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Got PhD in Mathematics (at the Univ. of Tokyo) in 1992.
Thesis title: “On 4-manifolds homotopy equivalent to the 2-sphere”
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Got PhD in Mathematics (at the Univ. of Tokyo) in 1992.
Thesis title: “On 4-manifolds homotopy equivalent to the 2-sphere”

Main interest: Singularity Theory, 3- and 4-Dimensional Topology
Proposed the Theory of Singular Fibers of Differentiable Maps.
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My recent interests include collaboration with industrial partners or
computer scientists on enhancing visualization of multi-variate data
from the viewpoint of topology.
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My recent interests include collaboration with industrial partners or
computer scientists on enhancing visualization of multi-variate data
from the viewpoint of topology.

Member of Institute of Mathematics for Industry,
Kyushu Univ.

Unique institute where quite a few “pure mathematicians” (like me)
also collaborate.

Kyushu University, Japan
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“Topological Approach to Visualization of Scientific Data”

■ Use techniques from Differential Topology, especially those of
Singularity Theory: Topology is essential for extracting global
features of given data.

■ Visualize Multi-fields, instead of Scalar fields.
■ Apply visualization techniques to Mathematics itself.
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Nn : differentiable manifold of dimension n (or a region in R
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Definition 1.1 For c ∈ R, set

f−1(c) = {p ∈ Nn | f(p) = c},

which is called a level set.
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Nn : differentiable manifold of dimension n (or a region in R
n)

f : Nn → R differentiable function (scalar field)

Definition 1.1 For c ∈ R, set

f−1(c) = {p ∈ Nn | f(p) = c},

which is called a level set.

In general, a level set is of dimension n− 1 (but may not be a manifold).
For n = 2, it is a curve; for n = 3, it is a surface, etc.

Example 1.2 Altitude from the sea level (height function):
level set = contour line
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One can grasp the global feature of the data by chasing the level sets.
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f

N R

One can grasp the global feature of the data by chasing the level sets.
We have some critical level sets where topological transitions of
level sets occur.
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f = ±x2
1 ± x2
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w.r.t. certain local coordinates for some constant c.
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f : Nn → R differentiable function (scalar field)
p ∈ Nn is a critical point of f if

∂f

∂x1

(p) =
∂f

∂x2

(p) = · · · =
∂f

∂xn

(p) = 0.

Theorem 1.3 (Morse lemma) If f is generic enough, then

around each critical point, f is expressed as

f = ±x2
1 ± x2

2 ± · · · ± x2
n + c

w.r.t. certain local coordinates for some constant c.

The number of negative signs “−” is called the index.
Topology of a critical point is completely determined by the index.
For the study of level-set changes, the Morse lemma is essential !
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f : N3 → R (dimN3 = 3)
Level sets are surfaces “with singularities”.

∅

Example of topological transitions of level-surfaces for a 3-dimensional
scalar field around critical level sets.
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f : Nn → R a scalar field
The space (or graph) obtained by contracting each connected
component of the level set to a point is called a Reeb graph
(or contour tree, volume skeleton tree, Stein factorization, ...).
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f : Nn → R a scalar field
The space (or graph) obtained by contracting each connected
component of the level set to a point is called a Reeb graph
(or contour tree, volume skeleton tree, Stein factorization, ...).

f
N R

Vertices of a Reeb graph ⇐⇒ Critical points of a function
Reeb graph is indispensable for visualizing scalar fields.
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An example of an application of Reeb graph:
[Takahashi–Takeshima–Fujishiro, 2004] Topological Volume
Skeletonization and its Application to Transfer Function Design

― Visualization of Big Data ― 
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We study several functions at the same time, rather than a single scalar
valued function.

For technical reasons, topological analysis of such multi-variate data
has just recently begun.

We can attack this problem, using the recently developed
“Joint Contour Net”, a novel technique in Computer Science,
on the basis of Singularity Theory, a sophisticated discipline in
Mathematics.
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Nn: differentiable manifold of dimension n (or a region in R
n)

f : Nn → R
m (m ≥ 1) differentiable map (or multi-field)

f(x) = (f1(x), f2(x), . . . , fm(x))
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Nn: differentiable manifold of dimension n (or a region in R
n)

f : Nn → R
m (m ≥ 1) differentiable map (or multi-field)

f(x) = (f1(x), f2(x), . . . , fm(x))

Definition 2.1
For c ∈ R

m, f−1(c) is called a fiber (rather than a level set).

Generically, we have dim f−1(c) = n−m.
Usually, we assume n ≥ m.
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Remark 2.2
Mathematically, a fiber is, in fact, NOT just a subset in Nn, but a MAP
around a pre-image.
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Remark 2.2
Mathematically, a fiber is, in fact, NOT just a subset in Nn, but a MAP
around a pre-image.

f : Nn → R
m, g : Ln → R

m multi-fields
For points c ∈ R

m and d ∈ R
m, fibers over c and d are equivalent (or

the points have the same singular fiber type) if ∃commutative diagram

(f−1(U), f−1(c))
∼=

−−−→ (g−1(V ), g−1(d))

f





y





y

g

(U, c)
∼=

−−−→ (V,d)

for some neighborhoods c ∈ U ⊂ R
m and d ∈ V ⊂ R

m.
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(1)

(2)

(3)

Equivalence classes of singular fibers for Morse functions on surfaces
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Salinity Constant Curves on
Temperature Constant Surfaces

Temperature Constant
Surfaces

Singular Fiber
Singular Point
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n = 3, N3: sea water, f : N3 → R
2

f = (temperature, salt density)

       

Salinity Constant Curves on
Temperature Constant Surfaces

Temperature Constant
Surfaces

Singular Fiber
Singular Point

A fiber containing a singular point is called a singular fiber.
This is important in grasping the topological feature of the given data !
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m (n ≥ m) differentiable map (multi-field)
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f : Nn → R
m (n ≥ m) differentiable map (multi-field)

Definition 2.3 For a point p ∈ Nn, the differential

dfp : TpN
n → Tf(p)R

m

is the linear map associated with the Jacobian matrix of f (the m× n
matrix whose entries are the first order partial derivatives of f).
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Singular point is a point p ∈ Nn such that rank dfp < m.
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f : Nn → R
m (n ≥ m) differentiable map (multi-field)

Definition 2.3 For a point p ∈ Nn, the differential

dfp : TpN
n → Tf(p)R

m

is the linear map associated with the Jacobian matrix of f (the m× n
matrix whose entries are the first order partial derivatives of f).
Singular point is a point p ∈ Nn such that rank dfp < m.
The set of singular points

J(f) = {p ∈ Nn | rank dfp < m}

is called the Jacobi set (or the singular point set) of f .

Generically, the Jacobi set J(f) is of dimension m− 1.
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For singular points p ∈ Nn and q ∈ Ln of f and g, respectively, they
have the same singularity type if
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For multi-fields, any theorem like the Morse lemma for scalar fields?

Definition 2.4 f : Nn → R
m, g : Ln → R

m multi-fields
For singular points p ∈ Nn and q ∈ Ln of f and g, respectively, they
have the same singularity type if ∃commutative diagram
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m,

and f(q) ∈ V ′ ⊂ R
m.
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For multi-fields, any theorem like the Morse lemma for scalar fields?

Definition 2.4 f : Nn → R
m, g : Ln → R

m multi-fields
For singular points p ∈ Nn and q ∈ Ln of f and g, respectively, they
have the same singularity type if ∃commutative diagram

(U, p)
∼=

−−−→ (V, q)

f





y





y

g

(U ′, f(p))
∼=

−−−→ (V ′, g(q))

for some neighborhoods p ∈ U ⊂ Nn, q ∈ V ⊂ Ln, f(p) ∈ U ′ ⊂ R
m,

and f(q) ∈ V ′ ⊂ R
m.

Morse lemma says that a non-degenerate critical point of a Morse
function has the same singularity type as the critical point of a quadratic
function ±x2

1 ± x2
2 ± · · · ± x2

n.
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There are some classification results for generic singularity types.

Example 2.5 When n = 2 and m = 2.
Types of singularities: fold and cusp (Whitney, 1955)

fold cusp

Jacobi set
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f : Nn → R
m

Suppose n ≥ m = 2 and f is generic.
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fold: A generalization of the Morse critical points for scalar fields
cusp: A degeneration of fold singularities
For m = 3, a swallowtail may appear, which is a degeneration of cusp
singularities.
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f : Nn → R
m

Suppose n ≥ m = 2 and f is generic.
fold: A generalization of the Morse critical points for scalar fields
cusp: A degeneration of fold singularities
For m = 3, a swallowtail may appear, which is a degeneration of cusp
singularities.

For m ≥ 4, the situation is much more complicated.
=⇒ still studied in Singularity Theory as one of its central problems.
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Assume that data (of the f -values) are given at a discrete set of points
in the domain Nn.
In order to analyze the given data, it is important to visualize the data in
such a way that the structure of the fibers are clearly encoded.

Known Techniques
[Bachthaler & Weiskopf, 2008] Continuous Scatterplots:
Refinement of scatterplots for discrete data values
=⇒ Curves of the Jacobi set image can be vaguely grasped.

[Lehmann & Theisel, 2010]
Discontinuities in Continuous Scatterplots:
More sophisticated algorithm for detecting the Jacobi set image.
Posed the problem of counting the number of fiber components.

Unfortunately, these studies are apparently not fully based on
mathematical theories.
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For visualization of multi-variate data, we need to

1. Identify the Jacobi set J(f) in the domain, and identify their
singularity types;

2. Identify the Jacobi set image f(J(f)), and identify their singular
fiber types.

[Edelsbrunner & Harer, 2002]
Jacobi Sets of Multiple Morse Functions:
Suggested an algorithm for obtaining the Jacobi set.
However, it does not identify the singularity types.

Singularity theory of differentiable mappings
⇓

One can identify the singularity types and the singular fiber types
(to a certain extent...)
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For a generic f : Nn → R
m, we have dim J(f) = dim f(J(f)) = m− 1.

Jacobi set image f(J(f)) divides the range R
m into some regions.
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For a generic f : Nn → R
m, we have dim J(f) = dim f(J(f)) = m− 1.

Jacobi set image f(J(f)) divides the range R
m into some regions.

Example of Jacobi set image of a map of a surface into R
2
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For visualizing a multi-field f , the following is expected.

1. Visualize J(f) in Nn, and f(J(f)) in R
m,

2. Visualize the singularity types for J(f), and the singular fiber
types for f(J(f)),

3. Visualize the regular fibers corresponding to the connected
components of Rm \ f(J(f)).

In fact, when a singularity theorist (like me) analyzes a given multi-field,
he/she tries to visualize it by the above method (but, with hand
calculation and almost always without success !)
Any way, it is important to identify the singular fibers and the
topological transitions of the fibers near singular fibers.



§3. Visualizing 2-Variate
Volume Data

§1. Visualizing Scalar Field Data §2. Visualizing Multi-field Data §3. Visualizing 2-Variate Volume Data §4. Examples of Visualization



Case of N 3 → R
2

§1. Visualizing Scalar Field Data §2. Visualizing Multi-field Data §3. Visualizing 2-Variate Volume Data §4. Examples of Visualization

27 / 53

Let us consider the case of n = 3 and m = 2: 2-variate volume data.
In the following, f : N3 → R

2 will be a multi-field, where N3 is a
bounded region (with boundary) in R

3.

N3: spatial domain (or domain)
R

2: data domain (or range)

We assume that f is differentiable and is sufficiently generic (or
non-degenerate).
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Let us consider the case of n = 3 and m = 2: 2-variate volume data.
In the following, f : N3 → R

2 will be a multi-field, where N3 is a
bounded region (with boundary) in R

3.

N3: spatial domain (or domain)
R

2: data domain (or range)

We assume that f is differentiable and is sufficiently generic (or
non-degenerate).

Jacobi set J(f) forms a smooth curve in N3.
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Let ∂N3 be the boundary of the spatial domain, which is a compact
surface (without boundary).

Set f∂ = f |∂N3 : ∂N3 → R
2, which is a generic differentiable map.



Singular fiber
§1. Visualizing Scalar Field Data §2. Visualizing Multi-field Data §3. Visualizing 2-Variate Volume Data §4. Examples of Visualization

28 / 53

Let ∂N3 be the boundary of the spatial domain, which is a compact
surface (without boundary).

Set f∂ = f |∂N3 : ∂N3 → R
2, which is a generic differentiable map.

We define its Jacobi set J(f∂) in a similar way: it forms a smooth curve
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Let ∂N3 be the boundary of the spatial domain, which is a compact
surface (without boundary).

Set f∂ = f |∂N3 : ∂N3 → R
2, which is a generic differentiable map.

We define its Jacobi set J(f∂) in a similar way: it forms a smooth curve
in ∂N3.

A fiber that passes through J(f) ∪ J(f∂) is called a Singular Fiber.

N3

J(f)

J(f∂)
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For visualization, we use the technology of Joint Contour Net
(= JCN) [Carr & Duke, 2013], which decomposes the domain into
regions of equivalent behavior.
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Joint Contour Net
§1. Visualizing Scalar Field Data §2. Visualizing Multi-field Data §3. Visualizing 2-Variate Volume Data §4. Examples of Visualization

29 / 53

For visualization, we use the technology of Joint Contour Net
(= JCN) [Carr & Duke, 2013], which decomposes the domain into
regions of equivalent behavior.

Assume that f -values are given at a discrete set of points in the domain.

The main idea of JCN is that we quantize the f -values.

Instead of taking a point c ∈ R
2, we consider a small pixel P ⊂ R

2.
Instead of a fiber f−1(c), we consider a fat fiber f−1(P ).

In this way, we can identify singular fibers in a robust way, because fat
fibers contain essential information on its central fiber.
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Domain (3D): Tetrahedral mesh / Range (2D): Rectangular mesh
Tetrahedra in the domain are decomposed into smaller pieces according
to their (quantized) values.

(2, 2)

(4, 2)
(2, 1)

(3, 2)

(3, 1)

Domain Range

1 2 3 40

Tetrahedron B
A

4

3

2

1

0

AATetrahedron A

A B

BB B

B



Constructing JCN (2)
§1. Visualizing Scalar Field Data §2. Visualizing Multi-field Data §3. Visualizing 2-Variate Volume Data §4. Examples of Visualization

31 / 53

Unite neighboring pieces that have the same value.
They correspond to the connected components of the inverse image of a
pixel — a fat fiber.

At each pixel (square), put a node for each set 
of neighboring tetrahedra.

A&B
B&C

E&F

Node 2: (E,F)

Node 1: (A,B,C)

A B
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Encode the adjacency information of the fat fibers by edges.

For nodes in neighboring pixels, connect 
them by an edge if they have a common 
tetrahedron.

(E, F)

(A, B, C)(B, G)

(E, F)

(B, G) (A, B, C)



Constructing JCN (4)
§1. Visualizing Scalar Field Data §2. Visualizing Multi-field Data §3. Visualizing 2-Variate Volume Data §4. Examples of Visualization

33 / 53

In this way, we get a graph called Joint Contour Net, describing the
adjacency relations among the connected components of fat fibers.
This, in turn, can be used to detect birth-death or merge-splitting of
fibers.

We study the adjacency of the nodes of the 
JCN corresponding to neighboring pixels.

Birth-Death of fibers Merge-Splitting of fbers
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In fact, JCN is a graph representation of the so-called Reeb space.



Reeb space
§1. Visualizing Scalar Field Data §2. Visualizing Multi-field Data §3. Visualizing 2-Variate Volume Data §4. Examples of Visualization

34 / 53

In fact, JCN is a graph representation of the so-called Reeb space.

For a multi-field f : Nn → R
m, the space Wf obtained by contracting

each connected component of the fiber to a point is called the Reeb
space of f [Edelsbrunner–Harer–Patel, 2008].
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In fact, JCN is a graph representation of the so-called Reeb space.

For a multi-field f : Nn → R
m, the space Wf obtained by contracting

each connected component of the fiber to a point is called the Reeb
space of f [Edelsbrunner–Harer–Patel, 2008].
In other words, we have the decomposition

Nn f
−−−−→ R

m

qfց ր f

Wf ,

for some map f , where qf is the natural quotient map.
This is called the Stein factorization of f (in singularity theory).
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If f is non-degenerate, then the Reeb space Wf is a polyhedron (or a
simplicial complex) of dimension m.
It is a straightforward generalization of Reeb graph for scalar fields.
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(birth-death) or bifurcation locus (merge-splitting) of the Reeb space.
Reeb space encodes the topological transition (at least, transition of the
number of connected components) of fibers.
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If f is non-degenerate, then the Reeb space Wf is a polyhedron (or a
simplicial complex) of dimension m.
It is a straightforward generalization of Reeb graph for scalar fields.

The Jacobi set image qf (J(f)) corresponds to the boundary
(birth-death) or bifurcation locus (merge-splitting) of the Reeb space.
Reeb space encodes the topological transition (at least, transition of the
number of connected components) of fibers.

Birth-Death Merge-Splitting

∅
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Using results from Singularity Theory concerning maps of manifolds with
boundary [Shibata, 2000; Martins & Nabbaro 2013], we get the following
classification theorem.
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2 are classified as in the following lists:

there are 7 fibers of codimension κ = 1, and 21 fibers of κ = 2.
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Using results from Singularity Theory concerning maps of manifolds with
boundary [Shibata, 2000; Martins & Nabbaro 2013], we get the following
classification theorem.

Theorem 3.1 Connected components of singular fibers of a generic

differentiable map f : N3 → R
2 are classified as in the following lists:

there are 7 fibers of codimension κ = 1, and 21 fibers of κ = 2.

Fibers are classified into some classes according to their complexities.
This is measured by the complexity κ (called the codimension).
κ = 0: regular fibers
κ = 1: appears along curves (moderately complicated)
κ = 2: appears discretely (most complicated)

Combining JCN together with the classification theorem, we can identify
the singular fiber types !
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The following 7 singular fibers appear along curves in the range.

In the list, squares correspond to
boundary tangency points in ∂N3

as in the figures on the right.
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The following 21 singular fibers appear discretely.
Red points correspond to J(f) ∩ ∂N3 = J(f) ∩ J(f∂).
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The curve of the Jacobi set image f(J(f)) ∪ f∂(J(f∂)) ⊂ R
2 has 3

types of singularities.

With the help of JCN, we can also identify the curve of the Jacobi set
image in the range.
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Fiber over each part of f(J(f)) and R
2 \ f(J(f))
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(1) (2) (3)

(4) (5) (6)

Local configurations of the Jacobi set image for maps f : N4 → R
3
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An example of topological transition of fibers for a map f : N4 → R
3
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For n = 4, m = 3, we have the following classification list.

κ = 1

κ = 2

κ = 3



§4. Examples of Visualization
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Analytic map f(x, y, z) = (x, y3 − xy + z2).
A birth-death of fibers can be observed.

Domain Range

+ = 2

= 3(3 , 2 )
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Same analytic map f(x, y, z) = (x, y3 − xy + z2).
A merge-splitting of fibers can be observed.

+ = 2

= 3(3 , 2 )
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f 

The singular fiber in the left corresponds to the crossing in the right.
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(∗) The “Hurricane Isabel” data set was produced by the Weather Research and Forecast (WRF)

model, courtesy of NCAR and the U.S. National Science Foundation (NSF).
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Our techinique works very well for visualizing analytic multi-fields.
This is very promosing from a mathematician’s viewpoint,
because many important analytic maps are waiting for us to analyze their
structures visually.

On the other hand, our technique should be improved for visualizing
general scientific data.
It works relatively well for simulation data, but sometimes we have
serious problems with noise or sparsity of real data.
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This supports a theoretical result: the map on the left is degenerated:
however, after a perturbation, two or more cusps appear.
This was predicted by a theorem [Ikegami & Saeki, 2009] in singularity
theory: now it has been visually verified.
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For a, b ∈ R+, set

fa,b(z, w) = z3 + w2 + az̄ + bw̄, (z, w) ∈ C
2

How does the family {fa,b} bifurcate if (a, b) ∈ R
2
+ varies?
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2
+ varies?

R
2
+ is divided into two regions A and B.

The left 2 figures below show the Jacobi set images of
fa,b : C

2 = R
4 → R

2 = C for (a, b) ∈ A and (a, b) ∈ B, respectively.
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For a, b ∈ R+, set

fa,b(z, w) = z3 + w2 + az̄ + bw̄, (z, w) ∈ C
2

How does the family {fa,b} bifurcate if (a, b) ∈ R
2
+ varies?

R
2
+ is divided into two regions A and B.

The left 2 figures below show the Jacobi set images of
fa,b : C

2 = R
4 → R

2 = C for (a, b) ∈ A and (a, b) ∈ B, respectively.

We would be very happy if we can visualize the singular fibers for fa,b.
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By using the singularity theory of differentiable mappings,

■ We can list up singularity types and singular fiber types that
appear generically;

■ Accordingly, we can identify the singularities and singular fibers
together with their types.

This contributes a lot to visualization
of scientific data !

I hope...

Conversely, these visualization techniques help
singularity theory research in Mathematics !

I am sure !
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Thank you for your attention !


	Who am I?
	Mathematics for Industry
	Main idea of today's talk
	§1. Visualizing Scalar Field Data
	Level set
	Example of level sets
	Morse lemma
	3-Dimensional example
	Reeb graph
	Direct volume rendering

	§2. Visualizing Multi-field Data
	Multivariate data analysis
	Fiber
	More precisely...
	Singular fibers for scalar fields
	Example of fibers
	Singular points and Jacobi set
	Singularity type
	Case of plane-to-plane maps
	Singular points of multi-fields
	Visualization techniques
	For visualization
	Jacobi set image
	What is expected

	§3. Visualizing 2-Variate Volume Data
	Case of N3 R2
	Singular fiber
	Joint Contour Net
	Constructing JCN (1)
	Constructing JCN (2)
	Constructing JCN (3)
	Constructing JCN (4)
	Reeb space
	What does a Reeb space encode?
	Singular fiber types
	Singular fibers of = 1
	Singular fibers of =2
	Jacobi set image
	Example of transition of fibers
	When n=4, m=3
	Example of transition of fibers
	List of singular fibers

	§4. Examples of Visualization
	Sample: Analytic multi-field (1)
	Sample: Analytic multi-field (2)
	Hurricane Isabel Data (1)
	Hurricane Isabel Data (2)
	Future problems
	Impact on Mathematics (1)
	Impact on Mathematics (2)
	Conclusion
	


