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Abstract—Transition systems provide a natural way to specify
and reason about the behaviour of discrete systems, and in partic-
ular about the computations that they may perform. This paper
advances a verification method for transition systems whose
reachable states are described explicitly by membership axioms.
The proof technique is implemented in the Constructor-based
Inductive Theorem Prover (CITP), a proof management tool built
on top of a variation of conditional equational logic enhanced
with many modern features. This approach complements the so-
called OTS method, a verification procedure for observational
transition systems that is already implemented in CITP.

Index Terms—algebraic specification; theorem proving; term
rewriting; transition systems

I. INTRODUCTION

Transition systems describe the behaviour of systems by
means of states (which give a structural view of the system at
a given time) and the possible transitions between them (which
capture system dynamics). This simple approach allows those
who specify concrete systems to abstract the implementation
details and to focus instead on the high-level features that are
critical for the correct functioning of the system. A prominent
approach to modelling and reasoning about transition systems
is the one based on rewriting logic [17]. This is a formalism
of change, where the transitions between states correspond to
rewrite rules, and where the static behaviour of the system is
specified in a variant of equational logic [8]. The variations
of rewriting logic that are relevant to the present study are
implemented in Maude [4] and CafeOBJ [5].

Maude implements rewriting based on membership equa-
tional logic [18], which extends many-sorted equational logic
with membership axioms. The expressiveness of such axioms
is illustrated by the specification of ordered lists, which cannot
be defined using plain many-sorted equational logic.1 In the
short example below, we use a conditional membership axiom
to state that a list with at least two elements is ordered:

cmb N N’ L : OList if N ≤ N’ ∧ N’ L : OList .

In this case, lists are constructed simply by juxtaposition,
and OList < List is the subsort of ordered lists; the first
condition indicates that the first two elements of the list must

1They can be defined using predicates, but not as a subsort of all lists.

be ordered, while the second is a membership condition that
requires the rest of the list to be ordered as well.

In this paper, we propose a formal method for analysing
transition systems whose reachable states are described explic-
itly by membership axioms. The specification and verification
technique is supported by the Constructor-based Inductive
Theorem Prover (CITP) [14], which is implemented in Maude
by using its meta-level – a reflective feature of Maude that
allows specifiers to use modules and terms at the object level
in a consistent way. The formal language of CITP is based on a
variation of conditional equational logic with subsort relations,
membership axioms, transitions, and constructor operators [12].
All this, combined with the efficient implementation of rewrit-
ing modulo axioms, makes Maude suitable for implementing
CITP and for using its notation to define specifications.

The methodology described herein complements the one
already supported by CITP [13] for analysing invariant proper-
ties of Observational Transition Systems (OTS) [21]. For the
OTS method, the system states are regarded as ‘black-boxes’,
and are distinguished only by observational functions. This
approach was originally developed with the support of the
CafeOBJ language. In OTS, one principal sort/type stands
for the system, and the effects of transitions are obtained by
observing – via functions – how the features of the system
change with respect to the constructors of the principal sort.

CONTRIBUTIONS. The contributions w.r.t. the methodology
supported by CITP can be classified into two main categories.

1) Induction scheme: To prove properties of infinite-state
transition systems, we need finite strategies for covering the
infinite state space. By finite strategies we mean proof rules
with a finite number of hypotheses for inductive reasoning. In
the present methodology, each state is described by a collection
of all data types involved in the behaviour of the system. This
is achieved through the definition of a ‘mixfix’ operation:

op [_,...,_]: DataType1 ... DataTypeN → Sys .

The transition system has a finite non-empty set of initial states;
in many cases, that set is a singleton. The issue is that not all
collections of elements [d1,...,dn], where di is an element
of sort DataTypei, are reachable from initial states. In order
to perform inductive reasoning on reachable states, or to define



properties that hold for all reachable states, we need a subsort
Reach < Sys. In algebraic specification, the (sub)sorts can
be described only by operations or membership axioms. For
example, in the OTS method, the reachable states are described
using constructor operations. In the present contribution, the
reachable states are described by conditional membership ax-
ioms of the form cmb t1 : Reach if t2 : Reach, where
t1 and t2 are terms of sort Sys (with universally quantified
variables). These axioms play the role of constructors for the
simultaneous induction scheme implemented in CITP.

2) Automated reasoning: The present methodology enjoys
an increased level of automation due to the term-rewriting
modulo associativity and/or commutativity supported by Maude.
Our proof technique is intimately linked to the structure of
sentences and takes advantage not only of the operational, but
also of the denotational semantics of specifications in order
to improve the users’ interaction with the tool. Therefore, the
present formal method is equipped with both:

a) general tactics derived from the proof rules of the calculus
of the underlying logic of CITP [12], which are sound
for all specifications (see Figure 1),

b) specialized tactics derived from the proof rules for the
data types declared with initial-algebra semantics such
as Booleans or sequences; those rules are sound only
if the initial data types are protected, meaning that no
“junk” (new elements) and no “confusion” (identification of
existing elements) are added to the initial data types [19].

We argue on concrete examples of formal verification that
the combination of the above tactics eases greatly the users’
burden in discharging proof obligations. Algebraic-specification
languages have libraries for defining the initial data types that
are often used in specifying systems; examples include the
Booleans, natural numbers, associative lists (or sequences), and
sets. Due to Gödel’s incompleteness theorem, the properties of
initial data types are usually not recursively enumerable, which
means that the general tactics are not sufficient for discharging
properties that involve initial data types. For this reason, we
need specialized tactics to complement the general ones in
order to perform proofs in a more natural and efficient way.
To the best of our knowledge, this combination of tactics is
unique in the formal-methods literature.

NEW FEATURES. Compared to the first version of CITP, the
new features implemented in the tool are:

• an induction scheme based on constructors given as
membership axioms;

• a tactic for computing and joining critical pairs, i.e. for
pairs of terms resulting from overlapping rewrite rules;

• improved decision procedures for automated reasoning,
• a new interface designed to improve the users’ interaction,

and implemented from scratch in Core Maude;
• the command-parsing component of the interface was

upgraded to generate better error messages.
Most of the improvements presented in this paper focus on

reducing the user interaction. In fact, since inductive theorem
provers are oftentimes interactive (e.g. Isabelle, Coq, HOL

Light, HOL4; cf. [24]), they require trained users to direct the
prover towards discharging goals which cannot be proved by
automatic techniques. In many cases, the tool needs the users’
help to perform even trivial proofs. The new induction scheme
and the decision procedures pointed out above, as well as the
improvements in the interface, try to alleviate this problem,
passing the computational burden to the machine and allowing
the user to focus on the overall proof strategy.

STRUCTURE OF THE PAPER. Section II presents the basic no-
tions used in the paper. Section III deals with the methodology
that the tool follows, and illustrates the verification of the
Alternating Bit Protocol. Section IV discusses related work;
and Section V concludes and outlines a few lines of future
research. The tool is available on the first author’s web page [9].

II. PRELIMINARIES

In what follows, by specification we mean a text that
describes a signature (roughly, a collection of sorts and
symbols), a set of possibly conditional sentences (built using
those symbols) and a class of models (that assign meaning
to the symbols). The sentences are Horn clauses of the form
(∀X) ∧ H ⇒ C, where H ∪ {C} is a set of atomic formulas
given as equations t1 = t2, membership axioms t : s, or
transitions t1 ⇒ t2, where t, t1, and t2 are terms and s is a
sort. Such sentences also define the operational semantics of
the specification, because they form a term-rewriting system
that makes the specification executable by rewriting. Moreover,
they are compatible with the denotational semantics of the
specification (its class of models), in the sense that every
model of the specification satisfies its sentences.

A goal is a pair 〈SP ` E〉, where SP is a specification and E

is a set of formulas to prove. A proof rule is a mapping from
a goal 〈SP ` E〉 to a list of goals 〈SP1 ` E1〉 . . . 〈SPn ` En〉.
The tactics are obtained by canonically extending proof rules
to mappings from lists of goals to lists of goals. In the current
version of CITP, the user can give commands which may
consist of lists of tactics rather than a single tactic. It follows
that the proof scripts consist of sequences of lists of tactics
instead of trees (whose nodes would be goals, and whose edges
would be lists of tactics). This has the advantage of simplifying
the design of the tool interface and increasing the automation
level of the proof process by making all goals to be discharged
available to the user simultaneously. However, if the user wants
to apply a tactic list tctList only to the current goal, then the
command (. tctList) can be issued to the tool. In addition,
(select no) can be used to move the goal no to the top of
the goal list, thus making it the current goal.

Apart from tactics, CITP is equipped with commands for
managing the proof process, which have no effect on the list
of goals to be proven (see Figure 2), but enable the user to
have a better control and understanding of the actual proof.

Assume that the initial goal is a pair 〈SP ` γ〉 given by a
specification SP and a single sentence γ of the form (∀X)

∧
H ⇒

C, where X is a set of variables and H ∪ {C} is a set of atomic
formulas. The idea is to develop tactics that decompose γ into



TACTIC ABBREVIATION

Induction (ind on varList)
Induction based on mb. ax. (indx on varList)
Case analysis (ca)
Theorem of constants (tc)
Implication (imp)
Reduction (red)
Initialization (init sentence by substitution)
Critical-pairs left (cp-l sentence1 >< sentence2)
Critical-pairs right (cp-r sentence1 >< sentence2)

Select (select no)
Dot (. tctList)

Fig. 1: General tactics

COMMAND DESCRIPTION

(rollback) returns the proof process to the state
before applying the last list of tactics

(show goals) displays the goals to discharge
(show proof) shows the sequence of lists of tactics

applied so far
(redTerm t) reduces the term t to its normal form w.r.t.

the specification of the current goal

Fig. 2: CITP commands

simpler, basic constituents, e.g. equational formulas, which
can be discharged using term rewriting. There are two tactics
designed to eliminate universal quantification: induction and
the theorem of constants. While the latter is applicable to
all variables in X, the former can eliminate only variables of
constrained sort.2 It is the users’ responsibility to separate
variables of constrained sorts, which will be dealt with by
induction, from the rest of the variables, which will be handled
by the theorem of constants. Typically, induction is applied first
and then the theorem of constants comes into play. The goals
〈SP1 ` γ1〉 . . . 〈SPn ` γn〉 obtained by applying induction and
the theorem of constants have only quantifier-free formulas,
i.e. γi is of the form

∧
Hi ⇒ Ci for all i ∈ {1, . . . , n}. The

tactic (imp) is designed to eliminate the logical implication.
For example, by applying implication to a goal 〈SPi ` γi〉
as above, the result is 〈SPi + Hi ` Ci〉, where SPi + Hi is the
specification obtained from SPi by adding the axioms in Hi.
The goals 〈SPi + Hi ` Ci〉 are discharged using term rewriting.

Example 1: Consider the following specification of natural
numbers with addition. We first define sorts and subsort rela-
tions using the keywords sorts and subsorts, respectively.
This allows us to define Peano natural numbers (PNat) and
non-zero Peano natural numbers (PNzNat). We can then define
operations on these sorts using the keywords op; some of these
operations are constructors (ctor), such as 0 and successor,
s_, where the underscore is a placeholder. In the same way,
we define an operation symbol _+_ for the addition of natural

2We distinguish between constrained sorts, which have constructors
explicitly described in the signature, and loose sorts, with no such constructors.

numbers, but without marking it as a constructor. Finally, we
define the behaviour of addition by means of equations (eq),
where the metadata attribute allows the users to provide
additional information to the tool, as we will see later.
fmod PNAT is
sorts PNat PNzNat .
subsorts PNzNat < PNat .
op 0 : → PNat [ctor].
op s_ : PNat → PNzNat [ctor].

op _+_ : PNat PNat → PNat .
vars M N : PNat .
eq 0 + N = N [metadata "1"].
eq s M + N = s(M + N) [metadata "2"].

endfm

Since the above specification starts with fmod and ends with
endfm, its semantics is initial, meaning that the class of models
Mod(PNAT) of the specification PNAT consists of all models
that are isomorphic with the model of natural numbers.

Suppose one wants to prove the associativity of addition.
The goal is introduced by the following command:
(goal PNAT ` eq (X:PNat + Y:PNat)+ Z:PNat =

X:PNat + (Y:PNat + Z:PNat);)

The variable X is chosen for induction and the tactic
(ind on X:PNat) is applied. The tool then generates two
subgoals, one for each constructor: zero (0) and successor (s_).
By the theorem of constants (tc), the variables Y and Z are
introduced as constants to the specifications in the subgoals
generated by induction. Since logical implication does not occur
in any of the formulas to prove, the goals can be discharged by
reduction (red), which replaces each term in the equations
to prove with its normal form. The proof of associativity thus
consists of the tactic list (ind on X:PNat tc red). See [9]
for a detailed presentation of the proof.

In the case of large specifications, it is undesirable to display
all their sentences during the proof process. Therefore, only
sentences with the attribute metadata "n" will be displayed,
where n is a natural number. The axioms introduced in the
proof process will be assigned automatically a natural number
as an attribute, and therefore will always be displayed.

Example 2: Consider the following specification of two
functions on natural numbers:3

fmod FG-FUN is
protecting NAT .
op F : Nat → Nat .
op G : Nat → Nat .
vars X Y : Nat .

ceq F(X) = 5 if X ≤ 7 [metadata "CA-1"].
ceq F(X) = 1 if 8 ≤ X [metadata "CA-2"].

ceq G(Y) = 2 if Y ≤ 4 [metadata "CA-a"].
ceq G(Y) = 7 if 5 ≤ Y [metadata "CA-b"].

endfm

3To benefit from the usual, decimal representation of natural numbers, we
import the predefined Maude module NAT instead of PNAT from Example 1.



The purpose of this example is to show that in formal
verification one can easily reach subgoals that have inconsistent
specifications, despite the fact that the proof started with a
goal whose underlying specification is consistent, so we can
automatically discharge the corresponding subgoal. Note that:

1) either X ≤ 7 or 8 ≤ X, for all natural numbers X, and
2) the left-hand sides of the conditional equations labelled

with CA-1 and CA-2 are equal.
Therefore, the conditional equations labelled with CA-1 and
CA-2 should be regarded as one sentence. The labels CA-1

and CA-2 are used by CITP to perform case analysis. This
tactic is sound if and only if:

1) the conditions of CA-1 and CA-2 are disjointly true, and
2) the left-hand sides of CA-1 and CA-2 are equal.
A similar remark holds for the sentences labelled with CA-a

and CA-b. The goal we are interested in is the following:

(goal FG-FUN
` eq 9 ≤ G(F(X:Nat))+ G(X:Nat)= true ;)

By the theorem of constants (tc), the variable X:Nat is added
to the body of the specification FG-FUN as a fresh constant.
The new goal is the following:

〈 FG-FUN + {op X#1 : → Nat}
` eq 9 ≤ G(F(X#1))+ G(X#1)= true ; 〉

In order to apply case analysis (ca), the tool selects the
ground term 9 ≤ G(F(X#1))+ G(X#1) from the formula to
prove eq 9 ≤ G(F(X#1))+ G(X#1)= true. Note that:

1) CA-1 and CA-2 match the subterm G(F(X#1)) of
the term 9 ≤ G(F(X#1))+ G(X#1) via the substitution
X:Nat ← X#1, and there are no proper subterms of
G(F(X#1)) that can be matched by any CA-axioms;

2) CA-a and CA-b match the subterm G(X#1) of the
term 9 ≤ G(F(X#1))+ G(X#1) via the substitution
Y:Nat ← X#1, and there are no proper subterms of
G(X#1) that can be matched by any CA-axioms.

Case analysis splits the goal above into four subgoals by
adding to the specification FG-FUN + {op X#1 : → Nat}

one condition from each of the two groups of sentences below:

1) ceq F(X#1) = 5 if X#1 ≤ 7 .
ceq F(X#1) = 1 if 8 ≤ X#1 .

2) ceq G(X#1) = 2 if X#1 ≤ 4 .
ceq G(X#1) = 7 if 5 ≤ X#1 .

The new list of goals is as follows:

1) 〈 FG-FUN + {op X#1 : → Nat,
eq X#1 ≤ 7,
eq X#1 ≤ 4}

`
eq 9 ≤ G(F(X#1:Nat))+ G(X#1:Nat)= true ; 〉

2) 〈 FG-FUN + {op X#1 : → Nat,
eq X#1 ≤ 7,
eq 5 ≤ X#1}

`
eq 9 ≤ G(F(X#1:Nat))+ G(X#1:Nat)= true ; 〉

3) 〈 FG-FUN + {op X#1 : → Nat,
eq 8 ≤ X#1,
eq X#1 ≤ 4}

`
eq 9 ≤ G(F(X#1:Nat))+ G(X#1:Nat)= true ; 〉

4) 〈 FG-FUN + {op X#1 : → Nat,
eq 8 ≤ X#1,
eq 5 ≤ X#1}

`
eq 9 ≤ G(F(X#1:Nat))+ G(X#1:Nat)= true ; 〉

Note that the specification of the third goal above is inconsistent
as we cannot have a natural number X#1 that is greater than
or equal to 8 and less than or equal to 4. Formally, since
the specification NAT is imported in protecting mode, no
new elements of sort Nat are introduced, and none of the
existing elements can be made equal (say, by equations);
this implies that X#1 is a natural number; also, the preorder
relation ≤ is interpreted in the obvious way; it follows that
the equations {eq 8 ≤ X#1, eq X#1 ≤ 4} create confusion
w.r.t. the initiality of NAT as there is no natural number (in
place of X#1) satisfying both equations. CITP recognizes this
contradiction and discharges the third goal automatically.

The remaining three goals are discharged by the reduction
tactic (red). Therefore, the proof of the goal

(goal FG-FUN `
eq 9 ≤ G(F(X:Nat))+ G(X:Nat)= true ;)

consists of the list of tactics (tc ca red); see [9] for the full
specification and proof script. Here it is also worth noting that
case analysis (ca) plays an essential role in the OTS method;
see [13] for a formalization of (ca) and its applications.

III. FORMAL METHOD

The verification method described in Example 1 forms the
basis for two main directions through which one can prove
invariant properties of transition systems:

1) One technique is designed for OTS, where the structure of
the states is not accessible to the users; instead, the states
are distinguished by so-called observation functions [13].

2) The other approach is built for transition systems whose
states are described explicitly using membership equations.

Clearly, the two methods share common tactics like the theorem
of constants, implication, or reduction. The implementation of
the tool is modular in that regard, allowing users to reuse the
code of the shared tactics. In this paper, we focus on the latter
methodology; cf. [13], which deals with the former.

A. Alternating Bit Protocol

The specification and verification methodology supported by
the tool is presented through a case study. The example chosen
is of the Alternating Bit Protocol (ABP), a protocol operating
at the data-link layer of networks that ensures the reliability of
the communication between a sender and a receiver [1]. The
overall structure of the ABP is illustrated in Figure 3.

The protocol consists of two processes, Sender and Receiver,
each having a data buffer and a one-bit state. Sender and



data bitSender data bit Receiver

data channel

acknowledgement channel

Fig. 3: The Alternating Bit Protocol

Receiver use channels to communicate with each other, as they
do not share any common memory: (a) a data channel from
Sender to Receiver for sending bit-packet pairs, and (b) an
acknowledgement channel from Receiver to Sender for sending
single confirmation bits. The protocol works as follows:
• Initially both channels are empty and Sender’s bit is different

from Receiver’s bit.
• Sender repeatedly writes bit-packet pairs 〈bit, pac〉 on the

data channel, where bit is the Sender’s bit and pac is the
Sender’s data to transmit. If the Sender reads bit from
Receiver over the acknowledgement channel, then it is a
confirmation that the packet has been delivered. In that case,
Sender flips its bit and selects the next packet to send.

• Receiver writes its bit on the acknowledgement channel
repeatedly. When it reads a pair 〈bit, pac〉 such that bit is
different from its bit, it stores the package and flips its bit.

B. Specification

This section gives an overview of the ABP specification. The
complete specification can be found in [10]. The state space is
explicitly described by tuples that consist of all the data types
that define the protocol. Here, the state space is represented
by the sort Sys, which has only one constructor:

sorts Reach Sys . subsort Reach < Sys .
op [_,_,_,_,_,_] : Bit PNat Channel1

Bit Data Channel2 → Sys [ctor].

The first two arguments are the Sender’s bit and packet, which,
for simplicity, we identify by a natural number; Channel1
corresponds to the data channel; the arguments four and five
are the Receiver’s bit and packet list, respectively; Channel2
corresponds to the acknowledgement channel. As explained
in Section I, all terms built using this constructor have the
sort Sys; but when reasoning about the ABP, we are actually
interested in the subset of terms that denote reachable states
(i.e. states of sort Reach4). Hence, the strategy is to use
membership axioms in order to define these particular terms:
1) In the initial state, Sender’s bit is true, the packet number is

0, and both communication channels are empty, Receiver’s
bit is false, and Receiver’s packet list is empty.

mb [t,0,empty,f,empty,empty]: Reach
[metadata "ctor-init"].

2) Sender writes the current bit-packet pair 〈 B1,pac(N)〉
to the data channel Ch1.

4Sys and Reach are the standard names for such sorts. However, they are
not predefined; users can use any other names they consider to be suitable.

cmb [B1,N,(〈B1,pac(N)〉,Ch1),B2,D,Ch2]: Reach
if [B1,N,Ch1,B2,D,Ch2]: Reach

[metadata "ctor-send1"].

3) Receiver writes its current bit B2 to the acknowledgement
channel Ch2.

cmb [B1,N,Ch1,B2,D,(B2,Ch2)]: Reach
if [B1,N,Ch1,B2,D,Ch2]: Reach

[metadata "ctor-send2"].

4) Sender acknowledges that the package has been delivered
when its bit B1 is the last bit of the acknowledgement
channel (Ch2,B1).5 It immediately flips its bit B1 and
updates the number N of the packet to be transmitted.

cmb [not B1,s N,Ch1,B2,D,Ch2]: Reach
if [B1,N,Ch1,B2,D,(Ch2,B1)]: Reach

[metadata "ctor-rec1"].

5) Receiver gets a new packet P and stores it in the packet list D
when the last bit B2 from the data channel Ch1,〈 B2,P 〉
is different from its own bit (not B2).

cmb [B1,N,Ch1,B2,(P,D),Ch2]: Reach
if [B1,N,(Ch1,〈 B2,P 〉),not B2,D,Ch2]: Reach

[metadata "ctor-rec2"].

6) The data channel is not reliable: at any time, any element
of the channel (from an arbitrary position) might be lost.

cmb [B1,N,(Ch1,Cn1),B2,D,Ch2]: Reach
if [B1,N,(Ch1,BP,Cn1),B2,D,Ch2]: Reach

[metadata "ctor-drop1" nonexec].

7) Dropping one element from the acknowledgement channel
is modelled similarly to item 6 above.

8) In addition to losing data, the elements of the data channel
(once again, from arbitrary positions) can also be duplicated.

cmb [B1,N,(Ch1,BP,BP,Cn1),B2,D,Ch2]: Reach
if [B1,N,(Ch1,BP,Cn1),B2,D,Ch2]: Reach

[metadata "ctor-dup1" nonexec].

9) Duplication in the acknowledgement channel is modelled
similarly to item 8 above.
The constructors of a given sort can be either functions or

membership axioms. In this case, the sort Reach is described by
the nine membership axioms listed above. The prefixes ctor-
from the metadata attributes, e.g. ctor-init or ctor-send1,
are necessary for the tool to recognize that these membership
axioms are constructors for Reach, and to generate appropriate
induction schemes for formal verification.

The specification ABP obtained in this way [10] can be en-
hanced with transitions rl T1 ⇒ T2 [metadata "trans"]

for each conditional membership axiom cmb T2 : Reach if
T1 : Reach [metadata "ctor-trans"]. For example,
the corresponding transition for the conditional membership
axiom ctor-send1 would be:

rl [B1,N,Ch1,B2,D,Ch2] ⇒
[B1,N,(〈 B1,pac(N)〉,Ch1),B2,D,Ch2]

[metadata "send1"].

5Notice the convenience of using the associative list-concatenation operation
(and pattern matching) instead of the left-associative append operation.



This makes it possible to apply model-checking techniques
for formal verification. However, model checking is outside
the scope of this paper. It is worth pointing out though that
conditional membership axioms and transitions are in one-to-
one correspondence. Because of this, one may be tempted to
eliminate membership axioms and keep only the transitions.
But, denotationally, in the absence of membership axioms,
there are no terms of sort Reach, and one cannot formalize
invariant properties that hold for all reachable states. Moreover,
transitions such as send1 do not play any role in the deductive
verification described in the following section, hence our
methodological preference for membership axioms.

In the present contribution, dropping elements from arbitrary
positions in the communication channels is modelled faithfully.
This is possible thanks to (a) the matching equations provided
by Maude for the conditions of the Horn sentences, and (b) the
support for the associative data types that are used to describe
the communication channels. The formal verification involving
the matching of associative data types is facilitated by the tactic
(cs) – case analysis for sequences and sets [13] – which breaks
a goal into subcases that are easier to analyse.

C. Formal verification

The methodology described in Section II is developed further
in order to support the verification of safety properties for
transition systems whose states are described explicitly. For
that purpose, the new features added to the proof strategy
presented in Section II can be summarized as follows:

• Induction is replaced by a simultaneous induction scheme
(indx on varList) based on constructors given as mem-
bership axioms, where varList is a list of variables.

• In order to preserve the confluence property, after each
application of a tactic it is necessary to reduce to the
normal form each term occurring in the formulas to prove.
This is achieved by applying the tactic (red).

• In addition, it is often necessary to apply case analysis
(cs) on the sequence data type. In our case study, this
initial data type models the communication channels. This
tactic is applied after induction. So far, the verification
strategy consists of the following tactic list:

(indx on varList red cs red tc red imp red)

However, that alone is not sufficient for discharging all
the goals generated by the induction scheme.

• Even if the specification of the initial goal is confluent,
after applying the tactic list above, some specifications of
the goals generated by the verification strategy proposed
may lose the confluence property. For this purpose, we
have developed tactics for joining critical pairs:

(cp-l sentence1>< sentence2), and
(cp-r sentence1>< sentence2).

• Last but not least, extra care is needed for proving formulas
that are not term-rewriting rules. Consider the invariant:

ceq B = B1
if [B1,N,(Ch1,〈 B,P 〉,Cn1),B1,D,Ch2]: Reach

[metadata "inv2" nonexec].

which states that, if the Receiver’s bit is equal to
Sender’s bit, B1, then all the bits in the data chan-
nel are equal to B1. Notice that inv2 is not a term-
rewriting rule, because there are variables in the condi-
tion [B1,N,(Ch1,〈 B,P 〉,Cn1),B1,D,Ch2]: Reach

such as N that do not occur in the left-hand side of the
rule. This is the reason for using the attribute nonexec.
The operational semantics of a specification is therefore
given by all sentences of the specification that do not have
the attribute nonexec. After applying the tactic list

(indx on varList red cs red tc red imp red)

one may need to initialize non-executable sentences in
order to complete the verification process. According
to our experience, the tactic list above followed by the
initialization of such sentences and the joining of critical
pairs is sufficient for completing the verification process.

The proof strategy for proving the properties of the specification
ABP consists in the following sequence of tactic lists:

(indx on varList red cs red tc red imp red)
(cp-l sentence1>< sentence2 red)
(init sentence by substitution red)

Most of the tactics in the above proof strategy were defined
for the OTS method [13]. The new tactics implemented for
the present verification method are the simultaneous induction
scheme based on constructors given as membership axioms
(indx on varList) and the joining of critical pairs (cp-l
sentence1><sentence2) and (cp-r sentence1><sentence2).

We employ the above strategy to prove that the ABP

specification satisfies the following safety property: all the
packets sent are received in the same order in which they were
sent. This property is formalized by the two sentences below.

ceq mk(N)= D if [B,N,Ch1,B,D,Ch2]:= S
[metadata "goal1"].

ceq mk(N)= pac(N),D if[B,N,Ch1,not B,D,Ch2]:= S
[metadata "goal2"].

Here, the function mk : PNat → Data is defined by two
equations: (a) eq mk(0) = pac(0) and (b) eq mk(s N) =

pac(s N) mk(N). That is, for every natural number N, mk(N)
is the list of packets that correspond to the natural numbers N,
N-1, . . . , 0. The sentence goal1 states that, if Sender’s bit is
equal to Receiver’s bit, then N packets delivered were received
in the same order in which they were sent. The sentence goal2
states that, if Sender’s bit is different from Receiver’s bit, then
the last packet delivered was not received.

In order to prove the two goals described above, we need five
lemmas. The first four are proved by simultaneous induction,
while the fifth lemma is derived from the others. The proofs of
these lemmas are similar to the proofs of goal1 and goal2.
Because of this, we focus only on proving the two goals. More
information about the lemmas can be found at [10].

INDUCTION. After applying (indx on S:Reach) to goal1

and goal2, the tool generates nine subgoals, each subgoal
corresponding to one of the nine constructors. If



cmb T2 : Reach if T1 : Reach
[metadata "ctor-trans"].

is one of the constructors, then the corresponding subgoal is

〈 ABP + {mb T1 : Reach [metadata "trans"],
goal1(S ← T1) [metadata "trans"],
goal2(S ← T1) [metadata "trans"]}

` {goal1(S ← T2),goal2(S ← T2)} 〉

The underlying specification of the subgoal above is obtained
from ABP by adding:

1) the variables in ctor-trans as constants,
2) the membership axiom mb T1 : Reach, and
3) the induction hypothesis

{goal1(S ← T1), goal2(S ← T1)}.
The label trans is for the user to recognize the induction case
to prove. There are nine subgoals, and each subgoal has two
formulas to prove. This means eighteen cases to discharge.

CITP performs several other transformations; all are sound
w.r.t. the semantics and help the user discharge the goals easier.
Take, for example, the subgoal corresponding to ctor-init:

〈 ABP `
{ceq mk(N) = D
if [B,N,Ch1,B,D,Ch2]:=

[t,0,empty,f,empty,empty]
[metadata "goal1"];

ceq mk(N) = pac(N),D
if [B,N,Ch1,not B,D,Ch2] :=

[t,0,empty,f,empty,empty]
[metadata "goal2"];} 〉

Based on the initiality of tuples, the goal is refined into:

〈 ABP `
{ceq mk(N) = D
if B := t ∧ N := 0 ∧ Ch1 := empty
∧ B := f ∧ D := empty
∧ Ch2 := empty [metadata "goal1"];

ceq mk(N) = pac(N),D
if B := t ∧ N := 0
∧ not B = f ∧ D := empty
∧ Ch2 := empty [metadata "goal2"];} 〉

For each matching equation V := T in the condition, where
V is a variable and T is term, the tool transforms the goal
by removing the matching equation and substituting the term
T for the variable V in the formula to prove. This procedure
is performed sequentially for all matching equations V := T,
from left to right. Then all terms are reduced to their normal
forms. The user can see only the final result:

〈 ABP `
{ceq pac(0)= empty if t := f

[metadata "goal1"];
ceq pac(0)= pac(0) if nil

[metadata "goal2"];} 〉

This splitting of conditions based on tuple matching, and
followed by the application of substitutions V ← T, and
then by reductions to normal forms are integrated into the
tactic (indx on S:Reach) to ease the user’s task. It avoids
complicated proofs of obvious properties. We argue that a

solid background in algebraic specification allows one to
combine general tactics that are sound for all specifications
with specialized tactics that are sound for initial data types –
and often used in practice to increase the performance of the
verification method. This is one example of decision procedure
that increases the automation level of the current methodology.
All nine subgoals can be handled in this manner.

CONTRADICTION. Since there are no matching equations
involving sequences in the goals obtained after the application
of (indx on S:Reach), the tactic (cs) just splits each
goal into two subgoals. Therefore, the result is a list of
eighteen subgoals. For example, the subgoals corresponding to
ctor-init are as follows:

〈 ABP ` ceq pac(0)= empty if t := f
[metadata "goal1"]; 〉

〈 ABP ` ceq pac(0)= pac(0) if nil
[metadata "goal2"]; 〉

The tactic (tc) has no effect on the eighteen goals, because
there are no variables in the formulas to prove. The tactic
(imp) adds the conditions of the formulas to the specification.
For example, the goals corresponding to init become:

〈 ABP + {eq f = t} ` eq pac(0)= empty
[metadata "goal1"]; 〉

〈 ABP ` eq pac(0)= pac(0)
[metadata "goal2"]; 〉

Since the second goal is a tautology, it is discharged automat-
ically by the tool. We thus focus only on the first goal. For
that purpose, we start with the specification of bits:

fmod BIT is
sort Bit .
op f : → Bit [ctor].
op t : → Bit [ctor].
op not_ : Bit → Bit .
eq not f = t .
eq not t = f .
ceq true = false if t = f

[metadata "contradict"].
endfm

The specification BIT is declared with initial semantics and
it is imported in the specification ABP in protecting mode.
This means that there are exactly two (distinct) values for the
bits, t and f. The addition of eq f = t to ABP gives rise to an
inconsistency. From a model-theoretic point of view, the class
of models of the specification ABP + {eq f = t} is empty.
It follows that ABP + {eq f = t} entails any formula. In
particular, ABP + {eq f = t} entails eq pac(0)= empty.
But the only inconsistency recognized by CITP is on the sort
Bool. In other words, if CITP can prove

〈 ABP + {eq f = t} ` eq true = false ; 〉

then the goal

〈 ABP + {eq f = t} ` eq pac(0) = empty ; 〉

is discharged. Here, the conditional equation contradict

from the specification BIT comes into play. This conditional



equation states that any inconsistency created on the sort Bit
will determine an inconsistency on the sort Bool. Notice that
contradict has no role in the denotational semantics of the
specification BIT. It is used by the tool to discharge goals with
specifications that satisfy sentences in contradiction with the
initial semantics. It follows that CITP discharges the goal
〈 ABP + {eq f = t} ` eq pac(0) = empty ; 〉

because the specification ABP + {eq f = t} trivially entails
the equation eq f = t, which is in contradiction with the
initiality of the specification BIT. This tactic may look strange
for engineers with no training in the theory of algebraic
specification; but in practice it often happens to reach subgoals
with inconsistent specifications (see Example 2); the approach
described above is simple and efficient in such situations.

CRITICAL PAIRS. What we have presented above is only one
part of the proof corresponding to the constructor ctor-init.
By applying the tactic list
(indx on S:Reach red cs red tc red imp red)

to goal1 and goal2, the simultaneous induction scheme
generates nine goals – expanded to eighteen subgoals, as each
of the nine goals contains two formulas. Fifteen goals are
discharged by reduction or contradiction as we have described
above. We are left with three goals to prove, as follows:

1) the constructor ctor-rec1 and the formula goal1,
2) the constructor ctor-rec2 and the formula goal1, and
3) the constructor ctor-rec2 and the formula goal2.

The tool provides sufficient information for the users to
understand the current state of the proof. By looking at the
attributes of the formulas to prove and the induction hypotheses
one can recognize each case mentioned above. All three of
these subgoals are discharged by joining critical pairs and by
initializing one of the five lemmas previously mentioned (and
proved). The theorem-proving technique presented in this paper
is interactive, which means that the user needs insight into
ABP to discharge the remaining cases. We will present the
proof of the goal corresponding to ctor-rec1 and goal1:

〈 mod ABP-L is
...
mb [B1#1,N#2,Ch1#3,B2#4,D#5,(Ch2#6,B1#1)]:

Reach [metadata "1" metadata "rec1"].

eq B2#4 = not B1#1 [metadata "4"].

ceq mk(N#2)= D#5 if B1#1 := B2#4
[metadata "2"
metadata "goal1" metadata "rec1"].

ceq mk(N#2) = pac(N#2),D#5
if not B1#1 := B2#4

[metadata "3"
metadata "goal2" metadata "rec1"].

...
endm
` eq pac(s N#2),pac(N#2),D#5 = D#5

[metadata "goal1"]; 〉

Notice that the following configuration is reachable

[B1#1,N#2,Ch1#3,B2#4,D#5,(Ch2#6,B1#1)]

where:
1) B1#1 is a Bit-constant representing Sender’s bit,
2) N#2 is a natural number representing the index of the next

packet to be delivered by Sender,
3) Ch#3 is a Channel1-constant for the data channel,
4) B2#4 is a Bit-constant representing Receiver’s bit,
5) D#5 is a Data-constant for packets delivered to Receiver,
6) Ch2#6 is a constant of sort Channel2 such that

(Ch2#6,B1#1)represents the acknowledgement channel.
By the membership axiom 1, the last bit of the acknowledge-
ment channel is equal to Sender’s bit. By the equation 4, the
Sender’s bit B1#1 is different from the Receiver’s bit B2#4.

The third lemma in [10], labelled inv3 below, states that,
if the acknowledgement channel contains a bit that is equal to
Sender’s bit, then the Receiver’s bit is also equal to Sender’s
bit, which is a contradiction with the equation 4.

ceq B2 = B1
if [B1,N,Ch1,B2,D,(Ch2,B1,Cn2)]: Reach

[nonexec metadata "inv3"].

The proof script for the goal corresponding to ctor-rec1 and
goal1 is as follows:

(. cp-l 1>< 4)
(. init inv3 by B1:Bit ← B1#1 ;
N:PNat ← N#2 ; B2:Bit ← B2#4 ;
D:Data ← D#5 ;
Ch1:Channel1 ← Ch1#3 ;
Ch2:Channel2 ← Ch2#6 ;
Cn2:Channel2 ← (empty).Channel2 ; )

Remember that the dot prefix means that the tactics are appli-
cable only to the current goal. The tactic (. cp-l 1>< 4)

thus joins the critical pairs generated by the axioms:

mb [B1#1,N#2,Ch1#3,B2#4,D#5,(Ch2#6,B1#1)]:
Reach [metadata "1"].

eq B2#4 = not B1#1 [metadata "4"].

More concretely, (. cp-l 1>< 4) tries to unify a subterm of
the membership axiom 1 with the left-hand side of equation 4.
If the unification is successful, then it adds to the specification
of the current goal the membership axiom obtained from 1 by
substituting the right-hand side of the equation 4 for the subterm
of the membership axiom 1 used for unification. Otherwise,
cp-l leaves the goal unchanged. Therefore, the following
membership axiom is added to the specification:

mb [B1#1,N#2,Ch1#3,not B1#1,D#5,(Ch2#6,B1#1)]:
Reach

The tactic init instantiates inv3 by the given substitution
and reduces all terms of the newly obtained sentence to their
normal forms. The result is a goal obtained from the current
goal by adding the following equation to the specification:

eq not B1#1 = B1#1 .

Finally, the goal obtained in this way is discharged auto-
matically by CITP because its underlying specification is
inconsistent; see [10] for the full proof.



IV. RELATED WORK

The Alternating Bit Protocol is a well-established benchmark
in the area of formal methods, being used for more than
four decades to test the strength and capabilities of various
verification technologies. The safety property of interest in
this case is that of reliable communication: all messages from
Sender are successfully delivered to Receiver, in the correct
order, even though the communication channels can lose or
duplicate messages. The result advanced in this paper is a fully
mechanized proof with a high degree of automation, meaning
that most of the routine proofs are performed automatically.

Several variants of the ABP have been studied in the formal-
verification literature, among which [2], [3] are some of the
earliest verification efforts (based on process algebra and
branching-time temporal logic). In many cases, in order to
cope with the infinite state-space of the ABP, the solution
relies on imposing bounds or restrictions on communication
channels, reducing in this way the generality of the protocol.

A number of related studies use a combination of theorem-
proving and model-checking techniques in order to reason
about safety properties of the ABP. For example, in [20] the
authors use the Isabelle theorem prover to show that a cleverly
designed finite system is a suitable abstraction of the protocol,
thus enabling the verification of safety properties of the ABP by
means of model checking. In that case, theorem proving is used
for representing both the finite and the infinite-state systems,
and for verifying the soundness of the abstraction, meaning that
the finite-state system has all the traces of the ABP. Similarly,
[16] shows how ACL2 can be used to prove that a variant
of the protocol is stuttering bisimilar to a finite-state system,
which can then be model-checked as well, while in [15], [25]
the authors use the PVS theorem prover for analysing the
ABP by integrating static analysis, theorem proving, and other
comparable abstraction techniques.

Another prominent approach to verifying the ABP is based
on the use of co-algebraic languages for describing processes.
For instance, in [6] this has allowed the development of formal
correctness proofs for the protocol by representing Prasad’s
Calculus of Broadcasting Systems in the Coq theorem prover.
The proof presented in [7] is also co-algebraic, and it is based
on the circular co-inductive rewriting algorithm from BOBJ.

What distinguishes the tool and technique that we have
proposed in this paper is that:

1) It makes use of a single, general algebraic framework
for reasoning about the ABP, without the need to encode
within the framework a specialized language for describing
the protocol or to develop a finite-state abstraction of it;
in particular, in contrast to [16], [20], the verification is
performed entirely by theorem proving.

2) There are no compromises in the specification of the
ABP; for instance, at any time, both the data and the
acknowledgement channel can lose or duplicate informa-
tion, not only from one of their end-points, but from
arbitrary positions; since the technique implicitly supports

associative data types, such properties can be specified in
a straightforward way.

3) It combines general tactics, which are universal in the
sense that they correspond to the underlying logic of CITP
(and can be used for all specifications), with specialized
tactics, which are tailored to the data types declared with
initial semantics (and can be used only for specifications
that protect such data types).

The closest related work on proving safety properties of
the ABP is that on the framework of observational transition
systems [13], [21], where the focus is on proving the reliable
communication between Sender and Receiver based on simul-
taneous induction. In [22], [23], the same property is proved
using a technique based on narrowing, which supports partially
the unification of associative data types. Because of this, the
specification of the ABP from [22] models the dropping of
elements only from the first position of the communication
channels. The same compromise w.r.t. the specification of the
ABP was made in [21] as well.

It is worth mentioning that the specification ABP that we
have described in this paper (available at [10]) is much more
compact than the specification of the ABP that relies on the
OTS method [11]. On the other hand, the OTS method generates
no critical pairs for the case studies that we have analysed
so far. This means that the OTS method has a higher level
of automation. Figure 4 presents a comparison of the formal
proof described here and the ones from [21], [22], and [13].

The human proof effort is significantly higher in [21]
and [22] than in [13] and the present work. In the present
case study, there is no need to create a new module to define
extra predicates necessary for proving the desired properties.
Therefore, in the second row of the table in Figure 4, the number
of lines of code for these extra predicates in the present work
is 0. The number of state predicates in [22] is less than the
number of invariants in the present work, but the definition of
predicates in [22] takes almost the same number of lines of
code as the specification. The specifications in [13] and the
present contribution are closer to a real description than the
specifications in [21] and [22] since they model the dropping
and duplication of elements from arbitrary positions of the
channels. There is no significant difference in length between
the proof presented in [13] and the proof described here; but
the specification in [13] is significantly longer than the one
given in this paper, and the difference would be more visible
for larger examples. In addition, the present specification can
be enhanced with transitions, which makes it possible to apply
model-checking techniques as well for verification.

V. CONCLUSIONS AND ONGOING WORK

In this paper, we have presented a proof technique for
transition systems that is supported by CITP. The tool is
implemented in Maude and presents important advantages
over previous versions of CITP and other state-of-the-art
theorem provers, including a new induction scheme based on
membership axioms, a tactic for joining critical pairs, and
improved decision procedures. We have exemplified these



CRITERIA MEASURE [21] [22] [13] This work

Model LOC 286 208 195 114
Model + Extra predicates LOC 286 + 63 208 + 200 195 + 0 114 + 0
State predicates/invariants # 11 3 7 7
Lemmata # 7 10 1 0
Proof scripts LOC 5189 213 80 93
Proof scripts / # predicates LOC 471 71 11 13

Fig. 4: Comparison with similar case studies

features in a case study on the verification of the ABP; the
results obtained encourage us to continue this line of research.

As future work, we are interested in developing new
commands for performing bounded rewriting, hence preventing
infinite computations, and also for applying specific equations
or rules to a goal. We are also conducting more case studies
to assess the strong points of the current implementation and
provide a solid example database for future users.

From the point of view of the interface, we aim to provide
a graphical user interface that includes options for saving the
current proof and editing commands. Moreover, a web interface
would allow users to use the tool without installing it, while
providing an easy way to access the proofs developed so far.
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