊆ Θc1 . We define the
Q-chain c = {χi : Σi → Σi+1}i<k, where Σ0 = Σ and χ0 = χ.

Let Γ(∀χ · ρ) = {γE | E ⊆ Γρ}.
• We show that ∀χ · ρ |=

∨
Γ(∀χ · ρ):

1 assume that A |= ∀χ · ρ
2 Γ(A,c) ⊆ Γρ by the following proof steps

2.1 let e ∈ Γ(A,c)

2.2 e = γ(A1,c1)

for some χ-expansion A1 of A
by the definition of Γ(A,c)

2.3 A1 |= ρ since A |= ∀χ · ρ
2.4 A1 |=

∨
Γρ since ρ |=|

∨
Γρ

2.5 A1 |= e1 for some e1 ∈ Γρ by the semantics of
∨

2.6 e1 = γ(A1,c1) as e1 ∈ Θc1 and A1 satisfies a unique
sentence in Θc1

2.7 e = γ(A1,c1) = e1 ∈ Γρ from 2.2, 2.5 and 2.6

3 γ(A,c) = γΓ(A,c)
∈ Γ(∀χ · ρ) by the definition of Γ(∀χ · ρ)

4 A |=
∨

Γ(∀χ · ρ) since A |= γ(A,c) and γ(A,c) ∈ Γ(∀χ · ρ)

• We show that
∨

Γ(∀χ · ρ) |= ∀χ · ρ:

1 assume that A |=
∨

Γ(∀χ · ρ)

2 A |= γE for some E ⊆ Γρ by the definition of Γ(∀χ · ρ)

3 A |= ∀χ ·
∨
E since γE = (

∧
e∈E
∃χ · e) ∧ ∀χ ·

∨
E

4 A |= ∀χ ·
∨

Γρ since E ⊆ Γρ

5 A |= ∀χ · ρ since ρ |=|
∨

Γρ

Notice that Fräıssé-Hintikka Theorem is applicable to any syntactically structured
institution I. Therefore, it has a very wide range of applications. The following char-
acterization of elementary equivalence is a corollary of the Fräıssé-Hintikka Theorem.

Corollary 35 (Fräıssé-Hintikka Theorem concretely). Let I be one of the institutions
FOL, HNK, PA, FOLpres, HNKpres, PApres, FOLf or HOL. Let A and B be two models
over a signature Σ in I. The following are equivalent:

C1) A ≡ B;

C2) ∃loise has a winning strategy for the game Etr(A�Σf
,B�Σf

), for all finite sub-
signatures Σf of Σ and all finite gameboard trees tr with the root Σf .
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C3) A�Σf
≈c B�Σf

for all finite sub-signatures Σf of Σ, and all finite chains c with
the root Σf .

Proof. By Lemma 17, FOL, PA and HNK are syntactically structured. By Corol-
lary 21, FOLpres, HNKpres are PApres are syntactically structured. By Corollary 23,
FOLf and HOL are syntactically structured. It follows that Theorem 34 is applicable
to the institution I.

[ C1 ⇒ C2 ] Let Σf be a finite sub-signature of Σ and tr a finite gameboard tree
with the root Σf . Since A ≡ B, we have A �Σf

≡ B �Σf
. By Theorem 34 (T1),

it follows that γ(A,tr) = γ(B,tr) ∈ Θtr. By Theorem 34 (T2), A � Σf
≈tr B � Σf

.
Therefore, ∃loise has a winning strategy for the game Etr(A�Σf

,B�Σf
).

[ C2 ⇒ C3 ] Every chain is a tree.

[ C3 ⇒ C1 ] We show that A |= ρ implies B |= ρ for all ρ ∈ Sen(Σ):

1 assume that A |= ρ

2 ρ = χ(ρf ) for some finite signature Σf ,
Σf -sentence ρf and inclusion χ : Σf ↪→ Σ

ρ is composed of a finite number of
symbols

3 A�χ |= ρf by the satisfaction condition

4 ρf |=|
∨
E for some Q-chain c and subset

E ⊆ Θc.
by Theorem 34 (T3)

5 A�χ |=
∨
E by 3 and 4

6 B�χ |=
∨
E by Theorem 34 (T1 & T2), since

A�χ ≈c B�χ
7 B�χ |= ρf since ρf |=|

∨
E

8 B |= ρ by the satisfaction condition

Similarly, one can assume A |= ρ and then show B |= ρ for all ρ ∈ Sen(Σ).

An analogous corollary holds for FOLpresf and HOLpres, too. Subsystems of second-
order arithmetic, mentioned in Example 8, are instances of FOLpres.

5 Conclusions

Perhaps the classical hard-liner who insists that higher-order logic with Henkin seman-
tics is nothing but a variant of first-order logic, still wonders what we have achieved
in this article, apart from fancy terminology and notation. We believe the gain is
manifold.

First and foremost, we provided a general proof of Fräıssé-Hintikka Theorem in the
framework of institutions applicable to a wide range of logical systems. In addition
to the applications given above, Theorem 34 applies also to the class of constructor-
based logics which are obtained from some base logic by restricting the semantics to
models reachable by some constructor operators [2]. This is an immediate corollary
of the fact that Lemma 22 holds for these. Constructor-based logics are used in the
area of formal methods [23, 22].
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Secondly, our proof is what institution theorists call “structured”. Such a proof
reveals bare connections between the relevant properties, stripped of accidental para-
phernalia. For example, our proof does not employ the machinery of quantifier rank
and normal forms. It also applies straightforwardly to cases with empty sorts, with
which the classical proof would struggle.

Thirdly, our proof applies directly to arbitrary signatures. The classical proof does
the job, too, but in a roundabout way (via finite reducts).

Finally, we believe immodestly that by elucidating the fine structure of games
in the institutional framework we have made game methods available to institution
theorists.
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[4] M. Codescu and D. Găină. Birkhoff completeness in institutions. Logica Univer-
salis, 2(2):277–309, 2008.

[5] R. Diaconescu. Institution-independent Ultraproducts. Fundamenta Informat-
icæ, 55(3-4):321–348, 2003.

[6] R. Diaconescu. An Institution-independent proof of Craig Interpolation Theo-
rem. Studia Logica, 77(1):59–79, 2004.

[7] R. Diaconescu. Elementary Diagrams in Institutions. J. Log. Comput., 14(5):651–
674, 2004.

[8] R. Diaconescu. Proof systems for institutional logic. Journal of Logic and Com-
putation, 16(3):339–357, 2006.

[9] R. Diaconescu. Institution-independent Model Theory. Studies in Universal Logic.
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