
CUTTING AND PASTING OF MORSE FUNCTIONS

DOMINIK J. WRAZIDLO

Institute of Mathematics for Industry, Kyushu University

Abstract. Cobordism groups of various types of Morse functions have been studied
separately by several authors including Ikegami, Kalmàr, Saeki, Yamamoto, and the
author. In this article, we propose a conceptually new approach for studying cobor-
dism groups of several types of Morse functions within a single unifying framework. Our
method is crucially based on certain cutting and pasting relations for manifolds that have
been used before to define SKK-groups of manifolds. We provide an explicit isomor-
phism between the cobordism group of Morse functions and SKK-groups. Moreover,
we sketch an application of our framework to cobordism theory for Morse functions with
boundary, and raise some problems for future study concerning Morse functions with
index constraints and circle-valued Morse functions.

1. Introduction

The purpose of this paper is to discuss a structural connection between cobordism

groups of Morse functions on the one hand, and SKK-groups of manifolds on the other

hand. Conceptually, we combine Morse theory with the cutting and pasting relations for

manifolds that appear in the definition of SKK-groups. We expect that our approach

allows to study cobordism groups of various types of Morse functions within one unifying

framework. Details and further applications will be worked out in [27].

In general, cobordism groups of differentiable maps with prescribed types of singularities

can almost always be studied by means of stable homotopy theory. The topic originates

from René Thom’s study of smooth oriented cobordism groups of manifolds [23]. Consid-

ering manifolds and cobordisms to be embedded into Euclidean space, Thom was able to

study cobordism groups of manifolds by means of the Pontrjagin-Thom construction. In

[15], Rimányi-Szűcs used a sort of Pontrjagin-Thom construction to derive fundamental

results for the cobordism theory of differentiable maps with certain prescribed types of

singularities. Their results have been further extended by several authors including Ando

[1], Kalmàr [9], Sadykov [17], and Szűcs [22].
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Given a real-valued function h : U → R defined on an n-manifold, a critical point x of

h is called non-degenerate if there is a chart of U centered at x in which h takes the form

(x1, . . . , xn) 7→ h(x)− x21 − · · · − x2i + x2i+1 + · · ·+ x2n.(1.1)

In this paper, by a Morse function on a closed smooth manifold we mean a smooth real-

valued function which has only non-degenerate singularities. A precise definition of the

notion of cobordism of Morse functions involves the notion of fold maps, and will be

given in Definition 2.1. For studying cobordism groups of Morse functions it seems most

convenient to use more geometric-topological methods like Stein factorization and Levine’s

cusp elimination technique. In the following, let us discuss existing results concerning the

study of cobordism groups of various types of Morse functions.

(a) Saeki [18] has studied the cobordism group of so-called special generic functions,

namely Morse functions with only minima and maxima as their critical points. In

dimension 6 and higher, these groups turn out to be isomorphic to the groups of

h-cobordism classes of oriented homotopy spheres (see [12]). In [24], the author has

imposed more general index constraints that allow Morse functions to have critical

points of certain indefinite indices apart from minima and maxima, and the author has

studied cobordism groups of such “constrained” Morse functions. As an interesting

consequence, it follows that exotic Kervaire spheres are distinguished from other exotic

spheres as elements of these groups in infinitely many dimensions (see also [25]).

(b) In 2004, Ikegami [3] determined the complete structure of cobordism groups Mn

(Nn) of Morse functions on (un-)oriented n-manifolds for any n ≥ 1. This generalized

previous results of Ikegami-Saeki [4] for Morse functions on oriented surfaces, and

of Kalmàr [8] for Morse functions on unoriented surfaces. We point out that in the

oriented version of Ikegami’s structure theorem (see Theorem 2.3), the Kervaire semi-

characteristic [14] appears in dimensions of the form n = 4k + 1.

(c) In [5], Ikegami-Saeki extended the work of Ikegami [3] to cover the case of circle-valued

Morse functions. As an application to target oriented topological types of generic map

germs (Rm, 0)→ (R2, 0), m ≥ 2, they identify an invariant given by the sum of signs

associated to the cusps of a suitable stable perturbation.

(d) Later, Saeki-Yamamoto [19, 20, 21] introduced several notions of cobordism for Morse

functions on manifolds with boundary (see Section 5.2), and computed the so-called

admissible cobordism group of Morse functions on surfaces by means of the coho-

mology of the universal complex of singular fibers, and a combinatorial argument

using labeled Reeb graphs. Recently, Yamamoto [28] has used similar techniques

to compute the fold cobordism group of Morse functions on surfaces. In Section 5,

we will indicate how the perspective taken in this paper leads to the computation

of higher-dimensional admissible cobordism groups of Morse functions on manifolds

with boundary (see [26]). We expect our method to be applicable as well to the

computation of higher-dimensional fold cobordism groups (see Theorem 5.7).
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The purpose of this paper is to discuss a new structural connection between cobordism

groups of Morse functions on the one hand, and so-called SKK-groups of manifolds on

the other hand. For simplicity, we focus on the case that all manifolds are oriented, while

a version of our results for unoriented manifolds could be derived in a similar way.

Historically, the concept of SKK-groups was motivated by the observation of Jänich [6,

7] that the index of elliptic operators behaves invariant under a natural cutting and pasting

operation on manifolds. This operation cuts a closed n-manifold along a submanifold Σ

of codimension 1 with trivial normal bundle, and pastes back together the two resulting

copies of Σ in the boundary by means of some gluing automorphism Σ→ Σ. The resulting

abstract notion of SK-invariants (from German “Schneiden und Kleben” = “cutting and

pasting”) was studied systematically in [11] by viewing SK-invariants as homomorphisms

on a universal SK-group SKn with values in some abelian group. As a generalization, the

notion of SKK-invariants (from German “SK-Kontrollierbar” = “SK-controllable”) and

the corresponding universal SKK-group SKKn incorporate a correction term that may

depend on the gluing automorphism L → L. In dimensions of the form n = 4k + 1, the

Kervaire semi-characteristic [14] turns out to be an SKK-invariant, and appears in fact in

the structure theorem for the SKK-group (see Theorem 3.4). We observe that Ikegami’s

structure theorem for the cobordism group of Morse functions on oriented manifolds (see

Theorem 2.3) involves the Kervaire semi-characteristic as well, which suggests a structural

connection between the groups Mn and SKKn. In [27], we construct an isomorphism

that clarifies the precise relation. Let us present this isomorphism in the following.

For a Morse function f : M → R on an oriented closed n-manifold M , we denote by

νi(f) the number of critical points of f of index i. Moreover, we set µi(f) = νn−i(f)−νi(f),

and define the integer

Σ(M, f) =

{
ν0(f) + · · ·+ νk(f), n = 2k + 1,

µk−1(f) +
σ(M)−χ(M)

2 , n = 2k.
(1.2)

Note that when n 6≡ 0 mod 4, the integer Σ(M, f) depends only on the numbers νi(f)

because χ(M) =
∑n

i=0(−1)iνi(f) and σ(M) = 0. However, when n ≡ 0 mod 4, then there

is an additional dependence in (1.2) on the signature σ(M), which is required to make

Σ(M, f) an integer.

Theorem 1.1 (W. [27], 2018). There is an isomorphism of groups

Mn
∼=−→ SKKn ⊕ Zb(n−1)/2c,

[f : M → R] 7→ ([M ] + Σ(M, f) · [Sn], µ0(f), . . . , µb(n−1)/2c−1(f)).

Our Theorem 1.1 provides a specific isomorphism that is not directly obtained by

combining Ikegami’s structure theorem for Mn (see Theorem 2.3) with the structure

theorem for SKKn (see Theorem 3.4). In fact, note that σ(M), the signature of M , does

not appear in those structure theorems.
3



Our proof of Theorem 1.1, which will be outlined in Section 4, combines many parts

of the proofs of the original structure theorems, but there will be several new aspects.

For instance, the signature of manifolds will appear as a cobordism invariant in the con-

struction of the homomorphism Mn → SKKn. Moreover, the proof of injectivity of this

homomorphism will be crucially based on our method of cutting and pasting of Morse

functions (see Theorem 4.4). Our result turns out to be useful in that it can serve as a

model for studying many different variants of cobordism groups of Morse functions, as

described in Section 5.

Furthermore, we point out that our approach has the potential to pave the way to

directions for future study as follows. A natural generalization of the topic is to raise

the dimension of the target space of smooth maps. Thus, one future goal will consist

in studying cobordism theory for fold maps into higher dimensional target spaces by

means of our approach. For instance, recent work of Kalmàr [10] clarifies the structure

of cobordism groups of fold maps into the plane. In view of our framework proposed in

Section 5, it then seems natural to search for a structure that substitutes the concept of

SKK-groups in the case of higher target dimensions. Such higher analogs of SKK-groups

might then be related to certain extended topological quantum field theories (TQFTs) in

a similar way as SKK-invariants are related to so-called invertible TQFTs by the short

exact sequence derived in [16].

The paper is organized as follows. In Section 2 we discuss Ikegami’s structure result for

oriented cobordism groups of Morse functions. In Section 3 we review the definition of

SKK-groups based on the concept of cutting and pasting of manifolds, and discuss the

structure result of SKK-groups in Theorem 3.4. The proof of our Theorem 1.1 is outlined

in Section 4. Finally, in Section 5, we propose in an informal way a unifying framework for

studying cobordism groups of various types of Morse functions, and illustrate our ideas

by means of our results concerning Morse functions on compact manifolds with boundary.

All manifolds and maps between manifolds considered in this note will be differentiable

of class C∞. For a closed oriented n-manifold Mn, the manifold with opposite orientation

will be denoted by −Mn.

Acknowledgements. The author is grateful to Professor Osamu Saeki for invaluable

comments and discussions.

During the creation of this work, the author was a JSPS International Research Fellow

(Postdoctoral Fellowships for Research in Japan (Standard)).

2. Cobordism groups of Morse functions

We start by introducing the fundamental notion of a cobordism of Morse functions.

Definition 2.1 (cobordism of Morse functions). Two Morse functions f0 : M0 → R and

f1 : M1 → R on oriented closed n-manifolds M0 and M1 are cobordant (see Figure 1) if

• there exists a cobordism Wn+1 from M0 to M1, i.e., W is an oriented compact

manifold with boundary M0 t −M1, and
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• there exists a map F : W → [0, 1] × R which has only fold points as its singular

points, where by a fold point we mean a critical point x ∈ W of F for which F

takes in suitable charts centered at x and F (x), respectively, the form

(x0, x1, . . . , xn) 7→ (x0,−x21 − · · · − x2i + x2i+1 + · · ·+ x2n),(2.1)

and there exist collar neighborhoods [0, ε) × M0 ⊂ W of M0 ⊂ W and (1 −
ε, 1]×M1 ⊂ W of M1 ⊂ W such that F |[0,ε)×M0

= id[0,ε)×f0 and F |(1−ε,1]×M1
=

id(1−ε,1]×f1.

Remark 2.2. It is a basic fact from Morse theory that for every non-degenerate critical

point x of some real-valued function h : U → R, the integer i ∈ {0, . . . , n} that appears in

the standard quadratic form −x21−· · ·−x2i +x2i+1 + · · ·+x2n in (1.1) is independent of the

choice of the coordinate chart, and is called the (Morse) index of h at x. Similarly, for

every fold point x of a map F : W → R2, the integer max{i, n − 1 − i} ∈ {dn/2e . . . , n}
that derives from the standard quadratic form −x21 − · · · − x2i + x2i+1 + · · · + x2n in (2.1)

is independent of the choice of the coordinate charts, and is called the (absolute) index

of F at x. Compared to the index of a non-degenerate critical point, the indeterminacy

between the indices i and n − 1 − i of a fold point comes from the fact that in order to

produce the normal form we are allowed to choose coordinate charts both in the domain

centered at the fold point x, and in the codomain centered at the image point F (x).

A map F : W → [0, 1] × R with only fold singularities as in Definition 2.1 is called

a fold map. If F behaves near the boundary of W as required by Definition 2.1, then

it is well-known that the singular set S(F ) ⊂ W of the fold map F is a 1-dimensional

submanifold which is closed as a subset, and F restricts to an immersion S(F )→ R2 (see

Figure 1). The absolute index of fold points (see Remark 2.2) is constant along fold lines,

i.e., components of S(F ).

f0

M0

f1

M1W

F

Figure 1. Example of a cobordism from f0 : S1 → R to f1 : S1 t S1 → R.
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It can be checked that the notion of cobordism in the sense of Definition 2.1 determines

an equivalence relation on the set of all Morse functions on oriented closed n-manifolds.

LetMn denote the set of equivalence classes [f : M → R] represented by Morse functions

on oriented closed n-manifolds. Disjoint union “t” induces a group law on the setMn as

follows. The identity element is represented by unique map ∅ → R, and the inverse of a

class [f : M → R] is represented by −f : −M → R, x 7→ −f(x), where −Mn denotes the

manifold M equipped with the opposite orientation. We call Mn the oriented cobordism

group of Morse functions (on closed n-manifolds).

Let us discuss Ikegami’s structure result [3] for the cobordism group Mn. For this

purpose, recall that for a Morse function f : Mn → R on an oriented closed n-manifold

M we denote the number of critical points of f of index i by νi(f), and set

µi(f) = νn−i(f)− νi(f) (= νi(−f)− νi(f)).

Let ΩSO
n denote the smooth oriented cobordism group of dimension n. We shall need a

torsion group defined by

Jn =

{
Z/2, n ≡ 1 (mod 4),

0, n 6≡ 1 (mod 4).

Moreover, using the Kervaire semi-characteristic [14], we define Γ(M, f) ∈ Jn by

Γ(M4k+1, f) ≡
2k∑
i=0

νi(f) +

2k∑
i=0

dimHi(M
4k+1;Q) (mod 2).

Theorem 2.3 (Ikegami [3], 2004). There is an isomorphism of groups

Mn
∼=−→ ΩSO

n ⊕ Zbn/2c ⊕ Jn,
[f : M → R] 7→ ([M ], µ0(f), . . . , µbn/2c−1(f),Γ(M, f)).

3. Cutting and pasting of manifolds; SKK-groups

The material of this section is taken from the manuscript [11], where U. Karras, M.

Kreck, W.D. Neumann, and E. Ossa study the concepts of SK-groups and SKK-groups

in a systematic way.

Let us introduce the fundamental notion of SKK-relation on n-manifolds.

Definition 3.1 (SKK-relation). Two closed oriented n-manifolds X and Y are called

SKK-related, and we write X
SKK−→ Y (see Figure 2) if there exist compact oriented n-

manifolds M , M ′, N , N ′ with boundaries ∂M = ∂N and ∂M ′ = ∂N ′, and orientation

preserving diffeomorphisms ϕ : ∂M → ∂M ′ and ψ : ∂N → ∂N ′ such that

X =
(
M ∪ϕ −M ′

)
t
(
N ∪ψ −N ′

)
,

Y =
(
M ∪ψ −M ′

)
t
(
N ∪ϕ −N ′

)
.
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M

ϕ

−M ′

N

ψ

−N ′

M

ψ

−M ′

N

ϕ

−N ′
−→SKKt t

Figure 2. SKK-related oriented n-manifolds X and Y .

Let Mn denote the set of oriented diffeomorphism classes of closed oriented n-manifolds.

We regard Mn as an abelian semigroup via [M ] + [N ] = [M tN ] and 0 = [∅].
While the SKK-relation on Mn given by Definition 3.1 is obviously symmetric, it

might not be an equivalence relation. Nevertheless, we can use the SKK-relation to de-

fine an equivalence relation ∼SKK via stabilization as follows. Given tow closed oriented

n-manifolds M and N , we say [M ] ∼SKK [N ] if there exist closed oriented n-manifolds X

and Y such that X
SKK−→ Y and [M ] + [X] = [N ] + [Y ] in Mn. Then, it is straightforward

to check that “∼SKK” is an equivalence relation on Mn, and the quotient Mn/ ∼SKK in-

herits an abelian semigroup structure from Mn. We define SKKn to be the Grothendieck

group of Mn/ ∼SKK . In particular, note that an element of SKKn is not always repre-

sented by a manifold, but can in general be written as a difference [M ]− [N ].

Example 3.2. It follows from the construction of SKKn that Mn represents 0 ∈ SKKn

(that is, [M ] ∼SKK [∅]) if and only if there exist X and Y such that X
SKK−→ Y and

M t X ∼= Y . For instance, Figure 3 shows explicitly why the torus M = T 2 represents

0 ∈ SKK2. On the other hand, the structure result for SKKn below (see Theorem 3.4)

implies that S2 represents a generator of SKK2
∼= Z.

−→SKKt t

Figure 3. The surface X =
⊔4
k=1 S

2 is SKK-related to the surface T 2 tX.

Remark 3.3. Note that (in contrast to cobordism groups) the inverse of an element [M ] ∈
SKKn is not necessarily represented by −M (M with the reversed orientation). However,

the structure result for SKKn below (see Theorem 3.4) implies that −[M ] = [−M ] +m ·
[Sn] for some m ∈ Z.
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Next, let us state the structure result for SKKn, in which the cyclic group

In =


Z, n ≡ 0 (mod 2),

Z/2, n ≡ 1 (mod 4),

0, n ≡ 3 (mod 4)

(3.1)

appears.

Theorem 3.4 (Jänich, Karras-Kreck-Neumann-Ossa [11]). There is a split exact sequence

of abelian groups

0 −→ In
α−→ SKKn

β−→ ΩSO
n −→ 0,

where α maps 1 ∈ Z and 1 ∈ Z/2 to [Sn], and β([M ]) = [M ].

Moreover, a splitting of α is induced by

[M ] 7→


Euler characteristic of M, n ≡ 0 (mod 4),

Kervaire semi-characteristic of M, n ≡ 1 (mod 4),

half of Euler characteristic of M, n ≡ 2 (mod 4).

Remark 3.5. Note that there is an unoriented version SKKO
n of SKKn, and the corre-

sponding structure result is based on the cyclic group

IOn =

{
Z, n ≡ 0 (mod 2),

0, n ≡ 1 (mod 2).

Namely, there is a split exact sequence of abelian groups

0 −→ IOn
α−→ SKKO

n
β−→ ΩO

n −→ 0,

and for n even, a splitting of α is induced by the Euler characteristic.

4. Sketch of proof of Theorem 1.1

Let us start with the construction of the map

Mn → SKKn, [f : M → R] 7→ [M ] + Σ(M, f) · [Sn].

The following lemma shows that the above assignment is well-defined. Since the group

laws on Mn and SKKn are both induced by disjoint union, “t”, it then follows auto-

matically that our map is a group homomorphism.

Lemma 4.1. If the Morse functions f0 : M0 → R and f1 : M1 → R are cobordant, then

[M0] + Σ(M0, f0) · [Sn] = [M1] + Σ(M1, f1) · [Sn] ∈ SKKn.
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Proof. Fix a cobordism F : W → [0, 1] × R from f0 to f1 with the properties stated in

Definition 2.1. Without loss of generality, we may assume that pr[0,1] ◦F : W → [0, 1] is

a Morse function with exactly one critical point, say of index i. Note that by classical

Morse theory, W is the trace of the surgery on an embedding Si−1×Dn−i+1 ⊂M0. Then,

in order to compare the summands in SKKn that are induced by f0 and f1, we show the

following observations:

(1) [M1] = [M0] + (−1)i · [Sn].

We omit the proof, which is based on the methods used in the manuscript [11], and

is independent of singularity theory.

Remark 4.2. For later reference, we remark that 2 · [Sn] = 0 whenever n is odd. In

fact, this follows by taking i = n+ 1, M0 = Sn, and M1 = ∅ in (1).

(2) Σ(M1, f1) · [Sn] = Σ(M0, f0) · [Sn]− (−1)i · [Sn].

In order to show this claim, we observe first that the non-degenerate critical point of

pr[0,1] ◦F of index i can arise in the ways (a) and (b) illustrated in Figure 4.

(a) (b)

i

n− i

n− i + 1

i− 1

Figure 4. Morse critical points of pr[0,1] ◦F of index i can arise from fold

points of F that have either absolute index max{i−1, n− i+1} when i > 0

(case (a)), or absolute index max{i, n} (case (b)).

Then, we can check the claim by examining the definition of Σ(M, f) (see (1.2)) in

the following two cases:

• If n = 2k + 1, then Σ(M, f) = ν0(f) + · · ·+ νk(f). In this case, it is not hard to

show by means of Figure 4 that Σ(M1, f1) = Σ(M0, f0)± 1 in either of the cases

(a) and (b). Then, the claim follows in view of Remark 4.2.

• If n = 2k, then Σ(M, f) = µk−1(f) +
σ(M)−χ(M)

2 . We note that µk−1(f0) =

µk−1(f1). Moreover, we have σ(M0) = σ(M1) because the signature is an oriented

cobordism invariant. Finally, it is not hard to check in either of the cases (a) and

(b) that χ(M1) = χ(M0) + 2 · (−1)i.

This completes the proof of our lemma. �
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Surjectivity of our homomorphismMn → SKKn⊕Zb(n−1)/2c is implied by the following

lemma.

Lemma 4.3. If [M ] ∈ SKKn and a0, . . . , ab(n−1)/2c−1 ∈ Z, then there is a Morse function

f : M → R such that Σ(M, f) · [Sn] = 0 and µj(f) = aj, j = 0, . . . , b(n− 1)/2c − 1.

Proof. The main idea is to construct f from some initially chosen Morse function g : M →
R by creating new pairs of critical points with successive indices. Firstly, we can adjust

µ0(g) = νn(g)−ν0(g) to a0 by creating new pairs of critical points of indices 0, 1 or n−1, n.

Next, we adjust µ1(g) = νn−1(g)− ν1(g) to a1 by creating new pairs of critical points of

indices 1, 2 or n−2, n−1. (This does not affect our previous achievement that µ0(g) = a0.)

This process can be repeated until we have µj(g) = aj , j = 0, . . . , b(n−1)/2c−1. Finally,

in the case n = 2k + 1, we can create a critical point pair of indices k, k + 1 to modify

νk(g) if necessary to make Σ(M, g) = ν0(g) + · · · + νk(g) even (compare Remark 4.2).

In the case n = 2k, we can create additional critical point pairs of indices k − 1, k and

k, k + 1 to adjust µk−1(g) = −σ(M)−χ(M)
2 in such a way that Σ(M, g) = 0. �

The proof of injectivity of our homomorphism Mn → SKKn ⊕ Zb(n−1)/2c will require

the following

Theorem 4.4 (cutting and pasting of Morse functions). Given closed oriented n-manifolds

X and Y such that X
SKK−→ Y (see Definition 3.1), there exist Morse functions gX : X → R

and gY : Y → R that are cobordant in the sense of Definition 2.1.

Proof. By Definition 3.1, we can use the obvious terminology to write

X = (M1 ∪ϕ −M ′1) t (M2 ∪ψ −M ′2),
Y = (M1 ∪ψ −M ′1) t (M2 ∪ϕ −M ′2).

We fix collars ∂Mi× [0, ε) ⊂Mi, i = 1, 2, and extend the projections ∂Mi× [0, ε)→ [0, ε)

to Morse functions gi : Mi → [0,∞). Similarly, we fix collars ∂M ′i × [0, ε) ⊂M ′i , i = 1, 2,

and extend the projections ∂M ′i × [0, ε) → [0, ε) to Morse functions g′i : M
′
i → [0,∞).

As indicated in Figure 5, we are then able to construct in the sense of Definition 2.1 a

nullcobordism of(
g′1 ∪ψ −g1

)
t
(
g1 ∪ϕ −g′1

)
t
(
g′1 ∪∂ −g′2

)
t
(
g′2 ∪ϕ −g2

)
t
(
g2 ∪ψ −g′2

)
t
(
g′2 ∪∂ −g′1

)
,

and the claim follows. �

In order to show injectivity of our map Mn → SKKn ⊕ Zb(n−1)/2c, let us suppose

that the Morse function f : M → R satisfies [M ] + Σ(M, f) · [Sn] = 0 in SKKn, and

µ0(f) = · · · = µb(n−1)/2c−1(f) = 0. In particular, there exist integers a, b ≥ 0 and closed

oriented n-manifolds X and Y such that X
SKK−→ Y (see Definition 3.1) and

M t
a⊔
i=1

Sn tX ∼=
b⊔
i=1

Sn t Y.
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g′1(M ′1) −g1(M1) g1(M1) −g′1(M ′1)

−g′2(M ′2) g2(M2) −g2(M2) g′2(M ′2)

ψ

ψ

g′2(M ′2)

−g′1(M ′1)

−g′2(M ′2)

g′1(M ′1)

ϕ

ϕ

Figure 5. Construction of a cobordism of Morse functions via the method

of cutting and pasting of Morse functions.

Using the previous diffeomorphism as well as the fact that the standard height function

Sn → R is nullcobordant in Mn, we conclude from Theorem 4.4 that there exist Morse

functions

g : M t
a⊔
i=1

Sn tX → R, h : X → R,

which are cobordant in the sense of Definition 2.1. If F : W → [0, 1] × R denotes a

cobordism from g to h, we extend W to a nullcobordism V of M by gluing it together

with a cylinder X × [0, 1] along X t −X, and with
⊔a
i=1D

n+1 along
⊔a
i=1 S

n. There is

no obstruction to extending F to a generic map G : V → [0, 1]×R. Finally, by exploiting

the assumption µ0(f) = · · · = µb(n−1)/2c−1(f) = 0, we are able to eliminate all cusps of

G by means of Levine’s cusp elimination technique [13].

This completes our outline of the proof of Theorem 1.1.

5. Envisioning a unifying approach

In the previous sections, we focused on the cobordism relation for Morse functions on

oriented closed manifolds (Definition 2.1), and studied the precise connection to cutting

and pasting relations on manifolds (Definition 3.1). The purpose of the present section

is to envision in an informal way a framework which provides a unified perspective on

cobordism relations for various types of Morse functions from the same viewpoint. In

Section 5.1, we outline our framework for studying cobordism theory of Morse functions

of any given type. In conclusion, we discuss in Section 5.2 the author’s recent computation

of cobordism groups of Morse functions on manifolds with boundary (see [26, 27]).

5.1. A unifying framework. We propose the following steps for studying the struc-

ture of cobordism groups of Morse functions of a given type. Let us consider a class T
of certain Morse functions on closed (un-)oriented manifolds for which an appropriate

cobordism relation is defined (as a modification Definition 3.1). We denote the resulting
11



n-dimensional cobordism group of Morse functions of class T by MTn . For instance, T
could be the class of special generic functions (see [18]) or, more generally, the class of

k-constrained Morse functions as studied in [24]. Next, we modify the cutting and pasting

relation of Definition 3.1 in order to reflect the properties of Morse functions in the class

T , but without using singularity theory. For example, when T is the class of k-constrained

Morse functions, one might have to incorporate into the cutting and pasting relation of

Definition 3.1 suitable connectedness assumptions on M , M ′, N , N ′, that depend on the

parameter k. The resulting n-dimensional SKK-group corresponding to the modified

gluing and pasting relations will be denoted by SKKTn . Now, the “correct” choice of

cutting and pasting relations will enable us to define a structure map

MTn → SKKTn .

This map turns out to be surjective (in all known cases), but we might not expect it to

be injective in general. Instead, there should exist a homomorphism

MTn → ATn

to some abelian group ATn that extracts further singularity theoretic invariants from T -

cobordism classes in such a way that the pair of both homomorphisms taken together

yields indeed an isomorphism

MTn ∼= SKKTn ⊕ ATn .

When T is the class of all Morse functions on oriented closed manifolds, we note that

MTn =Mn and SKKTn = SKKn, and read off from Theorem 1.1 that ATn = Zb(n−1)/2c.
In Section 5.2 below we will discuss how our framework applies to cobordism theory of

Morse functions on compact manifolds with boundary (compare Problem 5.6). We leave it

as open problems to study other classes of Morse functions mentioned in the introduction.

Problem 5.1. Suppose that T is the class of all special generic functions on oriented

closed manifolds. We suggest to modify the cutting and pasting relation of Definition 3.1

by requiring that each of the manifolds M , M ′, N , N ′ is diffeomorphic to Dn. Does the

associated SKK-group SKKTn admit a homomorphism MTn → SKKTn ? If so, it seems

plausible that this is an isomorphism, and therefore, that ATn = 0. Then, the main result

of [18] would imply that SKKTn
∼= Σn for n ≥ 6, where Σn denotes the group of oriented

homotopy n-spheres up to h-cobordism.

Problem 5.2. Suppose that T is the class of all circle-valued Morse functions as con-

sidered in [5]. Find a modification of the cutting and pasting relation of Definition 3.1

such that the associated SKK-group SKKTn admits a homomorphism MTn → SKKTn ,

and study its properties.

Problem 5.3. Study the analog of problem Problem 5.2 for the class T of k-constrained

Morse functions (see [24]).
12



Remark 5.4 (orientations). Suppose that our class T of Morse functions does not interact

with orientations of the underlying manifolds. Then, we can switch between the oriented

and the unoriented versions of cobordism groups of Morse functions of class T by adapting

the cutting and pasting relations appropriately. While the oriented and the unoriented

versions of the resulting SKK-groups can have different structures, we point out that

the task of computing them is independent of singularity theory. On the other hand, the

singularity theoretic invariants encoded in the map MTn → ATn will not be affected.

5.2. Morse functions on manifolds with boundary. As an application, let us explain

how the framework of Section 5.1 applies to cusp and fold cobordism relations of Morse

functions on compact manifolds possibly with boundary. In the following, we will focus

on the case that the underlying manifolds are oriented. The case of unoriented manifolds

is then covered by Remark 5.4.

Fix an integer n ≥ 2. Let Mn denote a compact manifold possibly with boundary.

By a Morse function on M we mean a function f : M → R which is a submersion in a

neighborhood of ∂M , and such that the critical points of both f and f |∂M are all non-

degenerate (see Figure 6). The concept of cobordant Morse functions (see Definition 2.1)

R

dfx1(v1)

x0

f

x1

dfx0(v0)

M

Figure 6. Illustration of a Morse function f : M → R on a compact surface

with boundary induced by the height function in R3. The critical points of

f |∂M are x0 and x1. Using the indicated inward pointing tangent vectors

v0 ∈ Tx0M and v1 ∈ Tx1M , we see that σf (x0) = +1 and σf (x1) = −1.

has been adapted to manifolds possibly with boundary by Saeki-Yamamoto [21] as follows.

Definition 5.5. Two Morse functions f0 : M0 → R and f1 : M1 → R on compact mani-

folds possibly with boundary M0,M1 are cusp cobordant (resp. fold cobordant) if

• there exists a cobordism (Wn+1, V ) (with corners) from M0 to M1, that is, W

is a compact oriented (n + 1)-manifold with corners such that ∂W = M0 ∪∂M0

13



V ∪−∂M1
−M1, where M0, −M1 and V are oriented codimension 0 submanifolds

of ∂W such that M0 ∩M1 = ∅, V ∩M0 = ∂M0 and V ∩M1 = ∂M1, V
n is an

oriented cobordism from ∂M0 to ∂M1, and W has corners precisely along ∂V ,

• there exists a map F : W → [0, 1] × R such that F and F |∂W\(M0tM1) have only

fold points and cusps (resp. only fold points) as singular points, where recall that

the local normal form of a cusp is given by the map germ (Rm+1, 0)→ (R2, 0),

(x0, x1, . . . , xm) 7→ (x0, x0x1 + x31 − x22 − · · · − x2j + x2j+1 + · · ·+ x2m),

• F is a submersion in a neighborhood of ∂W \ (M0 tM1), and

• there exist collars (with corners) [0, ε)×M0 ⊂ W of M0 ⊂ W and (1−ε, 1]×M1 ⊂
W of M1 ⊂ W such that F |[0,ε)×M0

= id[0,ε)×f0 and F |(1−ε,1]×M1
= id(1−ε,1]×f1.

It can be checked that cobordism in the sense of Definition 5.5 determines an equivalence

relation on the set of all Morse functions on compact oriented n-manifolds possibly with

boundary. Let M∂,cusp
n (resp. M∂,fold

n ) denote the resulting sets of equivalence classes.

As usual, disjoint union “t” induces a group law on these sets. The following problem

has been posed by Saeki-Yamamoto in [21]. While they use a definition of cobordism

that is slightly different from Definition 5.5 in that they make additional C∞ stability

assumptions on the maps, the resulting cobordism groups turn out to be isomorphic.

Problem 5.6 (Saeki-Yamamoto, 2018). Study cusp and fold cobordism groups of Morse

functions M∂,cusp
n and M∂,fold

n , as well as their unoriented versions M∂,cusp
n and M∂,fold

n .

Previously, it has been shown by Saeki-Yamamoto [21] that M∂,cusp
2

∼= Z/2, and by

Yamamoto [28] that M∂,fold
2

∼= Z⊕ Z⊕ Z/2.

Let us indicate how the framework of Section 5.1 can be applied to compute M∂,fold
n

for n > 2. We modify the cutting and pasting relation of Definition 3.1 by allowing the

manifolds M , M ′, N , N ′ to have corners. By augmentation of the arguments in [11], we

can then show that SKK∂,fold
n

∼= In⊕In−1 (see (3.1)) by identifying a generator of In with

[Sn], and a generator of In−1 with [Dn]. (Note that cobordism groups of manifolds with

boundary are trivial.) The definition of Σ(M, f) (see (1.2)) carries over to Morse functions

f : M → R on manifolds possibly with boundary. We construct the homomorphism

ωn : M∂,fold
n → SKK∂,fold

n , [f : M → R] 7→ [M ] + Σ(M, f) · [Sn] + Σ(∂M, f |∂M ) · [Dn].

Let us introduce some more notation for Morse functions f : M → R defined on n-

manifolds possibly with boundary. Following [2], we assign to every critical point x of the

Morse function f |∂M a sign σf (x) ∈ {±1} (see Figure 6) that is uniquely determined by

requiring that for an inward pointing tangent vector v ∈ TxM the tangent vector

σf (x) · dfx(v) ∈ Tf(x)R = R
14



points into the positive direction of the real axis. In fact, this sign depends only on

the germ [f ] of f near ∂M . Let S+
i (f) ⊂ S(f |∂M ) denote the subset of those critical

points x of the Morse function f |∂M of index i for which σf (x) = +1. We also define

ν+i (f) = #S+
i (f), and µ+i (f) = ν+i (−f)− ν+i (−f).

Theorem 5.7 (W. [27], 2018). For n > 2, there is a group isomorphism

M∂,fold
n

∼=−→ SKK∂,fold
n ⊕A∂,foldn = SKK∂,fold

n ⊕ Zb(n−1)/2c ⊕ Zb(n−2)/2c ⊕ Zdn/2e,
[f : M → R] 7→ (ωn[f ],µb(n−1)/2c(f),µb(n−2)/2c(f |∂M ),µ+

dn/2e(f)),

where we make use of the vector notation µ
(+)
N (g) = (µ

(+)
0 (g), . . . , µ

(+)
N−1(g)).

Problem 5.8. Prove the analog of Theorem 5.7 for n = 2. Then, proceed as suggested in

Remark 5.4 to reproduce the isomorphism M∂,fold
2

∼= Z⊕Z⊕Z/2 due to Yamamoto [28].

In particular, give an explicit formula for the invariant M∂,fold
2 → Z/2.

After discovering the singularity theoretic invariantsM∂,fold
n → A∂,foldn of Theorem 5.7,

the author was able to answer Problem 5.6 forM∂,cusp
n (as well as forM∂,cusp

n in view of

Remark 5.4) as follows. For Morse functions f : M → R defined on compact n-manifolds

possibly with boundary we define in analogy with Euler characteristic formulas the integer

χ+(f) =

n−1∑
i=0

(−1)i · ν+i (f).

Theorem 5.9 (W. [26], 2018). Assigning to Morse functions f : Mn → R on compact

oriented n-manifolds possibly with boundary the integers χ(M)− χ+(f), we obtain

M∂,cusp
n

∼=−→

{
Z/2, n even,

Z, n odd.
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10. B. Kalmár, Fold cobordisms and a Poincaré-Hopf type theorem for the signature, preprint
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