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Abstract. A Morse function f on a closed manifold is called k-constrained

if neither f nor −f has critical points of indefinite Morse index < k. We

study bordism of k-constrained Morse functions, thus interpolating between
the case k = 1 of bordism of Morse functions (computed by Ikegami) and the

case k � 1 of bordism of special generic functions (computed by Saeki). For

this purpose, we introduce the notion of constrained generic bordism which
interpolates between the smooth bordism group and the homotopy group of

spheres. By means of Stein factorization and a handle extension theorem for

fold maps due to Gay-Kirby we then show that k-constrained generic bordism
is strongly related to k-connective bordism.

Finally, as an application of our results we show that the bordism group of
constrained Morse functions detects exotic Kervaire spheres in certain dimen-

sions.
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1. Introduction

In 1954, bordism theory of differentiable maps was initiated by René Thom [31]
with the computation of bordism groups of embedded manifolds, and has been a
central issue in the field of global singularity theory ever since. The Pontrjagin-
Thom construction is crucial to Thom’s homotopy theoretic approach, and Rimányi
and Szűcs [25] established a construction of the same type for bordism of smooth
maps of m-manifolds into a fixed n-manifold with certain prescribed types of singu-
larities in the case of positive codimension (n−m > 0). Subsequently, Kalmár [12]
gave an analogous construction for smooth maps with prescribed singular fibers in
the case of negative codimension (n−m < 0).

For the mildest types of singularities, explicit methods of geometric topology
can sometimes serve as adequate tools for computing concrete bordism groups of
smooth maps. In fact, bordism groups of Morse functions, which were originally
introduced by Ikegami-Saeki in [11], have been entirely computed by Ikegami [10] by
means of Levine’s method of eliminating pairs of cusps [18] and the Kervaire semi-
characteristic [13]. Furthermore, employing the technique of Stein factorization [1]
as well as Cerf’s pseudo-isotopy theorem [2], Saeki [27] showed that the bordism
group of so-called special generic functions, i.e., Morse functions having only minima
and maxima as critical points, is isomorphic to the group of homotopy spheres [14].
More generally, Sadykov [26] combined the Pontrjagin-Thom construction with
Smale-Hirsch theory [8] to express bordism groups of special generic maps in terms
of stable homotopy theory.

In this paper, we advance the explicit geometric-topological approach and study
bordism groups of Morse functions whose critical points are subject to the following
type of index constraints. For a given integer k ≥ 1 we call a Morse function on a
closed n-manifold k-constrained if all indefinite Morse indices of its critical points
are contained in the interval {k, . . . , n−k}. Thus, on closed n-manifolds, the notion
of a k-constrained Morse function interpolates between ordinary Morse functions
(k = 1) and special generic functions (k > n/2). From the viewpoint of Morse
theory [21], it is a fundamental observation that a high-dimensional manifold admits
a k-constrained Morse function if it is (k−1)-connected (with the converse being true
in any dimension). This observation suggests that bordism groups of constrained
Morse functions should be strongly related to so-called connective bordism groups
(see Section 2), which will in fact be manifest in our Theorem 1.1. In the context of
a generalization of the Madsen-Weiss theorem, Morse index constraints of the above
form were recently imposed by Perlmutter [23] on Morse functions of bordisms seen
as morphisms of the bordism category.

The key notion of k-constrained n-bordism (see Definition 3.2) involves so-called
fold maps of (n+ 1)-bordisms into the plane. By definition, these are smooth maps
all of whose singular points are determined by map germs of the form

(t, x1, . . . , xn) 7→ (t,−x2
1 − · · · − x2

i + x2
i+1 + · · ·+ x2

n).

Thus, fold maps into the plane can locally be thought of as one-parameter families
of Morse functions, and the absolute index max{i, n− i} turns out to be a locally
constant invariant of singular points. Therefore, index constraints imposed on
Morse functions induce constraints on the absolute index of fold maps in a natural
way. In Definition 3.2 we will introduce a suitable notion of constrained bordism
between constrained Morse functions.
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Kitazawa [15, Remark 1, pp. 392f] constructed explicit examples of so-called
round fold maps with connected indefinite fold locus when the source manifold
is the total space of a fiber bundle over the sphere with fiber a twisted sphere.
The general existence problem for fold maps in the presence of index constraints
has been posed by Saeki in [28, Problem 5.13, p. 200]. Technical difficulties in
approaching this problem arise from the fact that Eliashberg’s h-principle [5] fails
when fold maps are exposed to index constraints. Our results can be considered
as a partial solution to Saeki’s problem in the case of fold maps into R2 that are
subject to our type of index constraints.

In the following discussion of our main results the focus lies on oriented bordism
groups; unoriented versions of the results hold in an analogous way, and details are
pointed out in Remark 4.4 and Remark 5.10.

Besides the n-bordism group of k-constrained Morse functions, which will be

denoted by M̃k
n (see Definition 3.2), our two main results below involve the k-

connective n-bordism group C̃kn as reviewed in Section 2, as well as the group G̃kn of
k-constrained generic n-bordism (see Definition 3.1). The latter can be shown to
interpolate between the smooth oriented bordism group and the group of homotopy
spheres (see Remark 3.4).

The first main result of this paper slightly generalizes one of the main results of
the author’s thesis [32, Theorem 10.1.3, p. 243] (compare Remark 6.5) by relating
the constrained generic bordism group to the group of connective bordism as follows.

Theorem 1.1. Let n ≥ 5 and 1 ≤ k < n be integers. Then, there exist homomor-
phisms as follows:

(i) εkn : C̃kn → G̃kn, [Mn] 7→ [f ], where f : Mn → R denotes an arbitrarily chosen
k-constrained Morse function, and

(ii) for k > 1, δkn : G̃kn → C̃k−1
n , [f : Mn → R] 7→ [](Mn)], where ](Mn) denotes

the oriented connected sum of the connected components of Mn. (We use
the convention that ](∅) = Sn.)

Moreover, for 1 < k < n, the natural homomorphism C̃kn → C̃k−1
n , [Mn] 7→ [Mn],

factors as the composition δkn ◦ εkn, and the natural homomorphism G̃kn → G̃k−1
n ,

[f : Mn → R] 7→ [f ], factors as the composition εk−1
n ◦ δkn.

The two-index theorem of Hatcher and Wagoner [7] (see Section 3.2) will serve
as an essential tool for showing that the homomorphism of part (i) is well-defined
in the case 1 < k < n/2 (see the proof of Proposition 4.3). The two-index theorem
is based on a parametrized implementation of the Smale trick, by which one may
trade a Morse critical point of index i for one of index i + 2 by creating a pair of
critical points of successive indices i + 1 and i + 2, and then cancelling the Morse
critical point of index i with that of index i + 1. Under stronger assumptions the
Smale trick has been used by Cerf in his proof of the pseudo-isotopy theorem (see
[2, Lemma 0, p. 101]). Furthermore, we will exploit a handle extension theorem for
fold maps that has recently been established by Gay and Kirby [6] in the context of
symplectic geometry (see Section 3.3). In order to show that the homomorphism of
part (ii) is well-defined, we use Stein factorization for generic maps into the plane
with certain fold index constraints (see Section 3.4) to prove Proposition 4.2 by
generalizing the proof of [27, Lemma 3.3, p. 293].
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While the structure of M̃k
n turns out to be very similar to that of bordism groups

of Morse functions [10], a somewhat surprising phenomenon arises for n ≡ 3 mod 4
in our second main result (see parts (iii) and (iv) of Theorem 1.2 below). Namely,

the size of the group M̃k
n is governed by an integer κ(n+1)/4 that measures the

existence of closed constrained (n + 1)-bordisms having odd Euler characteristic
(see Definition 5.6). The techniques that are used in the proof of Theorem 1.1
allow us to relate the sequence κ1, κ2, . . . to another sequence γ1, γ2, . . . of positive
integers measuring the existence of highly-connected closed manifolds with odd
Euler characteristic (see Definition 2.3).

Theorem 1.2. Let n ≥ 4 and 1 < k ≤ n/2 be integers. The oriented n-bordism

group of k-constrained Morse functions M̃k
n fits into a short exact sequence of

abelian groups

0→ Akn
αk

n−→ M̃k
n

βk
n−→ G̃kn ⊕ Zbn/2c−k → 0,

where the homomorphisms αkn and βkn are defined in Lemma 5.3 and Lemma 5.1,
respectively. We have either Akn = 0 or Akn = Z/2, depending on the following
cases:

(i) If n is even, then Akn = 0, so βkn is an isomorphism.
(ii) If n ≡ 1 mod 4, then Akn = Z/2, and αkn admits a splitting (see Lemma 5.5).

(iii) If n ≡ 3 mod 4 and k ≤ κ(n+1)/4, then Akn = 0, so βkn is an isomorphism.

(iv) If n ≡ 3 mod 4 and k > κ(n+1)/4, then Akn = Z/2.

Furthermore, the sequences κ1, κ2, . . . and γ1, γ2, . . . (see Definition 5.6 and Defi-
nition 2.3, respectively) are for all integers i ≥ 1 related by γi ≤ κi ≤ γi + 1.

In view of the fact [27] that M̃1
n is isomorphic to the group of homotopy spheres,

the following natural question arises. For which k does a given homotopy sphere

admit a k-constrained Morse function that represents 0 ∈ M̃k
n? For k = 1 this

is only possible for the standard n-sphere. As an application of our results we
show in Theorem 6.2 that for certain n ≡ 1 mod 4 and k = (n − 1)/2, the exotic
Kervaire n-sphere can be characterized among all exotic spheres by the property

that it admits a k-constrained Morse function that represents 0 ∈ M̃k
n. This type

of result has recently become relevant in the context of a concrete positive TFTs
constructed by Banagl (see [32]).

Notation. All manifolds and maps considered in this paper will be smooth of class
C∞. For an oriented closed manifold Mn the manifold equipped with the opposite
orientation will be denoted by −Mn. The symbol ∼= will either mean orientation
preserving diffeomorphism of manifolds or isomorphism of groups.

Acknowledgements. Many parts of the present paper originate from the author’s
PhD thesis, and the author would like to express his deep gratitude to his advisor
Professor Markus Banagl for inspiring guidance during the creation of this work.
Moreover, the author would like to thank Professor Osamu Saeki for helpful dis-
cussions.

The author is grateful to the German National Merit Foundation (Studiens-
tiftung des deutschen Volkes) for substantial financial support.
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2. Connective Bordism

Theorem 1.1 relates constrained generic bordism groups (see Definition 3.1) to
connective bordism groups defined as follows (compare [30, Example 17, p. 51]).

Definition 2.1. Fix integers n ≥ 1 and 1 ≤ k < n. Let Mn and Nn be non-
empty k-connected oriented closed n-manifolds. An oriented k-connective bordism
from Mn to Nn is a k-connected oriented compact manifold Wn+1 with boundary
∂Wn+1 = Mn t −Nn.

The oriented k-connective n-bordism group C̃kn is the set of equivalence classes
[Mn] of non-empty k-connected oriented closed n-manifolds Mn subject to the
equivalence relation of oriented k-connective bordism.

By definition, C̃kn coincides for k > (n−1)/2 with the group of homotopy spheres

Θn as defined in [14], and it can be shown analogously that C̃kn is for any 1 ≤ k < n
an abelian group with group law induced by oriented connected sum, [Mn]+[Nn] :=
[](MntNn)], identity element represented by the standard sphere Sn, and inverses
induced by reversing the orientation, −[Mn] = [−Mn].

Proposition 2.2. Let 1 < k ≤ (n− 1)/2. The natural homomorphism C̃kn → C̃k−1
n ,

[Mn] 7→ [Mn], is injective for k ≡ 3, 5, 6, 7 mod 8.

Proof. If Mn represents 0 ∈ C̃k−1
n , then there exists an oriented (k − 1)-connected

compact manifold Wn+1 with boundary ∂Wn+1 = Mn. Note that any chosen
triangulation of Wn+1 is (k − 1)-parallelizable (i.e., parallelizable over the (k − 1)-
skeleton, see [20, Section 5, p. 49]). The obstruction for being k-parallelizable
vanishes since πk−1(SO(n)) = 0 for k ≡ 3, 5, 6, 7 mod 8 (see the proof of [14,
Theorem 3.1, p. 508]). Therefore, by [20, Theorem 3, p. 49] W can be made
min{k, bdimWn+1/2 − 1c} = k-connected by a finite sequence of surgeries with-
out changing Mn = ∂Wn+1. Hence, if Mn happens to be k-connected, then Mn

represents 0 ∈ C̃kn. �

Poincaré duality implies that orientable closed manifolds with odd Euler charac-
teristic can only exist in dimensions which are a multiple of 4. For instance, CP 2i

is for any integer i ≥ 1 a simply connected closed 4i-manifold with odd Euler char-
acteristic. We define a sequence γ1, γ2, . . . of positive integers as follows (compare
[4, Problem 2.6, p. 151]).

Definition 2.3. For every integer i ≥ 1 let γi be the greatest integer k ≥ 1 for
which there exists a k-connected closed manifold V 4i with odd Euler characteristic
(or, equivalently, odd signature).

Note that γi < 2i because 2i-connected closed 4i-manifolds are homotopy spheres.
For odd i, we always have γi = 1 because 2-connected closed 4i-manifolds V 4i are
spinable, which implies that their signature is a multiple of 16 according to Ocha-
nine’s generalization of Rochlin’s theorem (see [22, p. 133]). For even i, we have
γi ≥ 3 because the quaternionic projective space HP i has odd Euler characteristic.
In particular, γ2 = 3. When i = 4j is a multiple of 4, then γi ≥ 7 because the j-fold
power OP 2 × · · · × OP 2 of the octonionic projective plane OP 2 is a 7-connected
closed manifold with odd Euler characteristic. In particular, γ4 = 7.

By an argument analogous to the proof of Proposition 2.2, we can show that
γi 6≡ 2, 4, 5, 6 mod 8 for all i ≥ 1.
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3. Preliminaries on Generic Maps into the Plane

In this section we collect essential techniques for constructing and studying
generic maps from bordisms into the plane.

Fix an integer n ≥ 1. Recall that any smooth map of a manifold Xn+1 into
the plane can be approximated arbitrarily well in the Whitney C∞ topology by a
smooth map G : Xn+1 → R2 whose singular locus S(G) = {x ∈ Xn+1; rank dxG <
2} consists of those x ∈ Xn+1 admitting coordinate charts centered at x and G(x),
respectively, in which G has one of the following normal forms:

(1) (t, x1, . . . , xn) 7→ (t, x1x2 + x3
1 ± x2

3 ± · · · ± x2
n), i.e., x is a cusp of G.

(2) (t, x1, . . . , xn) 7→ (t, x2
1 ± · · · ± x2

n), i.e., x is a fold point of G.

Definition 3.1. Let f : Mn → R and g : Nn → R be k-constrained Morse functions
on oriented closed n-manifolds. An oriented k-constrained generic bordism from f
to g is an oriented bordism Wn+1 from Mn to −Nn equipped with a generic map
G : Wn+1 → R× [0, 1] such that

(i) there exist tubular neighbourhoods Mn × [0, ε) ⊂ Wn+1 of Mn × {0} =
Mn ⊂Wn+1 and Nn× (1− ε, 1] ⊂Wn+1 of Nn×{1} = Nn ⊂Wn+1 such
that

G|Mn×[0,ε) = f × id[0,ε), G|Nn×(1−ε,1] = g × id(1−ε,1] .

(ii) all absolute indices of fold points of G are contained in {dn/2e, . . . , n−k}∪
{n}.

The oriented k-constrained generic n-bordism group G̃kn is the set of equivalence
classes [f ] of k-constrained Morse functions f : Mn → R on oriented closed n-
manifolds subject to the equivalence relation of oriented k-constrained generic bor-
dism.

Definition 3.2. Let f : Mn → R and g : Nn → R be k-constrained Morse functions
on oriented closed n-manifolds. An oriented k-constrained bordism from f to g is an
oriented k-constrained generic bordism from f to g without cusps. The oriented n-

bordism group of k-constrained Morse functions M̃k
n is the set of equivalence classes

[f ] of k-constrained Morse functions f : Mn → R on oriented closed n-manifolds
subject to the equivalence relation of oriented k-constrained bordism.

Note that G̃kn and M̃k
n are abelian groups. In both cases, the group law is induced

by disjoint union, [f : Mn → R] + [g : Nn → R] := [f t g : Mn t Nn → R], the
identity element is represented by the unique map f∅ : ∅ → R, and the inverse of
[f : Mn → R] is given by [−f : −Mn → R].

There are natural homomorphisms G̃ln → G̃kn and M̃l
n → M̃k

n whenever l ≥
k. Moreover, there is a natural homomorphism M̃k

n → G̃kn which maps the class

[f : Mn → R] ∈ M̃k
n to the class [f : Mn → R] ∈ G̃kn.

Remark 3.3. By definition, the groups G̃kn and M̃k
n coincide for k > n/2 both with

the oriented bordism group of special generic functions on n-manifolds Γ̃(n, 1) as
defined in [27].

Remark 3.4. Varying k, the group G̃kn interpolates between the smooth oriented

bordism group ΩSOn (an isomorphism G̃1
n

∼=−→ ΩSOn is given by [f : Mn → R] 7→
[Mn]) and, by [27], the group of homotopy spheres Θn

∼= G̃kn (k > n/2).
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3.1. Elimination of Cusps; Cusps and Euler Characteristic. We refer to [10]
for a detailed discussion of the material presented in this section.

Recall from [10, Definition 2.2, p. 213] that there exist homomorphisms

ϕ̃λ : M̃1
n → Z, [f ] 7→ Cλ(f)− Cn−λ(f), λ ∈ {0, . . . , n},

where Cµ(f) denotes the number of critical points of f of Morse index µ. For any

integer 1 < k ≤ n/2 we use the natural homomorphism M̃k
n → M̃1

n to define a
homomorphism (compare [10, Definition 2.3, p. 213])

Φ̃k : M̃k
n → Zbn/2c−k, [f ] 7→ (ϕ̃b(n+3)/2c([f ]), . . . , ϕ̃n−k([f ])).

Levine’s technique [18] of eliminating pairs of cusps of generic maps into the plane
(see also [10, Section 3, pp. 215ff]) can be used as in [10] to prove the following.

Theorem 3.5. Suppose that n ≥ 2. Let G : Wn+1 → R2 be an oriented k-
constrained generic bordism from g0 : Mn

0 → R to g1 : Mn
1 → R. Suppose that

Φ̃k(g0) = Φ̃k(g1). Moreover, if n is odd, then suppose that G has an even number

of cusps. Then, [g0] = [g1] ∈ M̃k
n.

Proof. We make Wn+1 connected by using the oriented connected sum operation,
and modify G accordingly while performing the oriented connected sum along small
2-discs centered at definite fold points of G. If Wn+1 is connected, then G is
homotopic rel ∂Wn+1 to an oriented k-constrained bordism from g0 to g1 by iterated
elimination of cusps. For details, see [10, proof of Theorem 2.7, p. 220ff]. �

Remark 3.6. For k = n/2 > 1 it can be shown that any oriented n/2-constrained
generic bordism G : Wn+1 → R2 is already an oriented n/2-constrained bordism.
Indeed, the map G cannot have cusps because the occuring absolute fold indices n

and n/2 are not consecutive integers when n/2 > 1. Consequently, M̃n/2
n = G̃n/2n .

By an adaption of the proof of [10, Lemma 5.2, p. 226] we have the following.

Proposition 3.7. Let G : Wn+1 → R2 be an oriented 1-constrained generic bordism
from g0 : Mn

0 → R to g1 : Mn
1 → R. Let c denote the number of cusps of G,

and let ν denote the number of critical points of g0 t g1. Then, ν is even, and
c + ν/2 ≡ χ(Wn+1) mod 2, where χ(Wn+1) denotes the Euler characteristic of
Wn+1.

3.2. Two-Index Theorem.

Theorem 3.8. Fix integers n ≥ 5 and 1 < k < n/2. Suppose that f0, f1 : Mn → R
are k-constrained Morse functions on a closed manifold Mn. Then, there exists an
oriented k-constrained generic bordism F : Mn × [0, 1]→ R2 from f0 to f1.

Proof. Without loss of generality, we may assume that Mn is connected, and that
f0(Mn) = f1(Mn) = [0, 1]. For i = 0, 1 let c0i and c1i denote the unique critical
points of fi of index 0 and n, respectively. For i, j ∈ {0, 1} and suitable ε > 0 there

exist orientation preserving embeddings ιji : Dn
2ε →M such that ιji (0) = cji and

(fi ◦ ιji )(x) = ej(||x||2) := j + (−1)j ||x||2, x ∈ Dn
2ε. (∗)

Furthermore, for possibly smaller ε > 0, there exists an isotopy H : [0, 1]×M →M

of diffeomorphisms Ht := H(t,−) : M →M such that H0 = idM and H1◦ιj0 = ιj1 for
j = 0, 1. Therefore, after replacing f1 by f1 ◦H1, we may without loss of generality
work with the assumption that f0 ◦ ιj0 = f1 ◦ ιj0 for j = 0, 1. Set U j := ιj0(Dn

ε ) for
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j = 0, 1. Set V := M \ (ι00(intDn
ε ) ∪ ι10(intDn

ε )) and V j := U j ∩ V ∼= Sn−1 for
j = 0, 1. Then, fi restricts for i = 0, 1 to a Morse function

gi := fi|V : (V, V 0, V 1)→ ([ε2, 1− ε2], ε2, 1− ε2)

all of whose critical points have Morse index contained in the set {k, . . . , n − k}.
Choose a generic 1-parameter family gt, t ∈ [0, 1], as described in [3, Theorem 9.4,
pp. 190f] with regular level sets V0 = g−1

t (ε2) and V1 = g−1
t (1 − ε2). Since the

cardinality of the set {k, . . . , n−k} is at least 2 (recall that k < n/2), we can use the
two-index theorem of Hatcher and Wagoner (see [7, Chapter V, Proposition 3.5]) in
the form presented in [3, pp. 214f] to modify the family gt rel g0 and g1 iteratively
in such a way that the resulting generic map G : V × [0, 1] → [ε2, 1 − ε2] × [0, 1],
(x, t) 7→ (gt(x), t) is k-constrained.

In the following, we sketch the construction of the desired map F , which amounts
to a careful extension ofG over U j×[0, 1] for j = 0, 1. (The construction is presented
in full detail in [32, Section 8.4] using [32, Appendix B].) Without loss of generality,
we may assume for t ∈ [0, 1] that gt = g0 when t is near 0, and that gt = g1 when t

is near 1. We extend g : V × [0, 1]→ [ε2, 1− ε2] to a smooth map g̃ : Ṽ × [0, 1]→ R
for some open neighborhood Ṽ of V in M such that, for t ∈ [0, 1], g̃|Ṽ×{t} = f0|Ṽ
when t is near 0, and that g̃|Ṽ×{1} = f1|Ṽ when t is near 1. For j = 0, 1, we define

a tubular neighborhood of V j × [0, 1] in Ṽ × [0, 1] by

αj : (−δ, δ)× V j × [0, 1]→ Ṽ × [0, 1], αj(u, v, t) = (ιj0(ρ(u) · (ιj0)−1(v)), t),

where ρ : (−1/2, 1/2) → R is given by ρ(r) =
√
r + 1. By construction, we have

pr[0,1] ◦αj = pr[0,1] and (g̃ ◦ αj)(u, v, t) = ej(ε2(u + 1)) when t ∈ [0, 1] is near 0
or near 1. For j = 0, 1, we use the technique of integral curves of vector fields on
manifolds with boundary (see [9, Chapter 6 §2, pp. 149ff]) to construct another

tubular neighborhood of V j × [0, 1] in Ṽ × [0, 1], say

βj : (−δ, δ)× V j × [0, 1]→ Ṽ × [0, 1],

such that pr[0,1] ◦βj = pr[0,1] and (g̃ ◦ βj)(u, v, t) = ej(ε2(u+ 1)). By adapting the

proof of [9, Theorem 5.3, p. 112] we can construct for some open neighborhood

U ⊂ Ṽ × [0, 1] of ∂V × [0, 1] an isotopy rel U ∩ (Ṽ × {0, 1}) from the inclusion

U ↪→ Ṽ × [0, 1] to an embedding θ : U → Ṽ × [0, 1] such that θ ◦ αj = βj on a

neighborhood of V j× [0, 1] in Ṽ × [0, 1]. A version of the isotopy extension theorem
(see [9, Theorem 1.4, p. 180]) provides an ambient isotopy rel a neighborhood of
M × {0, 1} in M × [0, 1] from idM×[0,1] to an automorphism Θ of M × [0, 1] such

that Θ ◦αj = βj for j = 0, 1 on a neighborhood of V j × [0, 1] in M × [0, 1]. Finally,
the desired map F : M × [0, 1]→ R2 can be defined as

F (x, t) =

{
(G ◦Θ)(x, t), if x ∈ V,
(ej(||(ιj0)−1(x)||2), t), if x ∈ U j .

�

Remark 3.9. In [27, Lemma 3.1, p. 291], Cerf’s pseudo-isotopy theorem [2] is used
to show that the statement of Theorem 3.8 also holds for n ≥ 6 and k > n/2.



BORDISM OF CONSTRAINED MORSE FUNCTIONS 9

3.3. Handle Extension Theorem. Let Wm be an oriented bordism from W0 to
W1 of dimensionm = dimW ≥ 6 Obviously, any given Morse functions g0 : W0 → R
and g1 : W1 → R can be extended to an oriented 1-constrained generic bordism
G : W → R2. If g0 and g1 are k-constrained for k > 1, does there exist an oriented
k-constrained generic bordism G : W → R2 from g0 to g1? The “handle extension
theorem” for k-constrained generic maps gives an affirmative answer to this ques-
tion, provided that W admits a handle decomposition without handles of index
contained in the set {m− k, . . .m− 2}. More specifically, the following result due
to Gay and Kirby [6] holds:

Theorem 3.10. Let k ≥ 2 be an integer. Suppose that W0 is (k − 1)-connected.
Furthermore, suppose that

τ : (W,W0,W1)→ ([0, 1], 0, 1)

is a Morse function all of whose critical points have the same Morse index λ ∈
{k+ 1, . . . ,m− k− 1}, and are contained in τ−1(1/2). Then, there exists a smooth
map σ : W → R with the following properties:

(1) σ restricts for every t 6= 1/2 to an excellent k-constrained Morse function
τ−1(t)→ R.

(2) σ and τ form the components of an oriented k-constrained bordism

(σ, τ) : W → R× [0, 1].

3.4. Stein Factorization. The importance of Stein factorization for the global
study of singularities of smooth maps was first realized when Burlet and de Rham
[1] used it as a tool to study special generic maps of 3-manifolds into the plane.

We recall the concept of Stein factorization of an arbitrary continuous map
f : X → Y between topological spaces. Define an equivalence relation ∼f on X
as follows. Two points x1, x2 ∈ X are called equivalent, x1 ∼f x2, if they are
mapped by f to the same point y := f(x1) = f(x2) ∈ Y , and lie in the same
connected component of f−1(y). The quotient map πf : X → X/ ∼f gives rise to
a unique set-theoretic factorization of f of the form

X Y

X/ ∼f

πf

f

f

.

If we equip the quotient space Xf := X/ ∼f with the quotient topology induced

by the surjective map πf : X → Xf , then it follows that the maps πf and f are
continuous.

In the following, both the above diagram and the quotient space Xf = X/ ∼f
will be referred to as the Stein factorization of f .

In generalization of [27, Lemma 2.1, p. 290], the following result clarifies the
structure of Stein factorization for k-constrained generic bordisms Wm → R2 for
m ≥ 3 and k > 1.

Theorem 3.11. Let (Wm,M1,M2) be a smooth manifold triad of dimension m :=
dimW ≥ 3. Suppose that F : Wm → R2 is an oriented k-constrained generic
bordism, and that F is a stable map.
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If k > 1, then the Stein factorization WF = W/ ∼F of F can be given the
structure of a compact smooth manifold of dimension 2 with corners in such a way
that πF : W → WF is a generic smooth map and F : WF → R2 is an immersion.
Furthermore, if D(F ) denotes the union of the definite fold lines of F , then the
boundary of WF decomposes as

∂WF = πF (∂W ) ∪ πF (D(F )),

where πF (∂W )∩πF (D(F )) = πF (∂W ∩D(F )) is the set of corners of WF , and πF
restricts to an embedding D(F )→ ∂WF .

Proof. The claims follow from [16, Theorem 2.2, p. 2609]. Note that the only local
neighborhoods of points in WF that can occur are those of types (a), (b1), (b3), (c2)
and (d2) in [16, Figure 1, p. 2610] because we have excluded fold points of absolute
index m− 2. This implies that WF is a topological 2-manifold. Finally, the desired
smooth structure on WF is induced by requiring F to be a local diffeomorphism. �

4. Proof of Theorem 1.1

Fix integers n ≥ 5 and 1 ≤ k < n.

The following straightforward generalization of [27, Lemma 3.2, p. 292] will
frequently be used. Note that it can be considered as a version of Theorem 3.10 for
the case that τ has only critical points of Morse index λ ∈ {1,m− 1}.

Lemma 4.1. Let f : Mn → R be a k-constrained Morse function. Then, there
exist a k-constrained Morse function g : ](Mn)→ R and an oriented k-constrained
bordism G : Wn+1 → R2 from g to f .

Proposition 4.2 below (compare [27, Lemma 3.3, p. 293]) shows that the as-

signment [f : Mn → R] 7→ [](Mn)] defines a well-defined map δkn : G̃kn → C̃k−1
n for

any integer 1 < k < n. Then, it follows that δkn : G̃kn → C̃k−1
n is a homomorphism

because the existence of an oriented diffeomorphism ](M t N) ∼= ](](M) t ](N))
implies that δkn([f ] + [g]) = [](M t N)] = [](](M) t ](N))] = δkn([f ]) + δkn([g]) for
any k-constrained Morse functions f : Mn → R and g : Nn → R.

Proposition 4.2. Suppose that 1 < k < n. Let f : Mn → R and g : Nn → R be k-
constrained Morse functions, and let G : Wn+1 → R2 be an oriented k-constrained
generic bordism from f to g. Then, there exists an oriented (k − 1)-connective
bordism V n+1 from Mn to Nn.

Proof. By assumption there exists an oriented k-constrained generic bordism from
f t −g : Mn t −Nn → R to ∅ → R. Lemma 4.1 implies that there exists a
k-constrained Morse function h : ](Mn tNn) → R, and an oriented k-constrained

bordism H : V
n+1 → R2 from h to ∅ → R. By Theorem 3.11 the Stein factorization

V H of H is a connected oriented compact 2-manifold with two corners, where
we have assumed without loss of generality that H is stable. (In fact, H can
always achieved to be stable by first choosing h to have a single critical point

on each level set, and then perturbing H in the interior of V
n+1

.) Then, by the
classification of surfaces, we may think of V H as a half disc with a finite number of 1-

handles attached. We choose an oriented compact submanifold V n+1 of V
n+1

with
boundary ∂V = ](MntNn)t−Pn, where Pn is an oriented closed n-manifold whose
image under πH looks like the dotted line L in Fig. . . . , where we assume that L
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avoids images of cusps of πH , and is transverse to πH(S(πH)). Let L1, . . . , Lr be the
lines indicated in Fig. . . . . Then, we have an orientation preserving diffeomorphism
Pn ∼= ](P1 t (−P1) t · · · t Pr t (−Pr)), where Pi := π−1

H (Li). By construction, the
Stein factorization of the restriction F := H|V is diffeomorphic to a rectangle,
VF ∼= [0, 1] × [0, 1], in such a way that {0, 1} × [0, 1] corresponds to πF (∂V ) and
[0, 1]×{0, 1} corresponds to πF (S), where S denotes the definite fold locus of F . A
generic projection to one direction gives us a k-constrained Morse function V → R
with regular level sets ](Mn t Nn) and Pn. Therefore, V is a (k − 1)-connective
bordism from ](Mn tNn) to Pn, and the claim follows. �

Let us show that the choice of k-constrained Morse functions f : Mn → R
on given k-connected oriented closed manifolds Mn induces a well-defined map

εkn : C̃kn → G̃kn, [Mn] 7→ [f : Mn → R]. Note that εkn will be a homomorphism by
Lemma 4.1. We distinguish between the cases that k > n/2, k = n/2 and k < n/2.

For k > n/2, note that C̃kn = Θn, the group of homotopy spheres, and G̃kn =

Γ̃(n, 1), the bordism group of special generic functions. Then, εkn is the homo-

morphism Φ̃: Θn → Γ̃(n, 1) introduced in the proof of [27, Theorem 1.1, p. 288]
(compare [27, p. 294]), and is well-defined by [27, Lemma 3.1, p. 291].

For k = n/2 we have already noted that C̃n/2n = Θn, the group of homo-
topy spheres. All indefinite critical points of an n/2-constrained Morse function
f : Mn → R are of index n/2, so there are none if Mn is a homotopy sphere.

Hence, the desired homomorphism ε
n/2
n : C̃n/2n → G̃n/2n is the composition of the

homomorphism C̃n/2n = Θn
Φ̃−→ Γ̃(n, 1) = G̃n/2+1

n mentioned above with the homo-

morphism G̃n/2+1
n → G̃n/2n .

Let k < n/2. For k = 1, the map ε1
n is just the composition of the map C̃1

n →
ΩSOn , [Mn] → [Mn], with the inverse of the isomorphism G̃1

n

∼=−→ ΩSOn described

in Remark 3.4. For 1 < k < n/2, evaluation of the map εkn : C̃kn → G̃kn on a given

element of C̃kn depends a priori on the choice of a representative Mn, and on the
choice of a k-constrained Morse function f : Mn → R, and independence of choices
follows from the following result, which generalizes [27, Lemma 3.1, p. 291].

Proposition 4.3. Suppose that 1 < k < n/2. Let Wn+1 be an oriented (k − 1)-
connective bordism from Mn

0 to Mn
1 , and let g0 : Mn

0 → R and g1 : Mn
1 → R be k-

constrained Morse functions. If Wn+1 is k-connected, then there exists an oriented
k-constrained generic bordism G : Wn+1 → R2 from g0 to g1.

Proof. By the rearrangement theorem [21, p. 44] we can modify an arbitrarily
chosen Morse function f : Wn+1 → [−1/2, n + 1 + 1/2] with regular level sets
Mn

0 = f−1(−1/2) and Mn
1 = f−1(n + 1 + 1/2) to be self-indexing, i.e., the Morse

index of every critical point c of f is f(c). Following the proof of Smale’s h-
cobordism theorem [21, Theorem 9.1, p. 107], we then modify f in such a way that
all Morse indices of critical points of f are contained in the set {k + 1, . . . , n− k}.
By Theorem 3.10 there exist for every λ ∈ {k + 1, . . . n − k} k-constrained Morse
functions g−λ : f−1(λ − 1/4) → R and g+

λ : f−1(λ + 1/4) → R, and an oriented

k-constrained generic bordism Gλ : f−1([λ − 1/4, λ + 1/4]) → R2 from g−λ to g+
λ .

Furthermore, by Theorem 3.8 there exist oriented k-constrained generic bordisms
G0,k+1 : f−1([−1/2, (k+1)−1/4])→ R2 from g0 to g−k+1, Gλ,λ+1 : f−1([λ+1/4, (λ+
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1)−1/4])→ R2 from g+
λ to g−λ+1, λ ∈ {k+1, . . . n−k−1}, and Gn−k,n+1 : f−1([(n−

k) + 1/4, n+ 1 + 1/2])→ R2 from g+
n−k to g1, and the claim follows. �

From now on, let 1 < k < n. The composition δkn ◦ εkn coincides by definition

with the natural homomorphism C̃kn → C̃k−1
n , [Mn] 7→ [Mn]. Let us show that

the composition εk−1
n ◦ δkn coincides with the natural homomorphism G̃kn → G̃k−1

n ,
[f : Mn → R] 7→ [f ]. By definition, the composition εk−1

n ◦ δkn assigns to the class

[f ] ∈ G̃kn of a k-constrained Morse function the class [g] ∈ G̃k−1
n represented by an

arbitrarily chosen (k − 1)-constrained Morse function g : ](Mn) → R. In view of
Lemma 4.1 it suffices to show that any two (k− 1)-constrained Morse functions on
](Mn) are oriented (k − 1)-constrained generic bordant. If k − 1 < n/2, then this

holds by Theorem 3.8. If k − 1 ≥ n/2, then G̃kn = Γ̃(n, 1), the bordism group of
special generic functions. Hence, f : Mn → R is a special generic function, ](Mn)
a homotopy n-sphere, and the claim follows from [27, Lemma 3.1, p. 291].

This completes the proof of Theorem 1.1.

Remark 4.4. Unoriented versions Ckn and Gkn of the groups C̃kn and G̃kn can be defined
in a straightforward way by forgetting orientations in Definition 2.1 and Defini-

tion 3.1, respectively. It is easy to show that the natural epimorphisms C̃kn → Ckn,

[Mn] 7→ [Mn], has kernel 2C̃kn. Moreover, for k > 1 we can modify the argument

of the proof of Proposition 4.2 in order to show that the epimorphism G̃kn → Gkn,

[f : Mn → R] 7→ [f : Mn → R], has kernel 2G̃kn (compare [27, Remark 3.4, p. 293]).

For k = 1 we use the isomorphism G̃1
n

∼=−→ ΩSOn described in Remark 3.4, and the

analogously defined isomorphism G1
n

∼=−→ ΩOn to the unoriented smooth bordism

group to show that the homomorphism G̃1
n → G1

n, [f : Mn → R] 7→ [f : Mn → R],

has kernel 2G̃1
n. (In fact, note that the homomorphism ΩSOn → ΩOn , [Mn]→ [Mn],

has kernel 2ΩSOn .) Hence, all the statements of Theorem 1.1 carry over to unori-
ented bordism groups.

5. Proof of Theorem 1.2

Fix integers n ≥ 4 and 1 < k ≤ n/2. We present the proof of Theorem 1.2 in a
sequence of lemmas.

Lemma 5.1. The homomorphism

βkn : M̃k
n → G̃kn ⊕ Zbn/2c−k, [f : Mn → R] 7→ ([f ], Φ̃k([f ])),

is surjective, where Φ̃k : M̃k
n → Zbn/2c−k is defined in Section 3.1.

Proof. Given an element ([g : Mn → R], c1, . . . , cbn/2c−k) ∈ G̃kn ⊕ Zbn/2c−k, we can
use the same argument as in [10, p. 220] to modify g iteratively by introducing pairs
of critical points of successive Morse indices in order to produce a k-constrained

Morse function f : Mn → R which satisfies Φ̃k([f ]) = (c1, . . . , cbn/2c−k). Since

[f ] = [g] in G̃kn by means of a generic homotopy that realizes the sequence of births
of critical point pairs, we obtain βkn([f : Mn → R]) = ([g], c1, . . . , cbn/2c−k). �

The following lemma completes the proof of part (i).

Lemma 5.2. If n is even, then βkn is injective.
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Proof. Suppose that βkn([f ]) = 0 ∈ G̃kn ⊕ Zbn/2c−k for some [f : Mn → R] ∈ M̃k
n.

Then, there exists an oriented k-constrained generic bordism G : Wn+1 → R2 from

f to f∅. Since Φ̃k([f ]) = 0, Theorem 3.5 implies that [f ] = [f∅] = 0 ∈ M̃k
n. �

In order to studying the kernel of βkn when n is odd, we introduce a homomor-

phism αkn : Z/2→ M̃k
n as follows.

Lemma 5.3. Suppose that n is odd, and let l := (n − 1)/2. If f, g : Sn → R are
Morse functions with exactly 4 critical points whose Morse indices form the set

{0, l, l + 1, n}, then [f ] = [g] ∈ M̃k
n. Hence, there is a well-defined homomorphism

αkn : Z/2→ M̃k
n, 1 7→ [fα : Sn → R],

where fα : Sn → R denotes a fixed Morse function with the above properties.

Proof. By Theorem 3.8 there exists an oriented l-constrained generic bordismG : Sn×
[0, 1]→ R2 from f to g. Moreover, Proposition 3.7 implies that the number of cusps

of G is even. Hence, the claim that [f ] = [g] ∈ M̃k
n follows from Theorem 3.5. As

Sn admits an orientation reversing automorphism, we may choose g = −f , and
obtain 2[f ] = 0. �

Lemma 5.4. If n is odd, then imαkn = kerβkn.

Proof. Note that Ψ̃k([fα]) = 0 ∈ G̃kn and Φ̃k([fα]) = 0 ∈ Zbn/2c−k, and thus

imαkn ⊂ kerβkn. Conversely, suppose that βkn([f ]) = 0 ∈ G̃kn ⊕ Zbn/2c−k for some

[f : M → R] ∈ M̃k
n. Then, there exists an oriented k-constrained generic bordism

G : Wn+1 → R2 from f to f∅. Moreover, by means of Theorem 3.8, we can construct
an oriented k-constrained generic bordism Gα : Dn+1 → R2 from fα to f∅. By
Proposition 3.7 exactly one of the oriented k-constrained generic bordisms G and
G t Gα, say G0, has an even number of cusps. Hence, Theorem 3.5 implies that

0 = [f0] = [f ] + m[fα] ∈ M̃k
n for suitable m ∈ {0, 1}, and we conclude that

kerβkn ⊂ imαkn. �

Lemma 5.5 below completes the proof of part (ii). For this purpose, recall
from [10, Definition 2.5, p. 214] that there is for n ≡ 1 mod 4 a well-defined ho-

momorphism Λ: M̃1
n → Z/2 which assigns to [f ] ∈ M̃1

n the element Λ([f ]) =

σ(f)− σ(Mn;Q) ∈ Z/2, where σ(f) =
∑(n−1)/2
λ=0 Cλ(f), and σ(Mn;Q) denotes the

Kervaire semi-characteristic of Mn over Q (see [13]). Composition with the natural

homomorphism M̃k
n → M̃1

n yields a homomorphism Λkn : M̃k
n → Z/2 which turns

out to be a splitting of αkn for n ≡ 1 mod 4.

Lemma 5.5. For n ≡ 1 mod 4 we have Λkn ◦ αkn = idZ/2.

Proof. It suffices to note that Λk([fα]) = 1 ∈ Z/2, which follows from σ(fα) = 2
and σ(Sn;Q) = 1. �

In Lemma 5.7 below we prove the remaining parts (iii) and (iv) by characterizing
injectivity of αkn for n ≡ 3 mod 4. For this purpose, we introduce the required
sequence κ1, κ2, . . . of positive integers in Definition 5.6 below. Note that CP 2i is
for any integer i ≥ 1 a closed 4i-manifold with odd Euler characteristic, and any
generic map CP 2i → R2 defines an oriented 1-constrained generic bordism from
f∅ : ∅ → R to f∅ : ∅ → R.
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Definition 5.6. For every integer i ≥ 1 let κi be the greatest integer k ≥ 1
for which there exists an oriented k-constrained generic bordism V 4i → R2 from
f∅ : ∅ → R to f∅ : ∅ → R such that V 4i has odd Euler characteristic (or, equivalently,
odd signature).

Lemma 5.7. Suppose that n ≡ 3 mod 4. Then, αkn is injective if and only if
k > κ(n+1)/4.

Proof. As in the proof of Lemma 5.4 we can construct an oriented k-constrained
generic bordism Gα : Dn+1 → R2 from fα to f∅.

“⇐”. Let k > κ(n+1)/4. If we suppose that [fα] = 0 ∈ M̃k
n, then there exists

an oriented k-constrained bordism F : Wn+1 → R2 from f∅ to fα. From Propo-
sition 3.7 we conclude that χ(W ) is even because F has no cusps and fα has 4
critical points. Hence, V n+1 := Wn+1 ∪Sn Dn+1 is an oriented closed manifold
with odd Euler characteristic. Now F and Gα glue to an oriented k-constrained
generic bordism V n+1 → R2 from f∅ to f∅, which contradicts the assumption that
k > κ(n+1)/4.

“⇒”. Suppose that k ≤ κ(n+1)/4, and let V n+1 be a closed manifold with
odd Euler characteristic which admits an oriented k-constrained generic bordism
G1 : V n+1 → R2 from f∅ to f∅. Note that both Gα and G1 have an odd number
of cusps by Proposition 3.7. Hence, the oriented k-constrained generic bordism
GαtG1 : Dn+1tV n+1 → R2 from fα to f∅ has an even number of cusps. Therefore,

[fα] = 0 ∈ M̃k
n by Theorem 3.5. �

Remark 5.8. We do not know if the short exact sequence in Theorem 1.2(iv) splits.

Finally, the sequences κ1, κ2, . . . and γ1, γ2, . . . are related to each other as fol-
lows. The inequality γi ≤ κi is (for γi > 1) a consequence of Proposition 4.3.
Moreover, the inequality κi ≤ γi + 1 follows (for κi > 1) from Proposition 4.2,
where one has to take care of the parity of the Euler characteristic.

This completes the proof of Theorem 1.2.

Remark 5.9. Note that κi < 2i for all i ≥ 1 (where we have used Remark 3.6 and
Proposition 3.7 to exclude the case that κi = 2i). Hence, for γi = 2i − 1 (which
happens (at least) for i = 1, 2, 4) we have κi = γi. Moreover, γi 6≡ 2, 4, 5, 6 mod 8
implies that κi 6≡ 5, 6 mod 8 because γi ∈ {κi − 1, κi}.

Remark 5.10. An unoriented version Mk
n of the group M̃k

n can be defined in a
straightforward way by forgetting orientations in Definition 3.2. Then, it is possible
to derive a version of Theorem 1.2 for the unoriented bordism group Mk

n in an
analogous way.
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6. Detecting Exotic Kervaire Spheres

In conclusion, we discuss in Theorem 6.2 how our results on bordism groups
of constrained Morse functions can be applied to detect exotic Kervaire spheres
in certain high dimensions. Recall that Kervarie spheres are a concrete family of
homotopy spheres that can be obtained from a plumbing construction (see [17, p.
162]). In fact, the unique Kervaire sphere ΣnK of dimension n = 4k + 1 is defined
as the boundary of the parallelizable (4k+ 2)-manifold given by plumbing together
two copies of the tangent disc bundle of S2k+1. In Theorem 6.2 we will need to
impose stronger conditions on the dimension n that originate from a result of Stolz
[29] on highly connected bordisms that is used in our argument, and we do not
know if they can be eliminated.

Let Θn denote the abelian group of homotopy n-spheres, which is known to be
finite [14]. Recall that Θn consists of the oriented h-cobordism classes of oriented
homotopy n-spheres, and its group structure is induced by taking the oriented
connected sum of homotopy spheres. For n ≥ 5, Θn is well-known to coincide
with the group of oriented diffeomorphism classes of oriented closed n-manifolds
homeomorphic to Sn, whose non-trivial elements are known as exotic spheres.

Let bPn+1 ⊂ Θn denote the subgroup of those homotopy n-spheres that can
be realized as the boundary of a parallelizable cobordism (see [14, p. 510]). The
following result is part of the classification theorem of homotopy spheres (see [19,
Theorem 6.1, pp. 123f]).

Theorem 6.1. Suppose that n = 4k + 1 for some integer k ≥ 1. Then, bPn+1 =
{[Sn], [ΣnK ]}, where ΣnK denotes the unique Kervaire sphere of dimension n. More-
over, bPn+1

∼= Z/2 whenever n 6= 2j − 3 for all integers j ≥ 0, and bPn+1 = 0
for n ∈ {5, 13, 29, 61}. We have Θn/bPn+1

∼= coker Jn, where Jn : πn(SO) → πsn
denotes the stable J-homomorphism.

Theorem 6.2. Suppose that n ≥ 237 and n ≡ 13 (mod 16). Set l := (n − 1)/2.
Then for any exotic n-sphere Σn the following statements are equivalent:

(i) Σn is diffeomorphic to the Kervaire n-sphere ΣnK .

(ii) Σn admits an l-constrained Morse function which represents 0 ∈ M̃l
n.

Remark 6.3. In the setting of Theorem 6.2, any positive integer can be realized as

σ(f) =
∑l
λ=0 Cλ(f) (introduced before Lemma 5.5) for some suitable l-constrained

Morse function f : Σn → R on the exotic sphere Σn. Indeed, Σn is well-known
to admit a Morse function without indefinite critical points (see the proof of [21,
Theorem B, p. 109]). Hence, by introducing additional pairs of Morse critical
points of subsequent indices l and l+ 1, we can realize any desired positive integer
as σ(f).

Remark 6.4. In the range n ≤ 500 and under the assumptions of Theorem 6.2, we
have bPn+1 6= Θn at least for n ∈ {237, 285, 333, 381, 445, 461, 477, 493}. In fact, by
Theorem 6.1 it suffices to show that coker Jn is non-trivial. For this purpose, note
that n ≡ 5 (mod 8) implies that πn(SO) = 0 (see the proof of [14, Theorem 3.1, p.
508]). Hence, coker Jn ∼= πsn. Finally, an examination of the 5-components of πsn in
[24, Table A3.5, pp. 365ff] shows that πsn 6= 0 for the desired values of n.
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Proof (of Theorem 6.2). By the proof of [27, Theorem 1.1, p. 288] there is for n ≥ 6

an isomorphism ϑn : Θn

∼=−→ Γ̃(n, 1) given by the assignment [Σn] 7→ [f ], where
f : Σn → R denotes an arbitrarily chosen special generic function on the homotopy
sphere Σn, i.e., a Morse function without indefinite critical points. By composition
with the homomorphisms of Theorem 1.1 we can define homomorphisms

cln : Θn
ϑn−→ Γ̃(n, 1)

3.3
= G̃l+1

n

δl+1
n−→ C̃ln, [Σn] 7→ [Σn],

gln : Θn
cln−→ C̃ln

εln−→ G̃ln, [Σn] 7→ [f ],

cl−1
n : Θn

gln−→ G̃ln
δln−→ C̃l−1

n , [Σn] 7→ [Σn],

where f : Σn → R denotes an arbitrarily chosen l-constrained Morse function in
the definition of gln. Denote the kernels of gln, cln and cl−1

n by Gln, Cln and Cl−1
n ,

respectively. Then, by construction, Cln ⊂ Gln ⊂ Cl−1
n . Note that Proposition 2.2

implies that Cln = Cl−1
n because l ≡ 6 mod 8. Thus, we have shown that Gln = Cln.

Furthermore, the inclusion bPn+1 ⊂ Cln holds since by [20, Theorem 3, p. 49] any
parallelizable compact smooth manifold Wm of dimension m = n+ 1 can be made
l = (bm/2c − 1)-connected by a finite sequence of surgeries without changing ∂W .

By a theorem of Stolz (see [29, Theorem B(ii), p. XIX]), the inclusion Cln ⊂
bPn+1 holds because m := n+ 1 is by assumption of the form m = 2k+ d for d = 0
and some integer k ≥ 113 satisfying k ≡ 7 (mod 8).

All in all, we have shown that Gln = Cln = bPn+1 = {[Sn], [ΣnK ]}, where the last
equality is taken from Theorem 6.1.

Using σ(Σn,Q) = 1 ∈ Z/2 as well as Remark 6.3, Theorem 1.2(ii) implies that

statement (ii) is equivalent to [Σn] = 0 ∈ G̃ln, i.e., [Σn] ∈ Gln = {[Sn], [ΣnK ]}, and
the claim follows. �

Remark 6.5. The groups Cln and Gln introduced in the proof of Theorem 6.2 can
be generalized for any n ≥ 6 to natural subgroup filtrations Ckn and Gkn of Θn. In
fact, using Theorem 1.1, we can define for 1 ≤ k ≤ bn/2c the homomorphisms

ckn : Θn
ϑn−→ Γ̃(n, 1)

3.3
= G̃bn/2c+1

n → G̃k+1
n

δk+1
n−→ C̃kn, [Σn] 7→ [Σn],

gkn : Θn
ckn−→ C̃kn

εkn−→ G̃kn, [Σn] 7→ [f ],

where f : Σn → R denotes an arbitrarily chosen k-constrained Morse function in
the definition of gkn. If Ckn and Gkn denotes the kernel of ckn and gkn, respectively,
then Ckn ⊂ Gkn for 1 ≤ k ≤ bn/2c, and Gkn ⊂ Ck−1

n for 2 ≤ k ≤ bn/2c (compare [32,
Theorem 10.1.3, p. 243]). We do not know whether the resulting filtrations Ckn and
Gkn of Θn coincide or not.
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théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 5–173.

3. K. Cieliebak, Y. Eliashberg, From Stein to Weinstein and back. Symplectic geometry of affine

complex manifolds, American Mathematical Society Colloquium Publications 59 (2012).
4. K.H. Dovermann, R. Schultz, Equivariant surgery theories and their periodicity properties,

Lecture Notes in Mathematics 1443, Springer-Verlag Berlin Heidelberg, 1990.



BORDISM OF CONSTRAINED MORSE FUNCTIONS 17

5. J.M. Eliashberg, Surgery of singularities of smooth mappings, Math. USSR. Izv. 6 (1972),

1302–1326.

6. D.T. Gay, R. Kirby, Indefinite Morse 2-functions; broken fibrations and generalizations,
Geom. Topol. 19 (2015), 2465–2534.

7. A. Hatcher, J. Wagoner, Pseudo-isotopies of compact manifolds, Astérisque 6, Soc. Math. de
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