
Birkhoff Completeness for
Hybrid-Dynamic First-Order Logic

– extended version‹ –
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Abstract. Hybrid-dynamic first-order logic is a kind of modal logic ob-
tained by enriching many-sorted first-order logic with features that are
common to hybrid and to dynamic logics. This provides us with a logical
system with an increased expressive power thanks to a number of distinc-
tive attributes: first, the possible worlds of Kripke structures, as well as
the nominals used to identify them, are endowed with an algebraic struc-
ture; second, we distinguish between rigid symbols, which have the same
interpretation across possible worlds – and thus provide support for the
standard rigid quantification in modal logic – and flexible symbols, whose
interpretation may vary; third, we use modal operators over dynamic-
logic actions, which are defined as regular expressions over binary nom-
inal relations. In this context, we propose a general notion of hybrid-
dynamic Horn clause and develop a proof calculus for the Horn-clause
fragment of hybrid-dynamic first-order logic. We investigate soundness
and compactness properties for the syntactic entailment system that cor-
responds to this proof calculus, and prove a Birkhoff-completeness result
for hybrid-dynamic first-order logic.

1 Introduction

The dynamic-reconfiguration paradigm is a most promising approach in the de-
velopment of highly complex and integrated systems of interacting ‘components’,
which now often evolve dynamically, at run time, in response to internal or ex-
ternal stimuli. More than ever, we are witnessing a continuous increase in the
number of applications with reconfigurable features, many of which have aspects
that are safety- or security-critical. This calls for suitable formal-specification
and verification technologies, and there is already a significant body of research
on this topic; hybrid(ized) logics [2,17], first-order dynamic logic [15], and modal
µ-calculus [14] are three prominent examples, among many others.

‹ This paper is an extended version of [10] (presented at TABLEAUX 2019); it includes
appendices with proofs of the lemmas and propositions supporting the main results.
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The application domain of the work reported in this contribution refers to a
broad range of reconfigurable systems whose states or configurations can be pre-
sented explicitly, based on some kind of context-independent data types, and for
which we distinguish the computations performed at the local/configuration level
from the dynamic evolution of the configurations. This suggests a two-layered
approach to the design and analysis of reconfigurable systems, involving a local
view, which amounts to describing the structural properties of configurations,
and a global view, which corresponds to a specialized language for specifying
and reasoning about the way system configurations evolve.

In this paper, we develop sound and complete proof calculi for a new modal
logic (recently proposed in [11]) that provides support for the reconfiguration
paradigm. The logic, named hybrid-dynamic first-order logic, is obtained by
enriching first-order logic (FOL) – regarded as a parameter for the whole con-
struction – with both hybrid and dynamic features. This means that we model
reconfigurable systems as Kripke structures (or transition systems), where:

– from a local perspective, we consider a dedicated FOL-signature for configu-
rations, and hence capture configurations as first-order structures; and

– from a global perspective, we consider a second FOL-signature for the possi-
ble worlds of the Kripke structure; the terms over that signature are nominals
used to identify configurations, and the binary nominal relations are regarded
as modalities, which capture the transitions between configurations.

Sentences are build from equations and relational atoms over the two first-order
signatures mentioned above (one pertaining to data, and the other to possible
worlds) by using Boolean connectives, quantifiers, standard hybrid-logic opera-
tors such as retrieve and store, and dynamic-logic operators such as necessity
over structured actions, which are defined as regular expressions over modalities.
In practice, actions are used to capture specific patterns of reconfigurability.

The construction is reminiscent of the hybridization of institutions from [17,7]
and of the hybrid-dynamic logics presented in [1,16], but it departs fundamen-
tally from any of those studies due to the fact that the possible worlds of the
Kripke structures that we consider here have an algebraic structure. This spe-
cial feature of the logic that we put forward is extremely important for dealing
with reconfigurable systems whose states are obtained from initial configurations
by applying constructor operations; see, e.g. [12]. In this context, we advance a
general notion of Horn clause, which allows the use of implications, universal
quantifiers, as well as the hybrid- and dynamic-logic operators listed above.

Besides the fact that it relies on an algebraic structure for possible worlds, the
notion of Horn clause that we use in this paper also allows structured actions for
(a) the conditions of logical implication, and (b) the arguments of the necessity
operator. This feature distinguishes the present work from [8], where the first
author reported a Birkhoff completeness result for hybrid logics. That is, the
Horn clauses that we study in this paper are strictly, and significantly, more
expressive than those considered before; this poses a series of new challenges
in developing a completeness result. We show that any set of Horn clauses has
an initial model despite the fact that the structured actions alone do not have
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this property. In addition, we provide proof rules to reason formally about the
properties of those Kripke structures that are specified using Horn clauses. To
conclude, the main result of the paper is a completeness theorem for the Horn-
clause fragment of hybrid-dynamic first-order logic.

A brief comparison with the work recently reported in [11] is also in order:
both papers deal with properties of hybrid-dynamic first-order logic (with [11]
being the contribution in which we introduced the logic); and in both papers we
examine Horn clauses; but the results that we develop are complementary: in [11],
we focused on an initiality result and on Herbrand’s theorem, whereas here we
advance proof calculi for the logic. This latter endeavour is much more complex,
because it deals with syntactic entailment instead of semantic entailment.

The paper is structured as follows: Section 2 is devoted to the definition
of hybrid-dynamic first-order logic. Then, in Section 3, we discuss entailment
systems and present the problem we aim to solve. Once the preliminaries are
set, we proceed in a layered fashion, in the sense that we consider progressively
more complex entailment relations, which are adequate for different fragments
of hybrid-dynamic first-order logic. In Section 4 we study completeness for the
atomic fragment of the logic. Building on that result, in Section 5 we develop a
quasi-completeness result for entailments where the left-hand side is an arbitrary
set of Horn clauses, but the right-hand side is only an atomic sentence or an
action relation. Finally, in Section 6, we generalize completeness to the full Horn-
clause fragment of hybrid-dynamic first-order logic. Proofs of the lemmas and
propositions that support the main results can be found in the Appendices A–D.

2 Hybrid-Dynamic First-Order Logic

The hybrid-dynamic first-order logic with user-defined sharing3 (HDFOLS) that
we examine in this work is based on ideas that are similar to those used to define
hybrid first-order logic [2] and hybrid first-order logic with rigid symbols [7,5].

We present HDFOLS from an institutional perspective [13], meaning that we
focus on signatures and signature morphisms (though, for the purpose of this
paper, inclusions would suffice), Kripke structures and homomorphisms, sen-
tences, and the (local) satisfaction relation and condition that relate the syntax
and the semantics of the logic. However, other than the notations used, the text
requires no prior knowledge of institution theory, and should be accessible to
readers with a general background in modal logic and first-order model theory.
In order to establish some of the notations used in the rest of the paper, we
briefly recall the notion of (many-sorted) first-order signature: a FOL-signature
is a triple pS, F, P q, where S is a set of sorts, F is a family tFarÑsuarPS˚,sPS of
sets of operation symbols, indexed by arities ar P S˚ and sorts s P S, and P is
family tParuarPS˚ of sets of relation symbols, indexed by arities ar P S˚.

Signatures. The signatures of HDFOLS are tuples ∆ “ pΣn, Σr Ď Σq, where:

3 This last attribute is meant to indicate the fact that users have control over the
symbols that should be interpreted the same across the worlds of a Kripke structure.
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1. Σn “ pSn, F n, P nq is a FOL-signature of nominals such that Sn “ t‹u,
2. Σr “ pSr, F r, P rq is a FOL-signature of so-called rigid symbols, and
3. Σ “ pS, F, P q is a FOL-signature of both rigid and flexible symbols.

We let Sf “ SzSr, and F f and P f be the sub-families of F and P that consist of
flexible symbols (obtained by removing rigid symbols). In general, we denote by
∆ or ∆1 signatures of the form pΣn, Σr Ď Σq or pΣ1n, Σ1r Ď Σ1q, respectively.

Signature morphisms. A signature morphism ϕ : ∆ Ñ ∆1 consists of a pair of
FOL-signature morphisms ϕn : Σn Ñ Σ1n and ϕ : Σ Ñ Σ1 such that ϕpΣrq Ď Σ1r.

Kripke structures. The models of a signature ∆ are pairs pW,Mq, where:

1. W is a Σn-model, for which we denote by |W | the carrier set of the sort ‹;
2. M “ tMwuwP|W | is a family of Σ-models, indexed by worlds w P |W |, such

that the rigid symbols4 have the same interpretation across possible worlds;
i.e., Mw1,ς “Mw2,ς for all worlds w1, w2 P |W | and all symbols ς in Σr.

Kripke homomorphisms. A morphism h : pW,Mq Ñ pW 1,M 1q is also a pair

pW
h
Ñ W 1, tMw

hw
Ñ M 1

hpwquwP|W |q consisting of first-order homomorphisms such

that hw1,s “ hw2,s for all possible worlds w1, w2 P |W | and all rigid sorts s P Sr.

Actions. As in dynamic logic, HDFOLS supports structured actions obtained
from atoms using sequential composition, union, and iteration. The set An of
actions over Σn is defined in an inductive fashion, according to the grammar:
a ::“ λ | a ; a | a Y a | a˚, where λ P P n

‹‹ is a binary nominal relation. Given a
natural number n ą 0, we denote by an the composition a ; ¨ ¨ ¨ ; a (where the
action a occurs n times); and we let a0pk1, k2q denote the equation k1 “ k2.

Actions are interpreted in Kripke structures as accessibility relations between
possible worlds. This is done by extending the interpretation of binary modal-
ities (from P n

‹‹): Wa1;a2 “ Wa1 ; Wa2 (diagrammatic composition of relations),
Wa1Ya2

“Wa1
YWa2

(union), and Wa˚ “ pWaq
˚ (reflexive & transitive closure).

Hybrid terms. For every Σn-model W , the family TW “ tTWw uwP|W | of sets of
hybrid terms over W is defined inductively according to the following rules:

(1)
w0 P |W | τ P TWw0,ar

σpτq P TWw,s

[ σ P F r
arÑs ]

(2)
w0 P |W | τ P TWw0,ar

σpw0; τq P TWw,s

[ σ P F f
arÑs, s P S

r ]

(3)
w P |W | τ P TWw,ar

σpw; τq P TWw,s

[ σ P F f
arÑs, s P S

f ]

Notice that flexible operation symbols receive a possible world w P |W | as a
parameter, while rigid operation symbols keep their initial arity. It is easy to
check that the hybrid terms of rigid sorts are shared across the worlds.

Fact 1. TWw1,s “ TWw2,s for all possible worlds w1, w2 P |W | and all sorts s P Sr.

Given a world w P |W |, the S-sorted set TWw can be regarded as a Σ-model by
interpreting every rigid operation symbol σ : ar Ñ s as the function that maps
(tuples of) hybrid terms τ P TWw,ar to σpτq P TWw,s, every flexible operation symbol

σ : ar Ñ s as the function that maps hybrid terms τ P TWw,ar to σpw; τq P TWw,s,
and every relation symbol (either rigid or flexible) as the empty set.

4 By symbol we usually refer to sorts as well, not only to operation/relation symbols.
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Lemma 2 (Hybrid-term model and its freeness). For every Σn-model
W , pW,TW q is a ∆-model. Moreover, for any ∆-model pW 1,M 1q and first-
order Σn-homomorphism f : W Ñ W 1, there exists a unique ∆-homomorphism
h : pW,TW q Ñ pW 1,M 1q that agrees with f on W . [\

Standard term model. When W is the first-order term model TΣn , by Lemma 2
we obtain the standard hybrid-term model over ∆, denoted pTΣn , tT∆k ukPTΣn q.

The initiality of the standard term model provides a straightforward inter-
pretation of hybrid terms in ∆-models pW,Mq: for every hybrid term t P T∆k ,
we denote by pW,Mqt or Mhpkq,t the image of t under the function hk, where h

is the unique homomorphism pTΣn , T∆q Ñ pW,Mq.

Reachable hybrid-term models. We say that a first-order Σn-model W is reach-
able if the unique homomorphism TΣn Ñ W is surjective. In a similar manner,
for HDFOLS, we say that a ∆-model pW,Mq is reachable if the unique homomor-
phism h : pTΣn , T∆q Ñ pW,Mq is (componentwise) surjective. In order to avoid
naming the homomorphism, we make the following notation.

Notation 3. If a ∆-model pW,Mq is reachable, then we may denote by r s the
unique homomorphism pTΣn , T∆q Ñ pW,Mq given by the initiality of pTΣn , T∆q.

Proposition 4 (Reachability of hybrid term models). If W is a reachable
first-order model of Σn, then pW,TW q is reachable for the signature ∆. [\

Sentences. The atomic sentences ρ defined over a signature ∆ are given by:

ρ ::“ k1 “ k2 | λpk1q | t1 “k,s t2 | $ptq | πpk; tq

where k, ki P TΣn are nominal terms, k1 is a tuple of terms corresponding to the
arity of λ P P n, ti P T

∆
k,s and t P T∆k,ar are (tuples of) hybrid terms,5 $ P P r

ar ,

and π P P f
ar . We refer to these sentences, in order, as nominal equations, nominal

relations, hybrid equations, rigid hybrid relations, and non-rigid/flexible hybrid
relations, respectively. When there is no danger of confusion, we may drop one
or both subscripts k, s from the notation t1 “k,s t2. Full sentences over ∆ are
built from atomic sentences according to the following grammar:

γ ::“ ρ | apk1, k2q | @k γ |  γ |
Ź

Γ | Óz ¨ γ1 | @X ¨ γ2 | rasγ | poq γ

where k, ki P TΣn are nominal terms, a P An is an action, Γ is a finite set
of sentences, z is a nominal variable, γ1 is a sentence over the signature ∆rzs
obtained by adding z as a new constant to F n, X is a set of nominal and/or
rigid variables, γ2 is a a sentence over the signature ∆rXs obtained by adding the
elements of X as new constants to F n and F r, and o P F n

‹Ñ‹. Other than the first
two kinds of sentences (atoms and action relations), we refer to the sentence-
building operators, in order, as retrieve, negation, conjunction, store, universal
quantification, necessity, and next, respectively. Notice that necessity and next
are parameterized by actions and by unary nominal operations, respectively.

5 Note that, by Fact 1, if the arity ar is rigid, then the sets tT∆k,arukPTΣn coincide.
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We denote by SenHDFOLSp∆q the set of all HDFOLS-sentences over ∆.

The local satisfaction relation. Given a ∆-model pW,Mq and a world w P |W |,
we define the satisfaction of ∆-sentences at w by structural induction as follows:

1. For atomic sentences:
– pW,Mq (w k1 “ k2 iff Wk1 “Wk2 for all nominal equations k1 “ k2;
– pW,Mq (w λpkq iff Wk PWλ for all nominal relations λpkq;
– pW,Mq (w t1 “k t2 iff MWk,t1 “MWk,t2 for all hybrid equations t1 “k t2;
– pW,Mq (w $ptq iff pW,Mqt PMw,$ for all rigid relations $ptq;
– pW,Mq (w πpk; tq iff pW,Mqt PMWk,π for flexible relations πpk; tq.
2. For full sentences:
– pW,Mq (w apk1, k2q iff pWk1 ,Wk2q PWa for all action relations apk1, k2q;
– pW,Mq (w @k γ iff pW,Mq (w

1

γ, where w1 “Wk;
– pW,Mq (w  γ iff pW,Mq *w γ;
– pW,Mq (w

Ź

Γ iff pW,Mq (w γ for all γ P Γ ;
– pW,Mq (w Óz ¨ γ iff pW,MqzÐw (w γ, where pW,MqzÐw is the unique
∆rzs-expansion6 of pW,Mq that interprets the variable z as w;

– pW,Mq (w @X ¨ γ iff pW 1,M 1q (w γ for all ∆rXs-exp.6 pW 1,M 1q of pW,Mq;
– pW,Mq (w rasγ iff pW,Mq (w

1

γ for all w1 P |W | such that pw,w1q PWa;
– pW,Mq (w poq γ iff pW,Mq (w

1

γ, where w1 “Wopwq.

Fact 5. The following two properties can be checked with ease:

1. The satisfaction of atoms and of action relations ρ does not depend on the
possible worlds: pW,Mq (w ρ iff pW,Mq (w

1

ρ for all w,w1 P |W |.
2. The satisfaction of atoms and of action relations ρ is preserved by homomor-

phisms: if pW,Mq ( ρ and h : pW,Mq Ñ pW 1,M 1q then pW 1,M 1q ( ρ.

To state the satisfaction condition – and thus finalize the presentation of
HDFOLS – let us first notice that every signature morphism ϕ : ∆Ñ ∆1 induces
appropriate translations of sentences and reductions of models, as follows: every
∆-sentence γ is translated to a ∆1-sentence ϕpγq by replacing (usually in an
inductive manner) the symbols in ∆ with symbols from ∆1 according to ϕ; and
every ∆1-model pW 1,M 1q is reduced to a ∆-model pW 1,M 1qæϕ that interprets
every symbol x in ∆ as pW 1,M 1qϕpxq. When ϕ is an inclusion, we usually denote
pW 1,M 1qæϕ by pW 1,M 1qæ∆ – in this case, the model reduct simply forgets the
interpretation of those symbols in ∆1 that do not belong to ∆.

The following satisfaction condition can be proved by induction on the struc-
ture of ∆-sentences. Its argument is essentially identical to those developed for
several other variants of hybrid logic presented in the literature (see, e.g. [5]).

Proposition 6 (Local satisfaction condition for signature morphisms).
For every signature morphism ϕ : ∆Ñ ∆1, ∆1-model pW 1,M 1q, world w1 P |W 1|,
and ∆-sentence γ, we have: pW 1,M 1q (w ϕpγq iff pW 1,M 1qæϕ (

w γ.7 [\

6 In general, by a ∆rXs-expansion of pW,Mq we understand a ∆rXs-model pW 1,M 1
q

that interprets all symbols in ∆ in the same way as pW,Mq.
7 By the definition of reducts, pW 1,M 1

q and pW 1,M 1
qæϕ have the same possible worlds.
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Substitutions. Consider two signature extensions ∆rXs and ∆rY s with sets of
variables, and let X “ Xn YX r and Y “ Y n Y Y r be the partitions of X and Y
into sets of nominal variables and rigid variables. A ∆-substitution θ : X Ñ Y

consists of a pair of functions θn : Xn Ñ TΣnrY ns and θr : X r Ñ T
∆rY s
k , where k

is a nominal term – note that, since the sorts of the hybrid variables are rigid,
by Fact 1, it does not matter which nominal term k we choose.

Similarly to signature morphisms, ∆-substitutions θ : X Ñ Y determine
translations of ∆rXs-sentences into ∆rY s-sentences, and reductions of ∆rY s-
models to ∆rXs-models. The proofs of the next two propositions are similar to
the ones given in [9] for hybrid substitutions.

Proposition 7 (Local satisfaction condition for substitutions). For every
∆-substitution θ : X Ñ Y , every ∆rY s-model pW,Mq, world w P |W |, and ∆rXs-
sentence γ, we have: pW,Mq (w θpγq iff pW,Mqæθ (

w γ. [\

Fact 8. Let θzÐk : tzu Ñ H be the substitution that maps the nominal variable
z to the term k. Then pW,MqæθzÐk “ pW,Mq

zÐk for every model pW,Mq.

Propositions 7 and 9 (below) have an important technical role in the Birkhoff
completeness proofs presented in the later sections of the paper.

Proposition 9 (Subst. generated by expansions of reachable models).
If pW,Mq is reachable, then for every ∆rXs-expansion pW 1,M 1q of pW,Mq there
exists a ∆-substitution θ : X ÑH such that pW,Mqæθ “ pW

1,M 1q. [\

Expressive power. Fact 5 highlights one of the main distinguishing features
of HDFOLS: the satisfaction of atomic sentences, whether they involve flexible
symbols or not, does not depend on the possible world where the sentences are
evaluated. This contrasts the standard approach in hybrid logic, where each
nominal is regarded as an atomic sentence satisfied precisely at the world that
corresponds to the interpretation of that nominal. In HDFOLS, the dependence
of the satisfaction of sentences on possible worlds is explicit rather than implicit,
and is achieved through the store operator. Following the lines of [9, Section 4.3],
one can show that even without considering action relations, HDFOLS is strictly
more expressive than other standard hybrid logics constructed from the same
base logic such as the hybrid first-order logic with rigid symbols [7,5].

3 Entailment

Let Γ and Γ 1 be two sets of sentences over a signature ∆. We say that Γ se-
mantically entails Γ 1, or that Γ 1 is a semantic consequence of Γ , and we write
Γ (∆ Γ 1, when every ∆-model that satisfies Γ satisfies Γ 1 too. When the set
Γ 1 is a singleton tγu, we simplify the notation to Γ (∆ γ. Moreover, we usually
drop the subscript ∆ when the signature can be easily inferred from the context.

Horn clauses. The problem we propose to address in this paper is that of finding
a suitable syntactic characterisation of entailments of the form Γ ( γ, where
both Γ and γ correspond to the Horn-clause fragment of HDFOLS.
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By Horn clause, we mean a sentence obtained from atomic sentences by
repeated applications of the following sentence-building operators, in any order:
(a) retrieve (b) implication such that the condition is a conjunction of atomic
sentences or action relations, (c) store, (d) universal quantification, (e) necessity,
and (f ) next. We denote by HDCLS the Horn-clause fragment of HDFOLS, and
by SenHDCLSp∆q the set of all Horn clauses over the signature ∆.

In the next sections, we develop a series of syntactic entailment relations,
whose corresponding entailments are denoted by Γ $ γ. All of them are sound,
in the sense that Γ $ γ implies Γ ( γ; and some are also compact, which means
that, whenever Γ $ γ, there exists a finite subset Γf Ď Γ such that Γf $ γ.

As in previous studies on Birkhoff completeness [4,8], we follow a layered
approach. This means that we distinguish the atomic layer of HDCLS from the
layer of general Horn clauses. The former is intrinsically dependent on the details
of HDCLS, whereas the latter is in essence logic-independent, and can easily be
adapted to other hybrid-dynamic logics, not necessarily based on first-order logic.
The same ideas apply, for example, to hybrid-dynamic propositional logic.

Nominal replacement. In order to capture syntactically relations between hy-
brid terms that correspond to different nominals, we introduce a way to replace
nominals with nominals within hybrid terms. Given two nominals k1 and k2, let
f : TΣn Ñ TΣn be the function that maps k1 to k2 and leaves the other nominals
unchanged. We define the family tδk1{k2,k : T∆k Ñ T∆fpkqukPTΣn by induction:

1. δk1{k2,kpσptqq “ σpδk1{k2,k0ptqq when σ P F r
arÑs and t P T∆k0,ar ;

2. δk1{k2,kpσpk0; tqq “ σpfpk0q; δk1{k2,k0ptqq when σ P F f
arÑs, s P S

r, t P T∆k0,ar ;

3. δk1{k2,kpσpk; tqq “ σpfpkq; δk1{k2,kptqq when σ P F f
arÑs, s P S

f, and t P T∆k,ar .

We usually drop the subscript k, and denote the map δk1{k2,k simply by δk1{k2 .

4 Atomic completeness

In this section, we focus on a completeness result for the atomic fragment of
HDCLS. There are two major advancements that distinguish the work presented
herein from previous contributions (see, e.g. [8]): (a) the state space of every
Kripke model is equipped with a full algebraic structure, and (b) the signatures
can have flexible sorts – instead of being restricted to rigid sorts only.

To start, let $ be the syntactic entailment relation generated by the rules
listed in Figure 1. The following soundness and compactness result can be proved
in essentially the same way as in [8]. In particular, the compactness property
follows from the fact that all rules have a finite number of premises.

Proposition 10 (Atomic soundness & compactness). The atomic syntac-
tic entailment relation $ is both sound and compact. [\

As it is often the case, completeness is much more difficult to prove, and
relies on a number of preliminary results. For the developments presented in this
section, we make use of a specific notion of congruence on a Kripke structure.
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pRn
q

Γ $ k “ k
pSn
q

Γ $ k1 “ k2

Γ $ k2 “ k1
pTn
q

Γ $ k1 “ k2 Γ $ k2 “ k3

Γ $ k1 “ k3

pFn
q
a

Γ $ k1 “ k2

Γ $ opk1q “ opk2q
pPn
q
Γ $ λpk1q Γ $ k1 “ k2

Γ $ λpk2q
pWh

q
Γ $ k “ k1

Γ $ t “k,s δk1{kptq
[ s P Sr ]

pWr
q

Γ $ t1 “k1,s t2

Γ $ t1 “k2,s t2
[ s P Sr ] pWf

q
Γ $ k “ k1 Γ $ t1 “k t2

Γ $ δk{k1pt1q “k1 δk{k1pt2q

pRh
q

Γ $ t “ t
pSh
q

Γ $ t1 “ t2

Γ $ t2 “ t1
pTh
q

Γ $ t1 “k,s t2 Γ $ t2 “k,s t3

Γ $ t1 “k,s t3

pFr
q

Γ $ t1 “k,ar t2

Γ $ σpt1q “k,s σpt2q
[ σ P F r

arÑs ] pFf
q

Γ $ t1 “k,ar t2

Γ $ σpk; t1q “k,s σpk; t2q
[ σ P F f

arÑs ]

pPr
q
Γ $ t1 “k t2 Γ $ πpt1q

Γ $ πpt2q
[ π P P r ] pPf

q
Γ $ t1 “k t2 Γ $ πpk; t1q

Γ $ πpk; t2q
[ π P P f ]

pPh
q
Γ $ k1 “ k2 Γ $ πpk1; t1q

Γ $ πpk2; δk1{k2pt1qq
[ π P P f ] pRet0q

Γ $ @k ρ

Γ $ ρ
[ ρ is atomic ]

a For brevity, Γ $ k1 “ k2 stands for Γ $ k1,i “ k2,i for all indexes i of the two tuples.

Fig. 1. Proof rules for atomic sentences

Definition 11 (Congruence). Let ∆ “ pΣn, Σr Ď Σq be a HDCLS-signature,
and pW,Mq a Kripke structure for it. A ∆-congruence on pW,Mq is a family
” “ t”wuwP|W | of Σ-congruences ”w on Mw, for each possible world w P |W |,
such that p”w1,sq “ p”w2,sq for all worlds w1, w2 P |W | and rigid sorts s P Sr.

The next construction is a straightforward generalization of its first-order
counterpart, and has been studied in several other papers in the literature (see,
e.g. [8]). For that reason, we include it for further reference without a proof.

Proposition 12 (Quotient model). Every ∆-congruence ” on pW,Mq deter-
mines a quotient-model homomorphism p {”q : pW,Mq Ñ pW,M{”q that acts
as an identity on W , and for which pM{”qw is the quotient Σ-model Mw{”w.

Moreover, p {”q has the following universal property: for any Kripke homo-
morphism h : pW,Mq Ñ pW 1,M 1q such that ” Ď kerphq,8 there exists a unique
homomorphism h1 : pW,M{”q Ñ pW 1,M 1q such that p {”q ; h1 “ h.9 [\

We prove the atomic completeness of HDCLS in two steps: first, for nominal
equations only; then, for arbitrary atomic sentences (both nominal and hybrid).
According to the lemma below, every set of nominal equations Γ n admits a ‘least’
Kripke structure pW n,Mnq that encapsulates the formal deduction of equations.

8 This means that hw,spa1q “ hw,spa2q for all a1, a2 PMw,s such that a1 ”w,s a2.
9 Note that we use the diagrammatic notation for function composition.
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Lemma 13 (Least Kripke structure of a set of nominal equations). For
every set Γ n of nominal equations over a signature ∆, there exists a reachable
initial model pW n,Mnq such that Γ n $ ρ if and only if pW n,Mnq ( ρ, for all
nominal or hybrid equations ρ over the signature ∆. [\

The following proposition shows that a set Γ of (nominal or hybrid) equations
generates a congruence on a reachable Kripke structure pW,Mq when Γ entails
all the equations satisfied by pW,Mq. In particular, the result holds when Γ
includes the set of all equations that are satisfied by pW,Mq.

Proposition 14 (Congruence generated by a set of equations). Consider
a set Γ of equations over a signature ∆, and a reachable ∆-model pW,Mq such
that Γ $ ρ for all equations ρ satisfied by pW,Mq. For all w P |W |, let ”w be
the relation on Mw defined by τ1 ”w τ2 whenever Γ $ t1 “k t2 for some k P TΣn

and t1, t2 P T
∆
k such that w “Wk, and τi “Mw,ti . Then:

P1. rt1s ”rks rt2s iff Γ $ t1 “k t2, for all k P TΣn and t1, t2 P T
∆
k ;

P2. ” is a ∆-congruence on pW,Mq. [\

Now we can finally prove the completeness result for atomic sentences.

Theorem 15 (Atomic completeness). Every set Γ of atomic sentences over
a signature ∆ has a reachable initial model pWΓ ,MΓ q such that Γ $ ρ if and
only if pWΓ ,MΓ q ( ρ, for all atomic sentences ρ over ∆.

Proof. Let Γ n be the subset of nominal equations in Γ . By Lemma 13, there
exists a initial model pW n,Mnq of Γ n such that Γ n $ ρ iff pW n,Mnq ( ρ for all
equations ρ over ∆. Then pW n,Mnq satisfies the hypotheses of Proposition 14
with respect to the set of all (nominal or hybrid) equations in Γ . It follows that
the relation ” defined by rt1s ”rks rt2s whenever Γ $ t1 “k t2, for all nominals

k and all terms t1, t2 P T
∆
k,s, is a congruence on pW n,Mnq. We define pWΓ ,MΓ q

as the model obtained from pW n,Mn{”q by interpreting:

– each nominal relation symbol λ P P n as WΓ
λ “ trks P |W

n| | Γ $ λpkqu;
– each relation symbol $ P P r as MΓ

rks,$ “ trts{”rks PM
Γ
rks | Γ $ $ptqu;

– each relation symbol π P P f as MΓ
rks,π “ trts{”rks PM

Γ
rks | Γ $ πpk; tqu.

Note that the interpretations of $ P P r and π P P f are independent of the
choice of the nominal k. For example, for flexible relation symbols, if rks “ rk1s
then Γ $ k “ k1; therefore, if Γ $ πpk; tq, we also have Γ $ πpk1; t1q by pPhq,
where t1 “ δk{k1ptq is a tuple of hybrid terms that satisfies rts ”rks rt1s.

The fact that pWΓ ,MΓ q is a reachable model of Γ follows in a straightfor-
ward manner by construction. Therefore, we focus on the initiality property. Let
pW,Mq be a ∆-model that satisfies Γ . In particular, pW,Mq satisfies all nominal
equations in Γ . By Lemma 13, we deduce that there exists a unique homomor-
phism h : pW n,Mnq Ñ pW,Mq. We also know that pW,Mq satisfies all hybrid
equations in Γ , which implies that ” Ď kerphq. By Proposition 12, this means
that there exists a unique Kripke homomorphism h1 : pW n,Mn{”q Ñ pW,Mq
such that p {”q ; h1 “ h. To finalize this part of the proof, we need to ensure
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that h1 preserves the interpretation of all relation symbols (nominal or hybrid)
satisfied by pWΓ ,MΓ q. We only consider the case of flexible relation symbols.
Nominal relations and rigid relations can be treated in a similar manner. Sup-
pose π P P f

ar and τ P MΓ
rks,π, for an arbitrary but fixed nominal k P TΣn . Then:

1 Γ $ πpk; tq for some tuple of terms
t P T∆k,ar such that τ “ rts{”rks

by the definition of MΓ
rks,π

2 Γ ( πpk; tq by Proposition 10

3 pW,Mq ( πpk; tq since pW,Mq ( Γ

4 Mw,t PMw,π for w “Wk by the definition of (

5 h1pτq PMw,π since h1pτq “ h1prts{”rksq “Mw,t

Lastly, we show that Γ $ ρ iff pWΓ ,MΓ q ( ρ, for all atomic sentences ρ. The
‘only if’ part is straightforward since pWΓ ,MΓ q is a model of Γ . For the ‘if’ part,
we proceed by case analysis on the structure of ρ. The more interesting cases
are those of relational atoms. Suppose, for instance that pWΓ ,MΓ q ( πpk; tq,
where π P P f

ar , k P TΣn , and t P T∆k,ar . If follows that:

1 rts{”rks PM
Γ
rks,π by the definition of (

2 Γ $ πpk; t1q for some tuple of terms
t1 P T∆k,ar such that rt1s ”rks rts

by the definition of MΓ
rks,π

3 Γ $ t “k,ar t1 by Proposition 14

4 Γ $ πpk; tq by the proof rule pPf
q [\

5 Quasi-completeness

The main contribution in this section is the construction, for any set of Horn
clauses, of an initial model that encapsulates the syntactic deduction of atomic
sentences and action relations. An initiality result is obtained in [11] as well, but
in that paper it is based on the semantic entailment. In contrast, the present
result is based on syntactic deduction, which requires a higher level of complexity,
and it is developed in the context of a modular approach to completeness. This
means that the present results are applicable to other modal logics, where some
of the sentence-building operators considered here may be disregarded.

We focus on entailments of the form Γ ( ρ, where Γ is an arbitrary set of
Horn clauses, and ρ is either an atomic sentence, or an action relation. To that
end, let $ be the syntactic entailment relation generated by the rules listed in
Figures 1, 2 and 3. The soundness and compactness result presented in Section 4
can be generalized with ease for the entailment relation $ that we consider here.

Proposition 16. The entailment relation $ is sound and compact. [\

Fact 17 (Retrieve redundancies). For all nominals k1, k2 P TΣn and all sen-
tences γ over a signature ∆, the sentences @k1 @k2 γ and @k2 γ are both syntac-
tically and semantically equivalent. Moreover, if ρ is atomic or an action relation,
then @kn ρ is syntactically and semantically equivalent to ρ.
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pCompq
Γ $ a1pk1, k2q Γ $ a2pk2, k3q

Γ $ pa1 ; a2qpk1, k3q
pUnionq

Γ $ aipk1, k2q

Γ $ pa1 Y a2qpk1, k2q
[ i P t1, 2u ]

pReflq
Γ $ k1 “ k2

Γ $ a˚pk1, k2q
pStarq

Γ $ apki, ki`1q for 0 ď i ă n

Γ $ a˚pk0, knq
pRetaq

Γ $ @k apk1, k2q

Γ $ apk1, k2q

Fig. 2. Proof rules for action relations

pRet@q
Γ $ @k1 @k2 γ

Γ $ @k2 γ
pRetIq

Γ $ γ

Γ $ @k γ
pImpEq

Γ $ @k p
Ź

H ñ γq

Γ YH $ @k γ

pStoreEq
a

Γ $ @k Óz ¨ γ

Γ $ @k θzÐkpγq
pSubstqq

b
Γ $ @k @X ¨ γ

Γ $ @k θpγq

pNecEq
Γ $ @k1 rasγ Γ $ apk1, k2q

Γ $ @k2 γ
pNextEq

Γ $ @k poq γ

Γ $ @opkq γ

a Recall that θzÐk : tzu Ñ H is the substitution that maps z to the nominal k.
b θ : X ÑH is a ground substitution.

Fig. 3. Proof rules for Horn clauses

To prove that $ is also complete, we first extend Theorem 15 to entailments
Γ $ ρ for which Γ is a set of atoms and ρ is either atomic or an action relation.

Proposition 18 (Extending atomic completeness). Let Γ be a set of atomic
sentences over a signature ∆, and pWΓ ,MΓ q a reachable initial model of Γ as in
Theorem 15. Then Γ $ ρ if and only if pWΓ ,MΓ q ( ρ, for all atomic sentences
or action relations ρ over the signature ∆. [\

The result below shows that, in order to obtain an initial model of a set Γ
of clauses, it suffices to consider the initial model pWΓ0,MΓ0q of the set Γ0 of
atoms entailed by Γ . Moreover, pWΓ0 ,MΓ0q satisfies all clauses entailed by Γ .

Theorem 19 (Initiality preserves formal deductions). Let Γ be a set of
clauses over a signature ∆, Γ0 “ tρ P SenHDCLSp∆q | Γ $ ρ & ρ is atomicu,
and pWΓ0 ,MΓ0q a reachable initial model of Γ0 as in Theorem 15. Then Γ $ γ
implies pWΓ0 ,MΓ0q ( γ for all Horn clauses γ over ∆.

Proof. Since the model pWΓ0 ,MΓ0q is reachable, it suffices to prove that Γ $
@k γ implies pWΓ0 ,MΓ0q ( @k γ for all nominals k P TΣn and Horn clauses
γ P SenHDCLSp∆q. We proceed by structural induction on γ.

For the base case, assume Γ $ @k γ, where γ is atomic. It follows that:

1 Γ $ γ by pRet0q in Figure 1

2 γ P Γ0 by the definition of Γ0

3 Γ0 $ γ by the monotonicity of $

4 pWΓ0 ,MΓ0q ( γ by Theorem 15

5 pWΓ0 ,MΓ0q ( @k γ by Fact 17
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For the induction step, we proceed by case analysis on the topmost sentence-
building operator of γ. We only present the case corresponding to the necessity
operator. Proofs for the remaining cases can be found in Appendix C.

[ Γ $ @k rasγ ] Let w “ WΓ0

k . We want to show that pWΓ0 ,MΓ0q (w
1

γ for all
possible worlds w1 such that pw,w1q PWΓ0

a . Given such a possible world, since
the model pWΓ0 ,MΓ0q is reachable, we know that there exists a nominal k1

such that w1 “WΓ0

k1 . It follows that:

1 pWΓ0 ,MΓ0q ( apk, k1q since pw,w1q PWΓ0
a

2 Γ0 $ apk, k1q by Proposition 18

3 Γf $ apk1, k2q for some finite Γf Ď Γ0 since $ is compact

4 Γ $ apk, k1q since Γ $ Γf and Γf $ apk1, k2q

5 Γ $ @k1 γ by pNecEq

6 pWΓ0 ,MΓ0q ( @k1 γ by the induction hypothesis

7 pWΓ0 ,MΓ0q (
w1 γ since w1 “WΓ0

k1 .
[\

We are now finally ready to tackle the quasi-completeness of HDCLS: the
initial model of a set of Horn clauses encapsulates the formal deduction of both
atomic sentences and action relations. Note that, in general, action relations are
not Horn clauses; nonetheless, we discuss their case too because it provides an
important technical tool for the final completeness result.

Corollary 20 (Quasi-completeness). Under the notations and hypotheses of
Theorem 19, pWΓ0 ,MΓ0q is also an initial model of Γ . Moreover, for all atomic
sentences or action relations ρ, the following statements are equivalent:

1. Γ ( ρ 2. pWΓ0 ,MΓ0q ( ρ 3. Γ $ ρ [\

6 Horn-clause completeness

This final technical section deals with Birkhoff completeness, which corresponds
to the existence of a syntactic characterization for the semantic entailment rela-
tion of HDCLS. This is practically very useful, because Horn clauses facilitate the
development of an operational semantics of formal specifications based on rewrit-
ing. For example, action relations can provide logical support for the rewriting
rules used in Maude [3], or for the transitions from CafeOBJ [6].

In order to generalize completeness to arbitrary Horn clauses, we need to
consider additional rules, which are particular to different kinds of clauses. We
say that a sentence is action-free if it contains no occurrences of any of the
action-building operators (composition, union, or transitive closure), and that it
is star-free if it contains no occurrences of the transitive-closure operator.

Notation 21. Consider the following fragments of HDFOLS. Each of them is
obtained through a specific restriction on sentences:

HDFOLSp1q – corresponding to action-free Horn clauses;
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pRetEq
Γ $∆rzs @z γ

Γ $∆ γ
pImpIq

Γ YH $ @k γ

Γ $ @k p
Ź

H ñ γq
pStoreIq

Γ $ @k θzÐkpγq

@k Óz ¨ γ

pQuantIq
Γ $∆rXs @k γ

Γ $∆ @k @X ¨ γ
pNecIq

Γ Y tapk, zqu $∆rzs @z γ

Γ $∆ @k rasγ
pNextIq

Γ $ @opkq γ

Γ $ @k poq γ

Fig. 4. Additional proof rules for Horn clauses

pCompIq
E Y ta1pk1, zq, a2pz, k2qu $

p2q
∆rzs e

E Y tpa1 ; a2qpk1, k2qu $
p2q
∆ e

[ E Y teu Ď SenHDFOLS
p∆q ]

pUnionIq
E Y taipk1, k2qu $

p2q e for i P t1, 2u

E Y tpa1 Y a2qpk1, k2qu $
p2q e

[ E Y teu Ď SenHDFOLS
p∆q ]

pStarIq
a
E Y tanpk1, k2qu $

p3q e for all n P N
E Y ta˚pk1, k2qu $

p3q e
[ E Y teu Ď SenHDFOLS

p∆q ]

a Note that this rule is infinitary; we only use it in the final result in Section 6.

Fig. 5. Additional proof rules for action relations

HDFOLSp2q – corresponding to star-free Horn clauses and action relations;
HDFOLSp3q – corresponding to Horn clauses and action relations.

Notice that HDFOLSp3q is the richest fragment, and that γ is a clause in HDFOLS
iff it is a Horn clause in HDFOLSp3q. We also define three entailment relations:

1. $p1q is generated by the proof rules in Figures 1–4, but restricts the appli-
cations of pNecIq to situations where a is a modality (i.e., an atomic action);

2. $p2q is generated by the proof rules in Figures 1–5, except pStarIq, and re-
stricted to applications of pCompIq and pUnionIq to star-free sentences;

3. $p3q is generated by all proof rules in Figures 1–5.

Notice also that $p3q is the most general one. Given a set of Horn clauses, $p3q

can be used to derive arbitrary Horn clauses from it, whereas $p2q can only be
used to derive star-free Horn clauses, and $p1q only action-free Horn clauses.

It is easy to check that all these entailment relations are sound – similarly to
Propositions 10 and 22, along the lines of [8]. Compactness, however, holds only
for the first two. That is because the rule pStarIq in Figure 5 is infinitary.

Proposition 22 (Soundness & compactness). The entailment relation $pxq

is sound, for all x P t1, 2, 3u. Moreover, $p1q and $p2q are also compact. [\

Our approach to completeness relies on the introduction rules in Figures 4
and 5. These allow us to simplify, for example, the action relations that may
appear in the left-hand side of the turnstile symbol during the proof process.
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Theorem 23 (Birkhoff completeness). Let x P t1, 2, 3u. For every set Γ of

Horn clauses in HDFOLS, and for every clause γ in HDFOLSpxq,

Γ ( γ implies Γ $pxq γ.

Proof. Notice that Γ ( γ implies Γ ( @k γ, for any nominal k. Therefore, given
the proof rule pRetEq, it suffices to prove that Γ ( @k γ implies Γ $pxq @k γ. We
proceed by induction on the structure of the sentence γ.

For the base case, where γ is an atomic sentence, the conclusion follows by
Fact 17, Corollary 20, and the fact that Γ $ γ implies Γ $pxq γ.

For the induction step, we consider only the case where γ is universally quan-
tified. The remaining cases can be proved in a similar fashion; see Appendix D.

[ Γ ( @k @X ¨ γ ] Then:

1 Γ (∆rXs @k γ by the general properties of (

2 Γ $
pxq
∆rXs @k γ by the induction hypothesis

3 Γ $
pxq
∆ @k @X ¨ γ by pQuantIq [\

To come to an end, notice that the entailment relation $p3q is sound (by
Proposition 22) and complete (by Theorem 23), but it is not compact, since the
rule pStarIq is infinitary. The next proposition shows this is the best result we
can obtain, because the semantic entailment relation in HDCLS is not compact.

Proposition 24 (Lack of compactness). HDCLS is not compact.

Proof (sketch). It suffices to consider a signature ∆ with two nominals, k and
k1, and two modalities, λ and α, and the set Γ “ tλnpk, k1q ñ αpk, k1q | n P Nu
of Horn clauses over ∆. Then the following properties hold:

1. Γ ( λ˚pk, k1q ñ αpk, k1q;
2. There is no finite subset Γf Ď Γ such that Γf ( λ˚pk, k1q ñ αpk, k1q. [\

7 Conclusions

The hybrid-dynamic first-order logic that we have studied in this paper is ob-
tained by enriching first-order logic with a unique combination of features that
are specific to hybrid and to dynamic logics. This provides a language that is
particularly well suited for specifying and reasoning about reconfigurable sys-
tems. More precisely, it allows us to capture reconfigurable systems as Kripke
structures whose possible worlds (a) have an algebraic structure, which supports
operations on configurations, and (b) are labelled with constrained first-order
models that capture the local structure of configurations. From a syntactic per-
spective, we define nominals and hybrid terms to refer to possible worlds and to
the elements of the first-order structures associated to those worlds. Terms are
then used to form nominal and hybrid equations, as well as relational atoms,
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from which we build complex sentences using Boolean connectives, quantifiers,
hybrid-logic operators such as retrieve and store, and dynamic-logic operators
such as necessity over actions, i.e., regular expressions over modalities.

In this context, we have developed a layered approach towards a Birkhoff
completeness result for hybrid-dynamic first-order logic. There are three major
layers to consider: first, the atomic layer, which deals with entailments where
both the premises and the conclusion are atomic sentences; second, a mixed
layer, which deals with entailments where the premises are Horn clauses, but
the conclusion is only an atomic sentence or an action relation; and third, the
general, Horn-clause layer, which deals with entailments where both the premises
and the conclusion are Horn clauses. For each of these layers, we have developed
sound and complete proof systems. Moreover, for the first two layers, the proof
systems considered have also been shown to be compact.

The third layer deserves more attention. In that case, we distinguish between
two main proof systems: (a) one that is compact, but complete only for entail-
ments whose conclusion is a star-free clause; and (b) one that is not compact,
but it is complete for all entailments. To conclude this line of developments, we
have shown that this is the best result one can obtain for hybrid-dynamic logic.

As mentioned already, thanks to its features and expressive power, hybrid-
dynamic first-order logic is a promising formalism for reasoning about reconfig-
urable systems. The work reported in this paper provides a rigorous foundation
for that purpose. Therefore, an important task to pursue further is the devel-
opment of a language, specification methodology, and appropriate tool support
(that implements the proof systems presented here) for this new logic.
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A Proofs for results presented in Section 2

Proof (of Lemma 2: The universal property of hybrid term models).

The fact that pW,TW q is a ∆-model is straightforward. For the ‘freeness’ part,
we define thw : TWw ÑM 1

fpwquwP|W | by structural induction:

1. hw,spσpτqq “M 1
fpw0q,σ

phw0,ar pτqq for all σ P F r
arÑs, w0, w P |W |, τ P T

W
w0,ar ;

2. hw,spσpw0; τqq “ M 1
fpw0q,σ

phw0,ar pτqq for all flexible operations σ P F f
arÑs

such that s P Sr, and all w0, w P |W | and τ P TWw0,ar ;

3. hw,spσpw; τqq “M 1
fpwq,σphw,ar pτqq for all flexible operations σ P F f

arÑs such

that s P Sf, and all w P |W | and τ P TWw,ar .

It is again straightforward to check that h “ pf, thwuwP|W |q is a Kripke homo-

morphism pW,TW q Ñ pW 1,M 1q, and that it is unique with this property. [\

Proof (of Proposition 4: A term model is reachable by hybrid terms whenever its
space state is reachable by nominals).

By hypothesis, h : TΣn Ñ W is surjective. Therefore, all we need to prove is
that, for every nominal k, the Σ-homomorphism hk : T∆k Ñ TWhpkq is surjective.
We proceed by induction on the structure of the hybrid terms:

1. Assume that τ P TWhpk0q,ar and σ P F r
arÑs (hence, s P Sr). By the induction

hypothesis, there exists tuple of hybrid terms t P T∆k0,ar such that hk0,ar ptq “

τ . Therefore, hk,spσptqq “ hk0,spσptqq “ σphk0,ar ptqq “ σpτq.
2. Assume that τ P TWhpk0q,ar , σ P F f

arÑs and s P Sr. By the induction hypothe-

sis, there exists t P T∆k0,ar such that hk0,ar ptq “ τ . Therefore, hk,spσpk0; tqq “

hk0,spσpk0; tqq “ σphpk0q;hk0,ar ptqq “ σphpk0q; τq.
3. Assume that τ P TWhpkq,ar , σ P F f

arÑs and s P Sf. By the induction hypothesis,

there exists t P T∆k,ar such that hk,ar ptq “ τ . Therefore, hk,spσpk; tqq “

σphpkq;hk,ar ptqq “ σphpkq; τq. [\

B Proofs for results presented in Section 4

Many of the results presented in this work (including Lemma 13, which we
discuss below) rely on the following general properties of entailment relations:

Monotonicity: Γ 1 Ď Γ implies Γ $ Γ 1;
Transitivity: Γ $ Γ 1 and Γ 1 $ Γ 2 imply Γ $ Γ 2;
Union: Γ $ Γ 1 and Γ $ Γ 2 imply Γ $ Γ 1 Y Γ 2.

From these, we can derive a form of cut : Γ $ H and Γ YH $ γ imply Γ $ γ.

Proof (of Lemma 13: Every set of nominal equations admits a reachable initial
model that encapsulates the formal deduction of equations from that set).

Let Γ n be a set of nominal equations over ∆, and ”n “ tpk1, k2q P TΣn ˆ TΣn |

Γ n $ k1 “ k2u. It is straightforward to check, based on the rules pRnq, pSnq,



Birkhoff Completeness for Hybrid-Dynamic First-Order Logic 19

pTnq, pFnq, and pPnq in Figure 1, that ”n is a Σn-congruence on TΣn . Therefore,
we can define W n as the quotient Σn-model TΣn{”n, and Mn as the family of
all sets of hybrid terms over W n. Clearly, pW n,Mnq is reachable.

To show that it is an initial model of Γ n, note that, for every pk1 “ k2q P Γ
n:

1 Γ n
$ k1 “ k2 by the monotonicity of $

2 rk1s “ rk2s by the definition of ”n

3 pW n,Mn
q ( k1 “ k2 by the definition of (

Furthermore, for every ∆-model pW,Mq that satisfies Γ n, the first-order model
W satisfies Γ n too, so there exists a unique Σn-homomorphism f : W n ÑW . By
Lemma 2, f extents to a unique ∆-homomorphism h : pW n,Mnq Ñ pW,Mq.

Now let us show that Γ n $ ρ and pW n,Mnq ( ρ are equivalent. If Γ n $ ρ,
then we know that Γ n ( ρ by Proposition 10. Given that pW n,Mnq is a model of
Γ n, it follows, by the definition of the semantic entailment, that pW n,Mnq ( ρ.

For the converse, we distinguish two cases: if ρ is a nominal equation, the
conclusion follows with ease from the definition of ”n; on the other hand, the
case where ρ is a hybrid equation deserves more attention.

Let r s : pTΣn , T∆q Ñ pW n,Mnq be the unique arrow from Notation 3. It
suffices to show that for all k1, k2 P TΣn , s P S, t1 P T

∆
k1,s

and t2 P T
∆
k2,s

such
that rk1s “ rk2s and rt1s “ rt2s, we have Γ $ t1 “k1,s δk2{k1pt2q.

We proceed by structural induction on the term t1:

[ t1 “ σpt11q, where σ P F r
arÑs and t11 P T

∆
k1,ar

]

1 rt1s “ σprt11sq since r s is a homomorphism

2 t2 “ σpt12q
for some t12 P T

∆
k2,ar

“ T∆k1,ar

by regarding σprt11sq “ rt2s as an
equality of trees

3 rt11s “ rt
1
2s since σprt11sq “ σprt12sq

4 Γ $ t11 “ t12 by the induction hypothesis

5 Γ $ σpt11q “ σpt12q by pFr
q

[ t1 “ σpk11; t11q where σ P F f
arÑs, t

1
1 P T

∆
k11,ar

and s P Sr ]

1 rt1s “ σprk11s; rt
1
1sq since r s is a homomorphism

2 t2 “ σpk12; t12q for some
k12 P TΣn and t12 P T

∆
k12,ar

since σprk11s; rt
1
1sq “ rt2s can be

regarded as equality of trees

3 rk11s “ rk
1
2s and rt11s “ rt

1
2s since σprk11s; rt

1
1sq “ σprk12s; rt

1
2sq

4 Γ $ t11 “k11 δk12{k11pt
1
2q by the induction hypothesis

5 Γ $ σpk11; t11q “ σpk11; δk12{k11pt
1
2qq by pFf

q

6 Γ $ σpk11; t11q “ δk12{k11pσpk
1
2; t12qq by the definition of δk12{k11

7 Γ $ σpk11; t11q “ σpk12; t12q by pWh
q, since Γ $ k11 “ k12

[ t1 “ σpk1; t11q where σ P F f
arÑs, t1 P T

∆
k,ar and s P Sf ]

1 rts “ σprk1s; rt11sq since r s is a homomorphism

2 t2 “ σpk2; t12q
for some t12 P T

∆
k2,ar

since σprk1s; rt11sq “ rt
1
s can be

regarded as equality of trees
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3 rt11s “ rt
1
2s since σprt11sq “ σprt12sq

4 Γ $ t11 “k1 δk2{k1pt
1
2q by the induction hypothesis

5 Γ $ σpk1; t11q “k1 σpk1; δk2{k1pt
1
2qq by pFf

q

6 Γ $ σpk1; t11q “k1 δk2{k1pσpk2; t12qq by the definition of δk2{k1 [\

Proof (of Proposition 14: A set of equations generates a congruence on a reach-
able Kripke model if it entails all the equations satisfied by that model).

In regard to the characterization of ” (as per the item P1), the ‘if’ part follows
immediately by the very definition of ”. Therefore, we focus on the ‘only if’
part. To that end, suppose rt1s ”rks rt2s. It follows that:

1 Γ $ t11 “k1 t
1
2 for some nominal k1 and terms

t11, t
1
2 P T

∆
k1,s such that rks “ rk1s and rtis “ rt

1
is

by the definition of ”

2 Γ $ k “ k1 since pW,Mq ( k “ k1

3 Γ $ δk1{kpt
1
1q “k δk1{kpt

1
2q by pWf

q

4 rtis “ rt
1
is “ rδk1{kpt

1
iqs since rks “ rk1s

5 Γ $ ti “k δk1{kpt
1
iq pW,Mq ( ti “ δk1{kpt1iq

6 Γ $ t1 “k t2 from 5 and 3, by pTh
q

Let us now show that” is a∆-congruence on pW,Mq. For each nominal k, the
reflexivity, symmetry, and transitivity of ”rks are straightforward consequences

of the proof rules pRhq, pShq and pThq, of the characterization given at P1, and
of the fact that pW,Mq is reachable. For instance, in regard to the reflexivity of
”rks, for every τ PMrks,s we know there exists a term t P T∆k,s such that τ “ rts.

By pRhq, we have Γ $ t “ t, which implies, by P1, that τ ”rks τ .
For the compatibility of ” with the operations in F , assume that σ P FarÑs

and τ1, τ2 P Mrks,ar such that τ1 ”rks,ar τ2. There is no significant distinction
between the case where σ is rigid and the case where σ is flexible. Therefore, we
choose to focus on the latter case, corresponding to σ P F f

arÑs. We have:

1 Γ $ t1 “k,ar t2 for some tuples of terms
ti P T

∆
k,ar such that τi “ rtis

by P1

2 Γ $ σpk; t1q “k,s σpk; t2q by the proof rule pFf
q

3 rσpk; t1qs ”rks,s rσpk; t2qs by the definition of ”rks

4 Mrks,σpτ1q ”rks,s Mrks,σpτ2q since rσpk; t1qs “Mrks,σpτ1q

It remains to check that p”rks,sq “ p”rk1s,sq for all nominals k, k1 P TΣn and
all rigid sorts s P Sr. This follows easily from P1 and the proof rule pWrq. [\

C Proofs for results presented in Section 5

Proof (of Proposition 18: Atomic completeness extends to action completeness).

Let Γ be a set of atomic sentences over ∆, and pWΓ ,MΓ q an initial reachable
model of Γ as in Theorem 15. Building on that result, it suffices to prove that

Γ $ apk1, k2q iff pWΓ ,MΓ q ( apk1, k2q
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for all actions a P An and all nominals k1, k2 P TΣn . As in the case of atomic
completeness, the ‘only if’ part follows with ease from the soundness of $ and
the fact that pWΓ ,MΓ q is a model of Γ . Therefore, we only give a detailed
account for the ‘if’ part of the statement.

We prove the result by induction on the structure of the action a. For the
base case, which corresponds to the fact that a is a modality, the conclusion
follows by Theorem 15. Hence, it suffices to analyse the induction steps that
correspond to the composition, union, and transitive-closure operators.

[ pWΓ ,MΓ q ( pa1 ; a2qpk1, k2q ] It follows that:

1 prk1s, rk2sq PW
Γ
a1;a2 by the definition of (

2 prk1s, rk2sq PW
Γ
a1 ;WΓ

a2 since WΓ
a1;a2 “WΓ

a1 ;WΓ
a2

3 prk1s, rksq PW
Γ
a1 and prks, rk2sq PW

Γ
a2

for some nominal k P TΣn

since pWΓ ,MΓ
q is reachable

4 pWΓ ,MΓ
q ( a1pk1, kq, a2pk, k2q by the definition of (

5 Γ $ a1pk1, kq and Γ $ a2pk, k2q by the ind. hypothesis

6 Γ $ pa1 ; a2qpk1, k2q by pCompq

[ pWΓ ,MΓ q ( pa1 Y a2qpk1, k2q ] It follows that:

1 prk1s, rk2sq PW
Γ
a1Ya2 by the definition of (

2 prk1s, rk2sq PW
Γ
ai for some i P t1, 2u since WΓ

a1Ya2 “WΓ
a1 YW

Γ
a2

3 pWΓ ,MΓ
q ( aipk1, k2q for some i P t1, 2u by the definition of (

4 Γ $ aipk1, k2q for some i P t1, 2u by the ind. hypothesis

5 Γ $ pa1 Y a2qpk1, k2q by pUnionq

[ pWΓ ,MΓ q ( a˚pk1, k2q ] By the definition of the satisfaction of a˚pk1, k2q, it
follows that prk1s, rk2sq P pW

Γ
a q

n for some n P N. If n “ 0, then:

1 rk1s “ rk2s since pWΓ
a q

0
“ id |WΓ |

2 pWΓ ,MΓ
q ( k1 “ k2 by the definition of (

3 Γ $ k1 “ k2 by Theorem 15

4 Γ $ a˚pk1, k2q by pReflq

On the other hand, if n ą 0, then there exist nominals tliu0ďiďn such that
l0 “ k1, ln “ k2, and prlis, rli`1sq PW

Γ
a for all 0 ď i ă n. It follows that:

1 pWΓ ,MΓ
q ( apli, li`1q for all 0 ď i ă n by the definition of (

2 Γ $ apli, li`1q for all 0 ď i ă n by the ind. hypothesis

3 Γ $ a˚pl0, lnq by pStarq

4 Γ $ a˚pk1, k2q since l0 “ k1, ln “ k2 [\

Proof (of Theorem 19: Initiality preserves formal deductions).

In what follows, we continue the case analysis on page 13 for the proof of Theo-
rem 19. The case that corresponds to the necessity operator is already discussed
in Section 5. Therefore, we focus on the remaining five cases.

[ Γ $ @k @k1 γ ] The conclusion follows from the list of inferences below:
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1 Γ $ @k1 γ by pRet@q in Figure 3

2 pWΓ0 ,MΓ0q ( @k1 γ by the induction hypothesis

3 pWΓ0 ,MΓ0q ( @k @k1 γ by Fact 17

[ Γ $ @k p
Ź

H ñ γq ] What we need to show is that pWΓ0 ,MΓ0q (w H implies

pWΓ0 ,MΓ0q (w γ, where w “ WΓ0

k . So, suppose pWΓ0 ,MΓ0q (w H. Then:

1 pWΓ0 ,MΓ0q ( H by Fact 5

2 Γ0 $ H by Proposition 18

3 Γf $ H for some finite subset Γf Ď Γ0 since $ is compact

4 Γ $ Γf by the union property of $

5 Γ $ H from 4 and 3, by transitivity

6 Γ YH $ @k γ by pImpEq

7 Γ $ @k γ from 5 and 6, by cut

8 pWΓ0 ,MΓ0q ( @k γ by the induction hypothesis

9 pWΓ0 ,MΓ0q (
w γ by the definition of (

[ Γ $ @k Óz ¨ γ ] We need to show that pWΓ0 ,MΓ0q (w Óz ¨ γ, where w “WΓ0

k .
To that end, we proceed as follows:

1 Γ $ @k θzÐkpγq by pStoreEq

2 pWΓ0 ,MΓ0q ( @k θzÐkpγq by the induction hypothesis

3 pWΓ0 ,MΓ0q (
w θzÐkpγq by the definition of (

4 pWΓ0 ,MΓ0qæθzÐk (
w γ by the local sat. cond. for θzÐk

5 pWΓ0 ,MΓ0q
zÐw

(
w γ by Fact 8

6 pWΓ0 ,MΓ0q (
w
Óz ¨ γ by the definition of (

[ Γ $ @k @X ¨ γ ] Let w “ WΓ0

k . We want to show that pW,Mq (w γ for any
∆rXs-expansion pW,Mq of pWΓ0 ,MΓ0q. Therefore, consider one such expan-
sion. Since the model pWΓ0 ,MΓ0q is reachable, by Proposition 9, there exists
a substitution θ : X ÑH such that pWΓ0 ,MΓ0qæθ “ pW,Mq. It follows that:

1 Γ $ @k θpγq by pSubstqq

2 pWΓ0 ,MΓ0q ( @k θpγq by the induction hypothesis

3 pWΓ0 ,MΓ0q (
w θpγq by the definition of (

4 pWΓ0 ,MΓ0qæθ (
w γ by the local sat. cond. for θ

5 pW,Mq (w γ since pWΓ0 ,MΓ0qæθ “ pW,Mq

[ Γ $ @k poq γ ] It suffices to show that pWΓ0 ,MΓ0q (w γ, where w “WΓ0

opkq.

1 Γ $ @opkq γ by pNextEq

2 pWΓ0 ,MΓ0q ( @opkq γ by the induction hypothesis

3 pWΓ0 ,MΓ0q (
w γ since w “WΓ0

opkq [\

Proof (of Corollary 20: The initial model of a set of Horn clauses encapsulates
the formal deduction of both atomic sentences and action relations).
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Let Γ be a set of Horn clauses over ∆. For the first part of the corollary, recall
that, by Theorem 15, pWΓ0 ,MΓ0q is a reachable initial model of Γ0. By sound-
ness, Γ ( Γ0. Therefore, for every model pW,Mq of Γ , we have pW,Mq ( Γ0.
By the initiality property of pWΓ0 ,MΓ0q, we obtain a unique homomorphism
pWΓ0 ,MΓ0q Ñ pW,Mq. All this means that, in order to prove that pWΓ0 ,MΓ0q

is an initial model of Γ , it suffices so show that pWΓ0 ,MΓ0q ( Γ . To that end,
let γ P Γ and w P |WΓ0 |.

1 w “ rks for some nominal k P TΣn since pWΓ0 ,MΓ0q is reachable

2 Γ $ @k γ by pRetIq, since Γ $ γ

3 pWΓ0 ,MΓ0q ( @k γ by Theorem 19

4 pWΓ0 ,MΓ0q (
w γ by the definition of (

For the second part of the corollary, we proceed as follows:

[ 1 ñ 2 ] From the definition of semantic entailment, since pWΓ0 ,MΓ0q ( Γ .

[ 2 ñ 3 ] Assume that pWΓ0 ,MΓ0q satisfies ρ. In that case, we obtain:

1 Γ0 $ ρ by Proposition 18

2 Γf $ ρ for some finite Γf Ď Γ0 since $ is compact

3 Γ $ Γf by the union property of $

4 Γ $ ρ from 3 and 2, by transitivity

[ 3 ñ 1 ] By Proposition 16. [\

D Proofs for results presented in Section 6

The following fact forms a semantic basis for Lemma 26 (also presented below),
which shows how the completeness of any of the entailment relations $pxq can
be generalized to situations where action relations can be used as premises for
formal reasoning. Lemma 26 has an important role in dealing with implications
and with the necessity operator in the proof of Theorem 23.

Fact 25. In HDFOLS, for each set Γ of sentences and any sentence γ, we have:

1. Γ Y tpa1 ; a2qpk1, k2qu (∆ γ implies Γ Y ta1pk1, zq, a2pz, k2qu (∆rzs γ;
2. Γ Y tpa1 Y a2qpk1, k2qu ( γ implies Γ Y taipk1, k2qu ( γ for both i P t1, 2u;
3. Γ Y ta˚pk1, k2qu ( γ implies Γ Y tanpk1, k2qu ( γ for all n P N.

Lemma 26. Let x P t1, 2, 3u, and consider a finite set H of action relations

and a Horn clause γ in HDFOLSpxq such that Γ ( γ implies Γ $pxq γ for all
sets Γ of Horn clauses in HDFOLS.10 Then Γ YH ( γ implies Γ YH $pxq γ.

Proof. We prove the statement by well-founded (Noetherian) induction on pm,nq,
where m is the total number of occurrences of the transitive-closure operator in
H, and n is the total number of occurrences of the composition or union opera-
tors in H. We also denote these numbers by ntcpHq and ncupHq, respectively.

Notice that:

10 Note that, if x “ 1, then H consists only of nominal relations.
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– ntcpHq “ ncupHq “ 0 when H is a set of action relations in HDFOLSp1q;

– ntcpHq “ 0 when H is a set of action relations in HDFOLSp2q.

For the base case, corresponding to ntcpHq “ ncupHq “ 0, we have that H
consists only of atomic sentences. Therefore, Γ Y H is a set of clauses, which
means that we can use the hypothesis on γ to infer Γ YH $pxq γ.

For the induction step, suppose that the statement holds for all sets H
as above such that pntcpHq,ncupHqq ă pm,nq, in lexicographic order; and

let H be a finite subset of action relations in HDFOLSpxq for which p0, 0q ă
pntcpHq,ncupHqq “ pm,nq,11 Γ 1 an arbitrary set of Horn clauses in HDFOLS,

and γ a Horn clause in HDFOLSpxq such that:

H1. Γ ( γ implies Γ $pxq γ for all sets Γ of Horn clauses, and
H2. Γ 1 YH ( γ.

It follows that H “ H 1 Y tapk1, k2qu, where apk1, k2q is a non-atomic action
relation. We proceed by case analysis on the topmost action operator in a.

[ a “ a1 ; a2 ] In this case, we have:

1 Γ 1 YH 1 Y tpa1 ; a2qpk1, k2qu (∆ γ by the hypothesis H2

2 Γ 1 YH 1 Y ta1pk1, zq, a2pz, k2qu (∆rzs γ by Fact 25

3 Γ 1 YH 1 Y ta1pk1, zq, a2pz, k2qu

H2

$
pxq
∆rzs γ by the ind. hypothesis,

since ntcpH2q “ m, ncupH2q ă n

4 Γ 1 YH 1 Y tpa1 ; a2qpk1, k2qu $
pxq
∆ γ by pCompIq

[ a “ a1 Y a2 ] In this case, we have:

1 Γ 1 YH 1 Y tpa1 Y a2qpk1, k2qu ( γ by the hypothesis H2

2 Γ 1 YH 1 Y taipk1, k2qu ( γ for both i P t1, 2u by Fact 25

3 Γ 1 YH 1 Y taipk1, k2qu

H2i

$
pxq γ for i P t1, 2u by the ind. hypothesis,

since ntcpH2i q “ m, ncupH2i q ă n

4 Γ 1 YH 1 Y tpa1 Y a2qpk1, k2qu $
pxq γ by pUnionIq

[ a “ a˚1 ] In this case, we have:

1 Γ 1 YH 1 Y ta˚1 pk1, k2qu ( γ by the hypothesis H2

2 Γ 1 YH 1 Y tap1pk1, k2qu ( γ for all p P N by Fact 25

3 Γ 1 YH 1 Y tap1pk1, k2qu

H2

$
pxq γ for all p P N by the ind. hypothesis,

since ntcpH2q ă m

4 Γ 1 YH 1 Y ta˚1 pk1, k2qu $
pxq γ by pStarIq [\

Proof (proof of Theorem 23: Birkhoff completeness).

In what follows, we continue the case analysis on page 15 for the proof of Theo-
rem 23. The case that corresponds to universally quantified sentences is already
discussed in Section 6. Therefore, we focus on the remaining five cases.

11 Note that the ind. step is vacuously true for $p1q, since no H in HDFOLSp1q satisfies
p0, 0q ă pntcpHq,ncupHqq. A similar observation holds for $p2q and the case a “ a˚1 .
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[ Γ ( @k @k1 γ ] Then:

1 Γ ( @k1 γ by Fact 17

2 Γ $pxq @k1 γ by the induction hypothesis

3 Γ $pxq @k @k1 γ by Fact 17

[ Γ ( @k p
Ź

H ñ γq ] Then:

1 Γ YH ( @k γ by the general properties of (

2 Γ YH $
pxq @k γ by ind. hypothesis and

Lemma 26

3 Γ $pxq @k p
Ź

H ñ γq by pImpIq

[ Γ ( @k Óz ¨ γ ] Let θzÐk : tzu Ñ H be the ∆-substitution that maps the nom-
inal variable z to the (ground) term k. Then:

1 Γ ( @k θzÐkpγq since @k Óz ¨ γ ((@k θzÐkpγq

2 Γ $pxq @k θzÐkpγq by the induction hypothesis

3 Γ $pxq @k Óz ¨ γ by pStoreIq

[ Γ ( @k rasγ ] Then:

1 Γ Y tapk, zqu (∆rzs @z γ by the general properties of (

2 Γ Y tapk, zqu $
pxq
∆rzs @z γ by ind. hypothesis and

Lemma 26

3 Γ $
pxq
∆ @k rasγ by pNecIq

[ Γ ( @k poq γ ] Then:

1 Γ ( @opkq γ since @k poq γ ((@opkq γ

2 Γ $pxq @opkq γ by the induction hypothesis

3 Γ $pxq @k poq γ by pNextIq [\

Proof (of Proposition 24: HDCLS is not compact).

By the definition of compactness, it suffices to find a signature ∆, a set Γ of
Horn clauses over ∆, and a clause γ such that Γ ( γ, but Γf * γ for all
finite subsets Γf Ď Γ . Therefore, let ∆ be the signature that consists of only
two nominal constants, k and k1, and only two modalities, λ and α, and let
Γ “ tλnpk, k1q ñ αpk, k1q | n P Nu. We show that Γ ( λ˚pk, k1q ñ αpk, k1q and
Γf * λ˚pk, k1q ñ αpk, k1q for all finite subsets Γf Ď Γ .

The first part follows easily from the definition of the satisfaction relation.
For the second part, let Γf be a finite subset of Γ , and n P N the largest natural
number such that the sentence λnpk, k1q ñ αpk, k1q belongs to Γf .

Now consider a ∆-model pW,Mq that has n ` 1 possible worlds – that is,
|W | “ tw1, . . . , wn`1u – and interprets k, k1, λ and α as follows: Wk “ w0,
Wk1 “ wn`1, Wλ “ tpwi, wi`1q | 1 ď i ď nu, and Wα “ H.

In other words, we can regard pW,Mq as a chain w1
λ
ÝÑ w2

λ
ÝÑ w3 ¨ ¨ ¨wn

λ
ÝÑ

wn`1. It is easy to check that pW,Mq is a model of Γf (because it does not satisfy
λipk, k1q, for any 1 ď i ď n) and that it does not satisfy λ˚pk, k1q ñ αpk, k1q. [\
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