Non-trivial real Milnor fibrations

Osamu Saeki (Kyushu University)

Joint work with
R. Araújo dos Santos (ICMC-USP, Brazil), M.A.B. Hohlenwerger (ICMC-USP, Brazil), T.O. Souza (UFU, Brazil)

Singularities in Generic Geometry and its Applications
June 4, 2015, at Kobe

§1. Real Milnor Fibrations

Link of a map germ

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

Let $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{p}, 0\right)$ be a polynomial map germ, $n \geq p \geq 2$.

Link of a map germ

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

Let $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{p}, 0\right)$ be a polynomial map germ, $n \geq p \geq 2$.
We assume that it has an isolated singularity at 0 .

Link of a map germ

Let $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{p}, 0\right)$ be a polynomial map germ, $n \geq p \geq 2$.
We assume that it has an isolated singularity at 0 .
Then, for $0<\forall \varepsilon \ll 1$, the link $K=f^{-1}(0) \cap S_{\varepsilon}^{n-1}$ is a codimension p submanifold of S_{ε}^{n-1}.

Fibration theorem

Theorem 1.1 (Milnor, 1968)
There exists a smooth locally trivial fibration $\varphi: S_{\varepsilon}^{n-1} \backslash K \rightarrow S^{p-1}$.

Fibration theorem

Theorem 1.1 (Milnor, 1968)

There exists a smooth locally trivial fibration $\varphi: S_{\varepsilon}^{n-1} \backslash K \rightarrow S^{p-1}$.
More precisely, there is a trivialization of a tubular nbhd $N(K)=K \times D^{p}$ s.t. $\left.\varphi\right|_{N(K) \backslash K}$ coincides with $\frac{f}{\|f\|}: N(K) \backslash K=K \times\left(D^{p} \backslash\{0\}\right) \rightarrow D^{p} \backslash\{0\} \rightarrow S^{p-1}$.

Non-trivial fibrations

The closure F_{f} of a fiber of Milnor fibration, $\varphi: S_{\varepsilon}^{n-1} \backslash K \rightarrow S^{p-1}$, is called the Milnor fiber, which is a compact manifold with boundary.

Non-trivial fibrations

The closure F_{f} of a fiber of Milnor fibration, $\varphi: S_{\varepsilon}^{n-1} \backslash K \rightarrow S^{p-1}$, is called the Milnor fiber, which is a compact manifold with boundary.

We have $\operatorname{dim} F_{f}=n-p, \operatorname{dim} K=n-p-1, \partial F_{f}=K$.

Non-trivial fibrations

The closure F_{f} of a fiber of Milnor fibration, $\varphi: S_{\varepsilon}^{n-1} \backslash K \rightarrow S^{p-1}$, is called the Milnor fiber, which is a compact manifold with boundary.

We have $\operatorname{dim} F_{f}=n-p, \operatorname{dim} K=n-p-1, \partial F_{f}=K$.
Milnor fibration φ is trivial if F_{f} is homeomorphic to the disk D^{n-p}.

Non-trivial fibrations

The closure F_{f} of a fiber of Milnor fibration, $\varphi: S_{\varepsilon}^{n-1} \backslash K \rightarrow S^{p-1}$, is called the Milnor fiber, which is a compact manifold with boundary.

We have $\operatorname{dim} F_{f}=n-p, \operatorname{dim} K=n-p-1, \partial F_{f}=K$.
Milnor fibration φ is trivial if F_{f} is homeomorphic to the disk D^{n-p}. For example, the projection map germ has trivial Milnor fibration.

Non-trivial fibrations

The closure F_{f} of a fiber of Milnor fibration, $\varphi: S_{\varepsilon}^{n-1} \backslash K \rightarrow S^{p-1}$, is called the Milnor fiber, which is a compact manifold with boundary.

We have $\operatorname{dim} F_{f}=n-p, \operatorname{dim} K=n-p-1, \partial F_{f}=K$.
Milnor fibration φ is trivial if F_{f} is homeomorphic to the disk D^{n-p}. For example, the projection map germ has trivial Milnor fibration.

Problem 1.2 (Milnor, 1968) For which dimensions $n \geq p \geq 2$ do non-trivial examples exist?

Answer

Theorem 1.3 (Church-Lamotke, 1976 + Poincaré Conj.)
(a) For $0 \leq n-p \leq 2$, non-trivial examples occur precisely for $(n, p)=(2,2),(4,3),(4,2)$.
(b) For $n-p \geq 4$, non-trivial examples occur for all (n, p).
(c) For $n-p=3$, non-trivial examples occur precisely for $(n, p)=$ $(5,2),(8,5)$ and possibly for $(6,3)$.

Answer

Theorem 1.3 (Church-Lamotke, 1976 + Poincaré Conj.)
(a) For $0 \leq n-p \leq 2$, non-trivial examples occur precisely for $(n, p)=(2,2),(4,3),(4,2)$.
(b) For $n-p \geq 4$, non-trivial examples occur for all (n, p).
(c) For $n-p=3$, non-trivial examples occur precisely for $(n, p)=$ $(5,2),(8,5)$ and possibly for $(6,3)$.
$(n, p)=(6,3)$ was the unique unsolved dimension pair!

Answer

Theorem 1.3 (Church-Lamotke, 1976 + Poincaré Conj.)
(a) For $0 \leq n-p \leq 2$, non-trivial examples occur precisely for $(n, p)=(2,2),(4,3),(4,2)$.
(b) For $n-p \geq 4$, non-trivial examples occur for all (n, p).
(c) For $n-p=3$, non-trivial examples occur precisely for $(n, p)=$ $(5,2),(8,5)$ and possibly for $(6,3)$.
$(n, p)=(6,3)$ was the unique unsolved dimension pair!
Theorem 1.4 (R.A. dos Santos, M.A.B. Hohlenwerger, T.O.Souza and O.S., 2014)

There exist polynomial map germs $\left(\mathbb{R}^{6}, 0\right) \rightarrow\left(\mathbb{R}^{3}, 0\right)$ with an isolated singularity at 0 with NON-TRIVIAL Milnor fibration.

§2. Neuwirth-Stallings Pairs

NS-pair

Definition 2.1 (Looijenga, 1971)

$K=K^{n-p-1}$: oriented submanifold of S^{n-1} with trivial normal bundle.
We allow $K=\emptyset$.
Suppose $\exists \psi: S^{n-1} \backslash K \rightarrow S^{p-1}$ locally trivial fibration
s.t. for a trivialization $N(K)=K \times D^{p}$ of a tubular nbhd of K, $\left.\psi\right|_{N(K) \backslash K}$ coincides with

$$
N(K) \backslash K=K \times\left(D^{p} \backslash\{0\}\right) \xrightarrow{\pi} S^{p-1},
$$

where $\pi(x, y)=y /\|y\|$.

Definition 2.1 (Looijenga, 1971)

$K=K^{n-p-1}$: oriented submanifold of S^{n-1} with trivial normal bundle.
We allow $K=\emptyset$.
Suppose $\exists \psi: S^{n-1} \backslash K \rightarrow S^{p-1}$ locally trivial fibration
s.t. for a trivialization $N(K)=K \times D^{p}$ of a tubular nbhd of K, $\left.\psi\right|_{N(K) \backslash K}$ coincides with

$$
N(K) \backslash K=K \times\left(D^{p} \backslash\{0\}\right) \xrightarrow{\pi} S^{p-1},
$$

where $\pi(x, y)=y /\|y\|$.
Then, the pair (S^{n-1}, K^{n-p-1}) is called a Neuwirth-Stallings pair, or an NS-pair for short.

Definition 2.1 (Looijenga, 1971)

$K=K^{n-p-1}$: oriented submanifold of S^{n-1} with trivial normal bundle.
We allow $K=\emptyset$.
Suppose $\exists \psi: S^{n-1} \backslash K \rightarrow S^{p-1}$ locally trivial fibration
s.t. for a trivialization $N(K)=K \times D^{p}$ of a tubular nbhd of K, $\left.\psi\right|_{N(K) \backslash K}$ coincides with

$$
N(K) \backslash K=K \times\left(D^{p} \backslash\{0\}\right) \xrightarrow{\pi} S^{p-1},
$$

where $\pi(x, y)=y /\|y\|$.
Then, the pair (S^{n-1}, K^{n-p-1}) is called a Neuwirth-Stallings pair, or an NS-pair for short.
It is also called a fibered knot or an open book structure.

Definition 2.1 (Looijenga, 1971)

$K=K^{n-p-1}$: oriented submanifold of S^{n-1} with trivial normal bundle.
We allow $K=\emptyset$.
Suppose $\exists \psi: S^{n-1} \backslash K \rightarrow S^{p-1}$ locally trivial fibration
s.t. for a trivialization $N(K)=K \times D^{p}$ of a tubular nbhd of K, $\left.\psi\right|_{N(K) \backslash K}$ coincides with

$$
N(K) \backslash K=K \times\left(D^{p} \backslash\{0\}\right) \xrightarrow{\pi} S^{p-1},
$$

where $\pi(x, y)=y /\|y\|$.
Then, the pair (S^{n-1}, K^{n-p-1}) is called a Neuwirth-Stallings pair, or an NS-pair for short.
It is also called a fibered knot or an open book structure.
The closure F of a fiber of ψ is called a fiber.

Looijenga construction

Theorem 2.2 (Looijenga, 1971)

$\left(S^{n-1}, K^{n-p-1}\right)$: an NS-pair with fiber F s.t. $K^{n-p-1} \neq \emptyset$
$\Longrightarrow \exists$ polynomial map germ $\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{p}, 0\right)$ with an isolated
singularity at 0
s.t. the associated NS-pair (Milnor fibration) is isomorphic to the connected sum

$$
\left(S^{n-1}, K^{n-p-1}\right) \sharp\left((-1)^{n} S^{n-1},(-1)^{n-p} K^{n-p-1}\right),
$$

with fiber the boundary connected sum $F \sharp(-1)^{n-p} F$.

Looijenga construction

Theorem 2.2 (Looijenga, 1971)
(S^{n-1}, K^{n-p-1}): an NS-pair with fiber F s.t. $K^{n-p-1} \neq \emptyset$
$\Longrightarrow \exists$ polynomial map germ $\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{p}, 0\right)$ with an isolated
singularity at 0
s.t. the associated NS-pair (Milnor fibration) is isomorphic to the connected sum

$$
\left(S^{n-1}, K^{n-p-1}\right) \sharp\left((-1)^{n} S^{n-1},(-1)^{n-p} K^{n-p-1}\right),
$$

with fiber the boundary connected sum $F \sharp(-1)^{n-p} F$.

For our problem, it is enough to construct a non-trivial NS-pair $\left(S^{5}, K^{2}\right)$.

Looijenga construction

Theorem 2.2 (Looijenga, 1971)
(S^{n-1}, K^{n-p-1}): an NS-pair with fiber F s.t. $K^{n-p-1} \neq \emptyset$
$\Longrightarrow \exists$ polynomial map germ $\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{p}, 0\right)$ with an isolated
singularity at 0
s.t. the associated NS-pair (Milnor fibration) is isomorphic to the connected sum

$$
\left(S^{n-1}, K^{n-p-1}\right) \sharp\left((-1)^{n} S^{n-1},(-1)^{n-p} K^{n-p-1}\right),
$$

with fiber the boundary connected sum $F \sharp(-1)^{n-p} F$.

For our problem, it is enough to construct a non-trivial NS-pair $\left(S^{5}, K^{2}\right)$.

This is purely a differential topology problem!

Strategy

1°. We classify smooth locally trivial fibrations

$$
F^{3} \hookrightarrow E^{5} \rightarrow S^{2}
$$

with fiber F^{3} a compact (simply connected) 3-manifold with $\partial F^{3}=K^{2}$ s.t. the boundary fibration $\partial F^{3} \hookrightarrow \partial E^{5} \rightarrow S^{2}$ is trivial.

Strategy

1°. We classify smooth locally trivial fibrations

$$
F^{3} \hookrightarrow E^{5} \rightarrow S^{2}
$$

with fiber F^{3} a compact (simply connected) 3-manifold with $\partial F^{3}=K^{2}$ s.t. the boundary fibration $\partial F^{3} \hookrightarrow \partial E^{5} \rightarrow S^{2}$ is trivial.

Then, $\partial E^{5}=\partial F^{3} \times S^{2}=K^{2} \times S^{2}$.

Strategy

1°. We classify smooth locally trivial fibrations

$$
F^{3} \hookrightarrow E^{5} \rightarrow S^{2}
$$

with fiber F^{3} a compact (simply connected) 3-manifold with $\partial F^{3}=K^{2}$ s.t. the boundary fibration $\partial F^{3} \hookrightarrow \partial E^{5} \rightarrow S^{2}$ is trivial.

Then, $\partial E^{5}=\partial F^{3} \times S^{2}=K^{2} \times S^{2}$.
Attach $K^{2} \times D^{3}$ to E^{5} along the boundaries to get a closed 5 -dim. manifold $\widetilde{E^{5}}$.

Strategy

1°. We classify smooth locally trivial fibrations

$$
F^{3} \hookrightarrow E^{5} \rightarrow S^{2}
$$

with fiber F^{3} a compact (simply connected) 3-manifold with $\partial F^{3}=K^{2}$ s.t. the boundary fibration $\partial F^{3} \hookrightarrow \partial E^{5} \rightarrow S^{2}$ is trivial.

Then, $\partial E^{5}=\partial F^{3} \times S^{2}=K^{2} \times S^{2}$.
Attach $K^{2} \times D^{3}$ to E^{5} along the boundaries to get a closed 5 -dim. manifold $\widetilde{E^{5}}$.
$\widetilde{E^{5}}$ has a so-called "open book structure".

Strategy

1°. We classify smooth locally trivial fibrations

$$
F^{3} \hookrightarrow E^{5} \rightarrow S^{2}
$$

with fiber F^{3} a compact (simply connected) 3 -manifold with $\partial F^{3}=K^{2}$ s.t. the boundary fibration $\partial F^{3} \hookrightarrow \partial E^{5} \rightarrow S^{2}$ is trivial.

Then, $\partial E^{5}=\partial F^{3} \times S^{2}=K^{2} \times S^{2}$.
Attach $K^{2} \times D^{3}$ to E^{5} along the boundaries to get a closed 5 -dim. manifold $\widetilde{E^{5}}$.
$\widetilde{E^{5}}$ has a so-called "open book structure".
2°. We then characterize those fibrations with $\widetilde{E^{5}} \cong S^{5}$.
Such $\left(\widetilde{E^{5}}, K^{2} \times\{0\}\right), 0 \in D^{3}$, gives an NS-pair with fiber F^{3}. If $F^{3} \not \approx D^{3}$, we are done.

Fiber

Let $\left(S^{5}, K^{2}\right)$ be an NS-pair.
Since S^{5} never fibers over S^{2}, we have $K^{2} \neq \emptyset$.
We have a fibration $\psi: S^{5} \backslash \operatorname{Int} N\left(K^{2}\right) \rightarrow S^{2}$ with fiber F.
By the homotopy exact sequence

$$
\pi_{2}\left(S^{5} \backslash \operatorname{Int} N\left(K^{2}\right)\right) \rightarrow \pi_{2}\left(S^{2}\right) \rightarrow \pi_{1}(F) \rightarrow \pi_{1}\left(S^{5} \backslash \operatorname{Int} N\left(K^{2}\right)\right)
$$

Fiber

Let $\left(S^{5}, K^{2}\right)$ be an NS-pair.
Since S^{5} never fibers over S^{2}, we have $K^{2} \neq \emptyset$.
We have a fibration $\psi: S^{5} \backslash \operatorname{Int} N\left(K^{2}\right) \rightarrow S^{2}$ with fiber F.
By the homotopy exact sequence

$$
\pi_{2}\left(S^{5} \backslash \operatorname{Int} N\left(K^{2}\right)\right) \rightarrow \pi_{2}\left(S^{2}\right) \rightarrow \pi_{1}(F) \rightarrow \pi_{1}\left(S^{5} \backslash \operatorname{Int} N\left(K^{2}\right)\right)
$$

we can deduce that F is simply connected.

Fiber

Let $\left(S^{5}, K^{2}\right)$ be an NS-pair.
Since S^{5} never fibers over S^{2}, we have $K^{2} \neq \emptyset$.
We have a fibration $\psi: S^{5} \backslash \operatorname{Int} N\left(K^{2}\right) \rightarrow S^{2}$ with fiber F.
By the homotopy exact sequence

$$
\pi_{2}\left(S^{5} \backslash \operatorname{Int} N\left(K^{2}\right)\right) \rightarrow \pi_{2}\left(S^{2}\right) \rightarrow \pi_{1}(F) \rightarrow \pi_{1}\left(S^{5} \backslash \operatorname{Int} N\left(K^{2}\right)\right)
$$

we can deduce that F is simply connected.
The solution to the Poincaré Conjecture implies
$F \cong S_{(k+1)}^{3}=S^{3} \backslash \cup^{k+1} \operatorname{Int} D^{3}$.

Fiber

Let $\left(S^{5}, K^{2}\right)$ be an NS-pair.
Since S^{5} never fibers over S^{2}, we have $K^{2} \neq \emptyset$.
We have a fibration $\psi: S^{5} \backslash \operatorname{Int} N\left(K^{2}\right) \rightarrow S^{2}$ with fiber F.
By the homotopy exact sequence

$$
\pi_{2}\left(S^{5} \backslash \operatorname{Int} N\left(K^{2}\right)\right) \rightarrow \pi_{2}\left(S^{2}\right) \rightarrow \pi_{1}(F) \rightarrow \pi_{1}\left(S^{5} \backslash \operatorname{Int} N\left(K^{2}\right)\right),
$$

we can deduce that F is simply connected.
The solution to the Poincaré Conjecture implies
$F \cong S_{(k+1)}^{3}=S^{3} \backslash \cup^{k+1}$ Int D^{3}. So, our fibration is

$$
S_{(k+1)}^{3} \hookrightarrow E^{5} \rightarrow S^{2}
$$

Classification

Such fibrations are classified by $\pi_{1}\left(\operatorname{Diff}\left(S_{(k+1)}^{3}, \partial S_{(k+1)}^{3}\right)\right)$, where $\operatorname{Diff}\left(S_{(k+1)}^{3}, \partial S_{(k+1)}^{3}\right)$ is the group of diffeomorphisms which fix the boundary pointwise.

Classification

Such fibrations are classified by $\pi_{1}\left(\operatorname{Diff}\left(S_{(k+1)}^{3}, \partial S_{(k+1)}^{3}\right)\right)$, where $\operatorname{Diff}\left(S_{(k+1)}^{3}, \partial S_{(k+1)}^{3}\right)$ is the group of diffeomorphisms which fix the boundary pointwise.
Consider a disjoint union $\cup^{k+1} B^{3}$ "standardly" embedded in S^{3}. Let Diff $\left(S^{3}, \cup^{k+1} B^{3}\right)$ be the group of diffeomorphisms which fix $\cup^{k+1} B^{3}$ pointwise.

Classification

Such fibrations are classified by $\pi_{1}\left(\operatorname{Diff}\left(S_{(k+1)}^{3}, \partial S_{(k+1)}^{3}\right)\right)$, where $\operatorname{Diff}\left(S_{(k+1)}^{3}, \partial S_{(k+1)}^{3}\right)$ is the group of diffeomorphisms which fix the boundary pointwise.
Consider a disjoint union $\cup^{k+1} B^{3}$ "standardly" embedded in S^{3}. Let Diff $\left(S^{3}, \cup^{k+1} B^{3}\right)$ be the group of diffeomorphisms which fix $\cup^{k+1} B^{3}$ pointwise.

Lemma 2.3 (Cerf, 1968) The canonical map

$$
\operatorname{Diff}\left(S^{3}, \cup^{k+1} B^{3}\right) \rightarrow \operatorname{Diff}\left(S_{(k+1)}^{3}, \partial S_{(k+1)}^{3}\right)
$$

is a weak homotopy equivalence.

Classification

Such fibrations are classified by $\pi_{1}\left(\operatorname{Diff}\left(S_{(k+1)}^{3}, \partial S_{(k+1)}^{3}\right)\right)$, where $\operatorname{Diff}\left(S_{(k+1)}^{3}, \partial S_{(k+1)}^{3}\right)$ is the group of diffeomorphisms which fix the boundary pointwise.
Consider a disjoint union $\cup^{k+1} B^{3}$ "standardly" embedded in S^{3}. Let Diff $\left(S^{3}, \cup^{k+1} B^{3}\right)$ be the group of diffeomorphisms which fix $\cup^{k+1} B^{3}$ pointwise.

Lemma 2.3 (Cerf, 1968) The canonical map

$$
\operatorname{Diff}\left(S^{3}, \cup^{k+1} B^{3}\right) \rightarrow \operatorname{Diff}\left(S_{(k+1)}^{3}, \partial S_{(k+1)}^{3}\right)
$$

is a weak homotopy equivalence.
Thus, our fiber bundles are classified by $\pi_{1}\left(\operatorname{Diff}\left(S^{3}, \cup^{k+1} B^{3}\right)\right)$.

Cerf-Palais Theorem

Let $\operatorname{Emb}\left(\cup^{k+1} B^{3}, S^{3}\right)$ be the space of embeddings.

Cerf-Palais Theorem

Let $\operatorname{Emb}\left(\cup^{k+1} B^{3}, S^{3}\right)$ be the space of embeddings.
Theorem 2.4 (Cerf-Palais) We have the locally trivial fiber bundle $\operatorname{Diff}\left(S^{3}, \cup^{k+1} B^{3}\right) \hookrightarrow \operatorname{Diff}\left(S^{3}\right) \rightarrow \operatorname{Emb}\left(\cup^{k+1} B^{3}, S^{3}\right)$.

Cerf-Palais Theorem

Let $\operatorname{Emb}\left(\cup^{k+1} B^{3}, S^{3}\right)$ be the space of embeddings.
Theorem 2.4 (Cerf-Palais) We have the locally trivial fiber bundle

$$
\operatorname{Diff}\left(S^{3}, \cup^{k+1} B^{3}\right) \hookrightarrow \operatorname{Diff}\left(S^{3}\right) \rightarrow \operatorname{Emb}\left(\cup^{k+1} B^{3}, S^{3}\right) .
$$

We can also prove
Lemma 2.5 $\operatorname{Emb}\left(\cup^{k+1} B^{3}, S^{3}\right) \simeq \mathbb{F}_{k+1}\left(S^{3}\right) \times O(3)^{k+1}$, where

$$
\mathbb{F}_{k+1}\left(S^{3}\right)=\left\{\left(x_{1}, x_{2}, \ldots, x_{k+1}\right) \mid x_{i} \in S^{3}, x_{j} \neq x_{\ell}, j \neq \ell\right\}
$$

which is called the configuration space.

Classification result

By the homotopy exact sequence of the bundle

$$
\operatorname{Diff}\left(S^{3}, \cup^{k+1} B^{3}\right) \hookrightarrow \operatorname{Diff}\left(S^{3}\right) \rightarrow \operatorname{Emb}\left(\cup^{k+1} B^{3}, S^{3}\right)
$$

together with the above lemma, we see that

$$
\pi_{2}\left(\mathbb{F}_{k+1}\left(S^{3}\right)\right) \cong \pi_{1}\left(\operatorname{Diff}\left(S^{3}, \cup^{k+1} B^{3}\right)\right)
$$

Classification result

By the homotopy exact sequence of the bundle

$$
\operatorname{Diff}\left(S^{3}, \cup^{k+1} B^{3}\right) \hookrightarrow \operatorname{Diff}\left(S^{3}\right) \rightarrow \operatorname{Emb}\left(\cup^{k+1} B^{3}, S^{3}\right)
$$

together with the above lemma, we see that

$$
\pi_{2}\left(\mathbb{F}_{k+1}\left(S^{3}\right)\right) \cong \pi_{1}\left(\operatorname{Diff}\left(S^{3}, \cup^{k+1} B^{3}\right)\right)
$$

Lemma 2.6 (Fadell-Husseini 2001) $\pi_{2}\left(\mathbb{F}_{k+1}\left(S^{3}\right)\right) \cong \mathbb{Z}^{k(k-1) / 2}$.

Classification result

By the homotopy exact sequence of the bundle

$$
\operatorname{Diff}\left(S^{3}, \cup^{k+1} B^{3}\right) \hookrightarrow \operatorname{Diff}\left(S^{3}\right) \rightarrow \operatorname{Emb}\left(\cup^{k+1} B^{3}, S^{3}\right)
$$

together with the above lemma, we see that

$$
\pi_{2}\left(\mathbb{F}_{k+1}\left(S^{3}\right)\right) \cong \pi_{1}\left(\operatorname{Diff}\left(S^{3}, \cup^{k+1} B^{3}\right)\right)
$$

Lemma 2.6 (Fadell-Husseini 2001) $\pi_{2}\left(\mathbb{F}_{k+1}\left(S^{3}\right)\right) \cong \mathbb{Z}^{k(k-1) / 2}$.
Thus, our bundles $S_{(k+1)}^{3} \hookrightarrow E^{5} \rightarrow S^{2}$ are in one-to-one correspondence with the elements in $\mathbb{Z}^{k(k-1) / 2}$.
This corresponds to a $k \times k$ skew-symmetric integer matrix as follows.

Linking matrix

Among the $k+1$ boundary components of E^{5}, we choose k of them and attach k copies of the trivial fibration $D^{3} \times S^{2} \rightarrow S^{2}$ to get

$$
S_{(1)}^{3} \hookrightarrow Y \xrightarrow{\tilde{\psi}} S^{2},
$$

where $S_{(1)}^{3}=S_{(k+1)}^{3} \cup\left(\cup^{k} D^{3}\right) \cong D^{3}$ and $Y=E^{5} \cup\left(\cup^{k} D^{3} \times S^{2}\right)$.

Linking matrix

Among the $k+1$ boundary components of E^{5}, we choose k of them and attach k copies of the trivial fibration $D^{3} \times S^{2} \rightarrow S^{2}$ to get

$$
S_{(1)}^{3} \hookrightarrow Y \xrightarrow{\tilde{\psi}} S^{2},
$$

where $S_{(1)}^{3}=S_{(k+1)}^{3} \cup\left(\cup^{k} D^{3}\right) \cong D^{3}$ and $Y=E^{5} \cup\left(\cup^{k} D^{3} \times S^{2}\right)$.
This new fibration is trivial, since its boundary fibration is trivial.

Linking matrix

Among the $k+1$ boundary components of E^{5}, we choose k of them and attach k copies of the trivial fibration $D^{3} \times S^{2} \rightarrow S^{2}$ to get

$$
S_{(1)}^{3} \hookrightarrow Y \xrightarrow{\tilde{\psi}} S^{2},
$$

where $S_{(1)}^{3}=S_{(k+1)}^{3} \cup\left(\cup^{k} D^{3}\right) \cong D^{3}$ and $Y=E^{5} \cup\left(\cup^{k} D^{3} \times S^{2}\right)$.
This new fibration is trivial, since its boundary fibration is trivial. Thus, the above fibration is identified with $Y \cong D^{3} \times S^{2} \rightarrow S^{2}$.

Linking matrix

Among the $k+1$ boundary components of E^{5}, we choose k of them and attach k copies of the trivial fibration $D^{3} \times S^{2} \rightarrow S^{2}$ to get

$$
S_{(1)}^{3} \hookrightarrow Y \xrightarrow{\tilde{\psi}} S^{2},
$$

where $S_{(1)}^{3}=S_{(k+1)}^{3} \cup\left(\cup^{k} D^{3}\right) \cong D^{3}$ and $Y=E^{5} \cup\left(\cup^{k} D^{3} \times S^{2}\right)$. This new fibration is trivial, since its boundary fibration is trivial. Thus, the above fibration is identified with $Y \cong D^{3} \times S^{2} \rightarrow S^{2}$. Furthermore, the k copies of $D^{3} \times S^{2}$ attached to E^{5} give rise to k disjoint embedded 2 -spheres $\{0\} \times S^{2}$.

Linking matrix

Among the $k+1$ boundary components of E^{5}, we choose k of them and attach k copies of the trivial fibration $D^{3} \times S^{2} \rightarrow S^{2}$ to get

$$
S_{(1)}^{3} \hookrightarrow Y \xrightarrow{\tilde{\psi}} S^{2},
$$

where $S_{(1)}^{3}=S_{(k+1)}^{3} \cup\left(\cup^{k} D^{3}\right) \cong D^{3}$ and $Y=E^{5} \cup\left(\cup^{k} D^{3} \times S^{2}\right)$.
This new fibration is trivial, since its boundary fibration is trivial. Thus, the above fibration is identified with $Y \cong D^{3} \times S^{2} \rightarrow S^{2}$. Furthermore, the k copies of $D^{3} \times S^{2}$ attached to E^{5} give rise to k disjoint embedded 2-spheres $\{0\} \times S^{2}$.
We can attach $S^{2} \times D^{3}$ to $Y=D^{3} \times S^{2}$ to get S^{5}.

Linking matrix

Among the $k+1$ boundary components of E^{5}, we choose k of them and attach k copies of the trivial fibration $D^{3} \times S^{2} \rightarrow S^{2}$ to get

$$
S_{(1)}^{3} \hookrightarrow Y \xrightarrow{\tilde{\psi}} S^{2},
$$

where $S_{(1)}^{3}=S_{(k+1)}^{3} \cup\left(\cup^{k} D^{3}\right) \cong D^{3}$ and $Y=E^{5} \cup\left(\cup^{k} D^{3} \times S^{2}\right)$.
This new fibration is trivial, since its boundary fibration is trivial. Thus, the above fibration is identified with $Y \cong D^{3} \times S^{2} \rightarrow S^{2}$. Furthermore, the k copies of $D^{3} \times S^{2}$ attached to E^{5} give rise to k disjoint embedded 2-spheres $\{0\} \times S^{2}$.
We can attach $S^{2} \times D^{3}$ to $Y=D^{3} \times S^{2}$ to get S^{5}.
Then, the k disjoint sections give k disjoint (oriented) 2-spheres S_{i}^{2}, $i=1,2, \ldots, k$, embedded in S^{5}.

Linking matrix

Among the $k+1$ boundary components of E^{5}, we choose k of them and attach k copies of the trivial fibration $D^{3} \times S^{2} \rightarrow S^{2}$ to get

$$
S_{(1)}^{3} \hookrightarrow Y \xrightarrow{\tilde{\psi}} S^{2},
$$

where $S_{(1)}^{3}=S_{(k+1)}^{3} \cup\left(\cup^{k} D^{3}\right) \cong D^{3}$ and $Y=E^{5} \cup\left(\cup^{k} D^{3} \times S^{2}\right)$.
This new fibration is trivial, since its boundary fibration is trivial. Thus, the above fibration is identified with $Y \cong D^{3} \times S^{2} \rightarrow S^{2}$. Furthermore, the k copies of $D^{3} \times S^{2}$ attached to E^{5} give rise to k disjoint embedded 2-spheres $\{0\} \times S^{2}$.
We can attach $S^{2} \times D^{3}$ to $Y=D^{3} \times S^{2}$ to get S^{5}.
Then, the k disjoint sections give k disjoint (oriented) 2-spheres S_{i}^{2}, $i=1,2, \ldots, k$, embedded in S^{5}.
Thus, we have the linking matrix $L=\left(\operatorname{lk}\left(S_{i}^{2}, S_{j}^{2}\right)\right)_{1 \leq i, j \leq k}$.

Classification by linking matrix

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

We adopt the convention that the diagonal entries $\operatorname{lk}\left(S_{i}^{2}, S_{i}^{2}\right)$ are all zero.

Classification by linking matrix

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

We adopt the convention that the diagonal entries $\operatorname{lk}\left(S_{i}^{2}, S_{i}^{2}\right)$ are all zero.
Then, L is a $k \times k$ skew-symmetric integer matrix.

Classification by linking matrix

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

We adopt the convention that the diagonal entries $\operatorname{lk}\left(S_{i}^{2}, S_{i}^{2}\right)$ are all zero.
Then, L is a $k \times k$ skew-symmetric integer matrix.
All these arguments imply that we have the following one-to-one correspondence by the linking matrix:
$\left\{\right.$ isomorphism classes of our fiber bundles $\left.S_{(k+1)}^{3} \hookrightarrow E^{5} \rightarrow S^{2}\right\}$ \downarrow
$\left\{k \times k\right.$ skew-symmetric integer matrices $\left.L=\left(\operatorname{lk}\left(S_{i}^{2}, S_{j}^{2}\right)\right)_{1 \leq i, j \leq k}\right\}$

Characterization theorem

We see easily that \widetilde{E}^{5} is simply connected.
It is known that a smooth homotopy 5 -sphere is always diffeomorphic to S^{5}.

Characterization theorem

We see easily that \widetilde{E}^{5} is simply connected.
It is known that a smooth homotopy 5 -sphere is always diffeomorphic to S^{5}.
Therefore, by a standard (but tedious) computation based on Mayer-Vietoris exact sequence for homology, we get the following.

Characterization theorem

We see easily that \widetilde{E}^{5} is simply connected.
It is known that a smooth homotopy 5 -sphere is always diffeomorphic to S^{5}.
Therefore, by a standard (but tedious) computation based on Mayer-Vietoris exact sequence for homology, we get the following.

```
Theorem 2.7
We have \(\widetilde{E^{5}} \cong S^{5}\), i.e., our fiber bundle comes from an NS pair iff
\(\operatorname{det} L= \pm 1\).
```


Main theorem

It is easy to construct $k \times k$ skew-symmetric matrix of determinant ± 1 as long as k is even.
Thus, by the Looijenga construction, we get the following.

Main theorem

It is easy to construct $k \times k$ skew-symmetric matrix of determinant ± 1 as long as k is even.
Thus, by the Looijenga construction, we get the following.
Corollary 2.8
For $\forall k=0,2,4, \ldots, \exists N S$-pair $\left(S^{5}, L_{k+1}\right)$ with $L_{k+1} \cong \cup^{k+1} S^{2}$.
Consequently, \exists polynomial map germ $\left(\mathbb{R}^{6}, 0\right) \rightarrow\left(\mathbb{R}^{3}, 0\right)$ with an isolated singularity at 0 s.t. associated NS-pair is isomorphic to $\left(S^{5}, L_{k+1} \sharp\left(-L_{k+1}\right)\right)$.
In particular, $L_{k+1} \sharp\left(-L_{k+1}\right)$ consists of $2 k+1$ components.

Main theorem

It is easy to construct $k \times k$ skew-symmetric matrix of determinant ± 1
as long as k is even.
Thus, by the Looijenga construction, we get the following.
Corollary 2.8
For $\forall k=0,2,4, \ldots, \exists N S$-pair $\left(S^{5}, L_{k+1}\right)$ with $L_{k+1} \cong \cup^{k+1} S^{2}$.
Consequently, \exists polynomial map germ $\left(\mathbb{R}^{6}, 0\right) \rightarrow\left(\mathbb{R}^{3}, 0\right)$ with an isolated singularity at 0 s.t. associated NS-pair is isomorphic to $\left(S^{5}, L_{k+1} \sharp\left(-L_{k+1}\right)\right)$.
In particular, $L_{k+1} \sharp\left(-L_{k+1}\right)$ consists of $2 k+1$ components.

This answers Milnor's non-triviality question for $(n, p)=(6,3)$.

§3. Topology of Milnor Fibers

Bouquet theorem

If $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ is a complex polynomial map germ with an isolated singularity at 0 , then the Milnor fiber is homotopy equivalent to the bouquet of spheres

$$
\vee^{\mu} S^{n-1}
$$

Bouquet theorem

If $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ is a complex polynomial map germ with an isolated singularity at 0 , then the Milnor fiber is homotopy equivalent to the bouquet of spheres

$$
V^{\mu} S^{n-1}
$$

In the real case, it is easy to construct an example of a polynomial map germ with an isolated singularity whose Milnor fiber is NOT homotopy equivalent to the bouquet of spheres.

Bouquet theorem

If $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ is a complex polynomial map germ with an isolated singularity at 0 , then the Milnor fiber is homotopy equivalent to the bouquet of spheres

$$
\vee^{\mu} S^{n-1}
$$

In the real case, it is easy to construct an example of a polynomial map germ with an isolated singularity whose Milnor fiber is NOT homotopy equivalent to the bouquet of spheres.

However, we have the following.

Bouquet theorem (2)

Proposition 3.1 Let $f:\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ be a polynomial map germ with an isolated singularity at the origin, $n \geq 2$.

Then, the Milnor fiber F_{f} has the homotopy type of $\bigvee S^{n-1}$, where it means a point when $\mu=0$.

Bouquet theorem (2)

Proposition 3.1 Let $f:\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ be a polynomial map germ with an isolated singularity at the origin, $n \geq 2$.

Then, the Milnor fiber F_{f} has the homotopy type of $\bigvee S^{n-1}$, where it means a point when $\mu=0$.

Proposition 3.2 Let $f:\left(\mathbb{R}^{2 n+1}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ be a polynomial map germ with an isolated singularity at the origin, $n \geq 3$.
Then, $H_{n-1}\left(F_{f}\right)$ is torsion free if and only if F_{f} has the homotopy type of $\left(\bigvee^{\mu} S^{n-1}\right) \vee\left(\bigvee^{\mu} S^{n}\right)$, where it means a point when $\mu=0$.

Non-trivial examples

Non-trivial examples due to Church-Lamotke (1976) have contractible Milnor fibers (but with non-simply connected links).

Non-trivial examples

Non-trivial examples due to Church-Lamotke (1976) have contractible Milnor fibers (but with non-simply connected links). Using our techniques for $(n, p)=(6,3)$, we get the following.

Non-trivial examples

Non-trivial examples due to Church-Lamotke (1976) have contractible Milnor fibers (but with non-simply connected links).
Using our techniques for $(n, p)=(6,3)$, we get the following.
Proposition 3.3 For each pair of dimensions ($2 n, p$), $2 \leq p \leq n$, \exists polynomial map germ $\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{p}, 0\right)$ with an isolated singularity at 0 s.t. the Milnor fiber is homotopy equivalent to

$$
\bigvee^{\mu} S^{n-1}, \quad \mu>0
$$

Non-trivial examples (II)

Proposition 3.4

For each pair of dimensions $(2 n+1, p), 2 \leq p \leq n$, ヨpolynomial map germ $\left(\mathbb{R}^{2 n+1}, 0\right) \rightarrow\left(\mathbb{R}^{p}, 0\right)$ with an isolated singularity at 0 s.t. the Milnor fiber is homotopy equivalent to

$$
\left(\bigvee^{\mu} S^{n-1}\right) \vee\left(\bigvee^{\mu} S^{n}\right), \quad \mu>0
$$

Non-trivial examples (II)

Proposition 3.4

For each pair of dimensions $(2 n+1, p), 2 \leq p \leq n$, ヨpolynomial map germ $\left(\mathbb{R}^{2 n+1}, 0\right) \rightarrow\left(\mathbb{R}^{p}, 0\right)$ with an isolated singularity at 0 s.t. the Milnor fiber is homotopy equivalent to

$$
\left(\bigvee^{\mu} S^{n-1}\right) \vee\left(\bigvee^{\mu} S^{n}\right), \quad \mu>0
$$

These provide NEW NON-TRIVIAL examples!

Idea of construction

We first construct a fiber bundle

$$
S_{(k+1)}^{n} \hookrightarrow E^{2 n-1} \rightarrow S^{n-1}
$$

such that it is trivial on the boundary, using a $k \times k$ integer matrix L which is $(-1)^{n}$-symmetric whose diagonal entries all vanish.

Idea of construction

We first construct a fiber bundle

$$
S_{(k+1)}^{n} \hookrightarrow E^{2 n-1} \rightarrow S^{n-1}
$$

such that it is trivial on the boundary, using a $k \times k$ integer matrix L which is $(-1)^{n}$-symmetric whose diagonal entries all vanish. This is possible by a homotopy theoretic argument involving certain configuration spaces, similar to the previous case.

Idea of construction

We first construct a fiber bundle

$$
S_{(k+1)}^{n} \hookrightarrow E^{2 n-1} \rightarrow S^{n-1}
$$

such that it is trivial on the boundary, using a $k \times k$ integer matrix L which is $(-1)^{n}$-symmetric whose diagonal entries all vanish. This is possible by a homotopy theoretic argument involving certain configuration spaces, similar to the previous case. If the matrix L has determinant ± 1, then we see that the associated closed manifold $\widetilde{E}^{2 n-1}$ is a homotopy $(2 n-1)$-sphere.

Idea of construction

We first construct a fiber bundle

$$
S_{(k+1)}^{n} \hookrightarrow E^{2 n-1} \rightarrow S^{n-1}
$$

such that it is trivial on the boundary, using a $k \times k$ integer matrix L which is $(-1)^{n}$-symmetric whose diagonal entries all vanish. This is possible by a homotopy theoretic argument involving certain configuration spaces, similar to the previous case.
If the matrix L has determinant ± 1, then we see that the associated closed manifold $\widetilde{E}^{2 n-1}$ is a homotopy $(2 n-1)$-sphere. This may not be diffeomorphic to $S^{2 n-1}$.

Idea of construction

We first construct a fiber bundle

$$
S_{(k+1)}^{n} \hookrightarrow E^{2 n-1} \rightarrow S^{n-1}
$$

such that it is trivial on the boundary, using a $k \times k$ integer matrix L which is $(-1)^{n}$-symmetric whose diagonal entries all vanish.
This is possible by a homotopy theoretic argument involving certain configuration spaces, similar to the previous case.
If the matrix L has determinant ± 1, then we see that the associated closed manifold $\widetilde{E}^{2 n-1}$ is a homotopy $(2 n-1)$-sphere. This may not be diffeomorphic to $S^{2 n-1}$. However, $\widetilde{E}^{2 n-1} \sharp\left(-\widetilde{E}^{2 n-1}\right)$ is diffeomorphic to $S^{2 n-1}$.

Idea of construction (II)

Then, the Looijenga construction leads to a polynomial map germ $f:\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ with an isolated singularity at 0 whose Milnor fibration is non-trivial.

Then, the Looijenga construction leads to a polynomial map germ $f:\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ with an isolated singularity at 0 whose Milnor fibration is non-trivial.
Considering the composition with a canonical projection

$$
\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{p}, 0\right)
$$

for $n>p \geq 2$, we get again a non-trivial example.

Then, the Looijenga construction leads to a polynomial map germ $f:\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ with an isolated singularity at 0 whose Milnor fibration is non-trivial.
Considering the composition with a canonical projection

$$
\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{p}, 0\right)
$$

for $n>p \geq 2$, we get again a non-trivial example.
For $\left(\mathbb{R}^{2 n+1}, \mathbb{R}^{p}\right)$, we first apply the spinning construction to the non-trivial NS-pair ($S^{2 n-1}, K^{n-1}$) constructed above, to get a non-trivial NS-pair $\left(S^{2 n}, \widetilde{K}^{n}\right)$.

Idea of construction (II)

Then, the Looijenga construction leads to a polynomial map germ $f:\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ with an isolated singularity at 0 whose Milnor fibration is non-trivial.
Considering the composition with a canonical projection

$$
\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{p}, 0\right)
$$

for $n>p \geq 2$, we get again a non-trivial example.
For $\left(\mathbb{R}^{2 n+1}, \mathbb{R}^{p}\right)$, we first apply the spinning construction to the non-trivial NS-pair $\left(S^{2 n-1}, K^{n-1}\right)$ constructed above, to get a non-trivial NS-pair $\left(S^{2 n}, \widetilde{K}^{n}\right)$.
Applying the Looijenga construction to this, we get a polynomial map germ $\left(\mathbb{R}^{2 n+1}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ with non-trivial Milnor fibration.

Then, the Looijenga construction leads to a polynomial map germ $f:\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ with an isolated singularity at 0 whose Milnor fibration is non-trivial.
Considering the composition with a canonical projection

$$
\left(\mathbb{R}^{2 n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{p}, 0\right)
$$

for $n>p \geq 2$, we get again a non-trivial example.
For $\left(\mathbb{R}^{2 n+1}, \mathbb{R}^{p}\right)$, we first apply the spinning construction to the non-trivial NS-pair $\left(S^{2 n-1}, K^{n-1}\right)$ constructed above, to get a non-trivial NS-pair $\left(S^{2 n}, \widetilde{K}^{n}\right)$.
Applying the Looijenga construction to this, we get a polynomial map germ $\left(\mathbb{R}^{2 n+1}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ with non-trivial Milnor fibration.
Then, consider the composition with a canonical projection $\mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$.

Thank you for your attention !

