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Introduction

Given a set X of n d-dimensional data points labeled by y ∈ {−1, 1}n , we want to find a
function that classifies each point to be in one of the two sets based on its location. In this
exercise, we use a linear classification model, i.e. we look for a hyperplane that separates these
two sets1. Additionally, we are interested in a classifier that is sparse, ie that uses only as few
of the available data dimensions as possible.
A hyperplane h is given by a normal vector
ω and a translation b and the classification
hω,b is defined as follows:

hω,b(x) = sgn(ωTx+ b) ∈ {−1, 1}

We require that this evaluation coincides
with the given classification of the points2.
Additionally we require the parameter ω and
b to be such that no points lie in the margin
which is defined as the following set of points
x3:

{x : |hω,b(x)| < 1}

We want to reduce the dimension of the orig-
inal space and consider only a subset of fea-
tures4. In our model this implies that a cer-
tain fraction of weights is required to be zero
resulting in a sparse classifier.
A sparse classifier with sparsity ρ is a linear classifier where a fraction of the ω entries is equal
to 0:

ρ(ω) =
|{i : ωi = 0}|

d
1graphic taken from: https://en.wikipedia.org/wiki/File:Svm max sep hyperplane with margin.png.
2This may not always be possible. In that unlucky case we require the condition for as many datapoints x

as possible and penalize misclassifications.
3It is easy to see that the width of the margin decreases when the length of ω increases.
4This classification to be successful meaning that not all features are relevant.
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Advantages of a sparse classifier are a smaller cost of the classification and the fact that it
results in a simpler model5

Material

The sub directory scip-workshop/support-vector-machine is the place where you should
place your python script. It also contains a subdirectory data, which contains means to read
in the data by the following python commands:

from data . l o a d c a n c e r import l o a d c a n c e r

d a t a s e t = l o a d c a n c e r ( )
X = np . a r r a y ( d a t a s e t . data )
y = np . a r r a y ( d a t a s e t . t a r g e t s )

The dataset is the classification of benign (y = −1) or malignant (y = 1) breast cancer based
on 30 features and contains 569 data points. Out of these 212 are malignant and 357 are
benign. It is taken from:

http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/

For all the exercises you should split the dataset into two parts, one that you train on and
one that you predict.

Exercise 1

Your first task is to implement a linear svm with the following model.
Let the set of datapoints consist of n d-dimensional features X ∈ Rn,d, labeled by y ∈
{−1,+1}n and let C > 0 be a regularization parameter. To penalize wrongly classified
datapoints, consider as a loss function the Hinge loss6:

li(t) := max{0, 1− yit} for i ∈ {1, . . . , n}

As you want to minimize the penalty, and maximize the margin (equivalently minimize the
length of ω, since the width of the margin is given by 2

‖ω‖), the model can now be written as
the following optimization problem:

min
ω,b

C

n

n∑
i=1

li(ωTXi + b) +
1

2
‖ω‖22

Substituting the Hinge loss for a variable

ξi ≥ li(ωTXi + b)

= max{0, 1− yi(ωTXi + b)},

the above problem is equivalent to:

5.Occam’s razor : from a set of solutions to a problem select the one that makes the fewest assumptions.
6Here t is the evaluation of the classifier on datapoints.
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min
ω,b

C
n

n∑
i=1

ξi + 1
2‖ω‖

2
2

such that 1− yi(ωTXi + b) ≤ ξi, i ∈ {1, . . . , n}

0 ≤ ξi, i ∈ {1, . . . , n}

Report your results in terms of the accuracy (percentage of misclassified test examples), and
the individual numbers of misclassified positive and negative test samples, respectively.

Hints The regularization parameter C is usually optimized to produce the best prediction.
We can start with a value of 1.0. Once the model works, you can play around with different
powers of 10 to produce the best result.

Exercise 2

Modify the model from Exercise 1 to produce a sparse classifier.
To implement a sparse classifier with sparsity ρ, add additional constraints and variables to
the model7.

∑
j∈d vj ≤ ρ · d

−B · vj ≤ ωj ≤ B · vj , j ∈ {1, . . . , d}

vj ∈ {0, 1}, j ∈ {1, . . . , d}

For i ∈ {1, . . . , d} assume the weights ωj to be bounded by −B and B for a bound B > 0.
Only a fraction of these new binary indicator variables vj are allowed to be nonzero. Then
all the vj that are zero will force their corresponding ωj to be zero.
How sparse can you make the classifier to produce results comparable to Exercise 1?

Hint A good first choice on B would be 10, as the optimal solutions usually lie in within
the interval [−10, 10].

Exercise 3

Depending on the number of positive and negative samples in the data we might want to weight
the penalties differently, ensuring that points from one of the sets have a higher probability
to be classified correctly8. This correction ci is applied in the objective function:

C

n

n∑
i=1

ciξ
i +

1

2
‖ω‖22, where ci =

{
α if yi = 1

β if yi = −1

Your task is to balance the data.

7Another possibility would be to prefer sparse solutions using an L1-norm in the objective function.
8An application would be medical tests, where a false negative should be highly unlikely, whereas a false

positive is not disastrous.
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