研究集会「トポロジーと写像の特異点」

Singular Fibers of
Differentiable Maps
and
4-Dimensional
Cobordism Group

佐伯 修 (Osamu Saeki)

(Kyushu Univ.)

June 3, 2009

1 Cobordism of Manifolds

 M^n , N^n : closed manifolds (possibly oriented)

Def. 1 $M^n \sim_{\operatorname{cob}} N^n$

cobordant (resp. oriented cobordant)

 $\stackrel{\text{def.}}{\Longleftrightarrow}$

 $\exists V^{n+1}$: compact manifold (resp. oriented)

s.t. $\partial V^{n+1} = M^n \cup N^n$ (resp. $M^n \cup (-N^n)$)

Cobordism group of manifolds

$$\mathfrak{N}_n = \{ [M] \mid \dim M = n \}$$

$$\Omega_n = \{ [M]_{\text{ori}} \mid \dim M = n \text{ and } M \text{ is oriented} \}$$

additive groups

$$[M]+[M']=[M\cup M']$$

Pontrjagin, Thom, Milnor, Wall, etc...

Detailed structures of \mathfrak{N}_n and Ω_n are known.

Today's topic

Singular fibers of

generic differentiable maps

$$egin{aligned} & & \downarrow \ & & \mathfrak{N}_2 \cong \mathbb{Z}_2, \, \Omega_2 = \Omega_3 = 0, \ & & & \Omega_4 \cong \mathbb{Z} \end{aligned}$$

2 2-dimensional case

$$orall [M^2] \in \mathfrak{N}_2$$

 $\exists f: M^2 o \mathbb{R} \quad ext{Morse function}$

Singularities of f: non-degenerate critical points

$$egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} f_i:M_i
ightarrow N_i & {
m smooth\ maps} \ \ & \ y_i\in N_i \quad (i=0,1) \end{array}$$

fibers over y_0 and y_1 are C^{∞} equivalent def.

$$\stackrel{\text{def.}}{\Longleftrightarrow} \quad \exists U_i \ni y_i,$$

diffeomorphisms

$$egin{aligned} \exists \widetilde{arphi}: (f_0)^{-1}(U_0) & \stackrel{\cong}{\longrightarrow} (f_1)^{-1}(U_1) \ & \exists arphi: U_0 \stackrel{\cong}{\longrightarrow} U_1 \quad ext{with} \quad arphi(y_0) = y_1 \ & ext{s.t.} \end{aligned}$$

$$egin{array}{cccc} (f_0)^{-1}(U_0) & \stackrel{\widetilde{arphi}}{\longrightarrow} & (f_1)^{-1}(U_1) \ & & & & & & \downarrow f_1 \ & U_0 & \stackrel{arphi}{\longrightarrow} & U_1 \end{array}$$

Classification of singular fibers

List of singular fibers of Morse functions on surfaces

punctured Möbius band

 $f:M^2 o\mathbb{R}$ Morse function

 \bigvee

construct $\exists V^3$ from $M^2 imes [0,1]$

by

gluing 2-disks along regular S^1 -fibers of

$$f:M^2 imes\{0\} o \mathbb{R}.$$

More precisely, glue 2-disk bundles over arcs.

$$\partial V^3 = (M^2 imes \{1\}) \cup \left(igcup_i F_i^2
ight)$$

each $F_i^2 \longleftrightarrow \text{singular fiber}$

$$F_i^2 \cong S^2 \quad (=\partial D^3)$$

$$F_i^2 \cong S^2 \quad (=\partial D^3)$$

(3)

$$F_i^2 \cong \mathbb{R}P^2$$

Lemma 3

$$orall M^2 \sim_{\operatorname{cob}} igcup_j \mathbb{R} P^2$$

Define the homomorphism

$$arphi: \mathbb{Z}_2 \longrightarrow \mathfrak{N}_2$$

by
$$\varphi(1) = [\mathbb{R}P^2]$$
.

$$\mathbb{R}P^2 \cup \mathbb{R}P^2 = \partial(\mathbb{R}P^2 imes [0,1])$$

 $\Rightarrow \varphi$ is well-defined

 φ is surjective by Lemma 3.

Consider the composition:

$$\mathbb{Z}_2 \xrightarrow{\varphi} \mathfrak{N}_2 \xrightarrow{\chi} \mathbb{Z}_2$$

 χ : Euler characteristic mod 2

This is the identity map. $\Rightarrow \varphi$ is injective.

Thm. 4 $\mathfrak{N}_2\cong \mathbb{Z}_2$

The projective plane $\mathbb{R}P^2$ is a natural generator of $\mathfrak{N}_2\cong \mathbb{Z}_2.$

Cor. 5 M^2 : closed surface

 $f:M^2 o\mathbb{R}$ Morse function

$$\implies \chi(M^2) \equiv \sharp \left(\begin{array}{c} & & \\ & & \\ & & \end{array} \right) \pmod{2}$$

Similarly, we have $\Omega_2 = 0$.

3 3-dimensional case

 $\forall [M^3] \in \Omega_3 \quad (M^3: \text{ oriented})$

 $\exists f: M^3 o \mathbb{R}^2 \quad extit{C^∞ stable map}$

Singularities of f:

$$(x, y, z) \mapsto (x, y^2 \pm z^2)$$
 fold point

$$(x,y,z)\mapsto (x,y^3+xy-z^2)$$
 cusp

Classification of singular fibers

(Kushner-Levine-Porto 1984)

$$\kappa = 1$$
 • \bigcirc

$$\kappa=2$$

Singular fibers of C^∞ stable maps of orientable 3-manifolds into \mathbb{R}^2

 $f:M^3 imes\{0\} o \mathbb{R}^2$ C^∞ stable map

Construct $\exists V^4$ from $M^3 \times [0,1]$

- (1) by attaching 2-disks along regular S^1 -fibers (more precisely, attach 2-disk bundles over surfaces), and
- (2) by attaching 3-disks along

singular fibers of $\kappa = 1$

(cf. 2-dimensional case, $\Omega_2 = 0$)

(more precisely, attach 3-disk bundles over arcs).

$$\partial V^4 = (-M^3) \cup \left(igcup_j F_j^3
ight)$$

each $F_j^3 \longleftrightarrow \text{singular fiber of } \kappa = 2$

Prop. 6 (Costantino–D. Thurston 2006)

$$F_i^3 \cong S^3 \quad (=\partial D^4)$$

for

Prop. 7

$$F_j^3 \cong S^3 \quad (=\partial D^4)$$

for

Remark 1 (Kalmár 2007)

 $orall M^3$ admits a fold map $f:M^3 o \mathbb{R}^2$.

- (1) f is "oriented cobordant" to a simple fold map.
- (2) Any simple fold map is

"oriented null-cobordant".

$$\implies \Omega_3 = 0$$

4 4-dimensional case

 $\forall [M^4] \in \Omega_4 \qquad (M^4 : \text{ oriented})$

 $\exists f: M^4 o \mathbb{R}^3 \quad C^\infty \text{ stable map}$

Singularities of f:

$$(x,y,z,w)\mapsto (x,y,z^2\pm w^2)$$
 fold point $(x,y,z,w)\mapsto (x,y,z^3+xz-w^2))$ cusp $(x,y,z,w)\mapsto (x,y,z^4+xz^2+yz+w^2)$

swallow-tail

Classification of singular fibers (S. 1999)

$\kappa = 1$	•	∞	
$\kappa=2$	8		
$\kappa=3$	8		
	•		

Singular fibers of C^∞ stable maps of orientable 4-manifolds into \mathbb{R}^3

Construct $\exists V^5$ from $M^4 imes [0,1]$

- (1) by attaching 2-disks along regular S^1 -fibers (more precisely, attach 2-disk bundles over 3-manifolds),
- (2) by attaching 3-disks along singular fibers of $\kappa=1$ (cf. 2-dimensional case, $\Omega_2=0$) (more precisely, attach 3-disk bundles over surfaces), and
- (3) by attaching 4-disks along singular fibers of $\kappa=2$ (cf. 3-dimensional case, $\Omega_3=0$) (more precisely, attach 4-disk bundles over arcs).

$$\partial V^5 = (-M^4) \cup \left(igcup_j F_j^4
ight)$$

each $F_j^4 \longleftrightarrow \text{singular fiber of } \kappa = 3$

Prop. 8

We have $F_j^4 \cong S^4$ except for

For this singular fiber, we have $F_j^4 \cong \pm \mathbb{C}P^2$.

Cor. 9
$$\forall M^4 \sim_{\text{cob}} \cup (\pm \mathbb{C}P^2)$$

Define the homomorphism

$$arphi: \mathbb{Z}
ightarrow \Omega_4$$

by
$$\varphi(1) = [\mathbb{C}P^2]$$
.

 φ is surjective by the above Corollary.

Consider the composition:

$$\mathbb{Z} \xrightarrow{\varphi} \Omega_4 \xrightarrow{\sigma} \mathbb{Z}$$

 σ : signature

This is the identity map. $\Rightarrow \varphi$ is injective.

Thm. 10
$$\Omega_4 \cong \mathbb{Z}$$

The complex projective plane $\mathbb{C}P^2$ is a natural generator of $\Omega_4\cong\mathbb{Z}.$

Cor. 11 (T. Yamamoto-S. 2006)

 M^4 : closed oriented 4-manifold

 $f:M^4 o \mathbb{R}^3$ C^∞ stable map

 \uparrow

counted with signs ± 1

Cor. 12 $f: M \to N$ smooth map

M: closed oriented manifold

 $\dim M = \dim N + 1 \ge 4$

s.t. singular fibers of f are of codimension ≤ 3 , not of the above type

 $\implies M$ is oriented null cobordant.