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Let f : (Rn, 0) → (Rp, 0) be a polynomial map germ, n ≥ p ≥ 2.
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Let f : (Rn, 0) → (Rp, 0) be a polynomial map germ, n ≥ p ≥ 2.
We assume that it has an isolated singularity at 0.
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Let f : (Rn, 0) → (Rp, 0) be a polynomial map germ, n ≥ p ≥ 2.
We assume that it has an isolated singularity at 0.

Then, for 0 < ∀ε << 1, the link K = f−1(0) ∩ Sn−1
ε is a codimension p

submanifold of Sn−1
ε .

Sn−1
ε

f−1(0)

0
K
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Theorem 1.1 (Milnor, 1968)
There exists a smooth locally trivial fibration ϕ : Sn−1

ε \K → Sp−1.
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Theorem 1.1 (Milnor, 1968)
There exists a smooth locally trivial fibration ϕ : Sn−1

ε \K → Sp−1.

More precisely, there is a trivialization of a tubular nbhd
N(K) = K ×Dp s.t. ϕ|N(K)\K coincides with

f

||f ||
: N(K) \K = K × (Dp \ {0}) → Dp \ {0} → Sp−1.

Sp−1
ϕ

K
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The closure Ff of a fiber of Milnor fibration, ϕ : Sn−1
ε \K → Sp−1, is

called the Milnor fiber, which is a compact manifold with boundary.
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The closure Ff of a fiber of Milnor fibration, ϕ : Sn−1
ε \K → Sp−1, is

called the Milnor fiber, which is a compact manifold with boundary.

We have dimFf = n− p, dimK = n− p− 1, ∂Ff = K.



Non-trivial fibrations
§1. Real Milnor Fibrations §2. Neuwirth–Stallings Pairs §3. Topology of Milnor Fibers

5 / 26

The closure Ff of a fiber of Milnor fibration, ϕ : Sn−1
ε \K → Sp−1, is

called the Milnor fiber, which is a compact manifold with boundary.

We have dimFf = n− p, dimK = n− p− 1, ∂Ff = K.

Milnor fibration ϕ is trivial if Ff is homeomorphic to the disk Dn−p.
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ε \K → Sp−1, is

called the Milnor fiber, which is a compact manifold with boundary.

We have dimFf = n− p, dimK = n− p− 1, ∂Ff = K.

Milnor fibration ϕ is trivial if Ff is homeomorphic to the disk Dn−p.
For example, the projection map germ has trivial Milnor fibration.
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The closure Ff of a fiber of Milnor fibration, ϕ : Sn−1
ε \K → Sp−1, is

called the Milnor fiber, which is a compact manifold with boundary.

We have dimFf = n− p, dimK = n− p− 1, ∂Ff = K.

Milnor fibration ϕ is trivial if Ff is homeomorphic to the disk Dn−p.
For example, the projection map germ has trivial Milnor fibration.

Problem 1.2 (Milnor, 1968) For which dimensions n ≥ p ≥ 2
do non-trivial examples exist ?
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Theorem 1.3 (Church–Lamotke, 1976 + Poincaré Conj.)
(a) For 0 ≤ n − p ≤ 2, non-trivial examples occur precisely for
(n, p) = (2, 2), (4, 3), (4, 2).
(b) For n− p ≥ 4, non-trivial examples occur for all (n, p).
(c) For n − p = 3, non-trivial examples occur precisely for (n, p) =
(5, 2), (8, 5) and possibly for (6, 3).
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(n, p) = (6, 3) was the unique unsolved dimension pair !
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Theorem 1.3 (Church–Lamotke, 1976 + Poincaré Conj.)
(a) For 0 ≤ n − p ≤ 2, non-trivial examples occur precisely for
(n, p) = (2, 2), (4, 3), (4, 2).
(b) For n− p ≥ 4, non-trivial examples occur for all (n, p).
(c) For n − p = 3, non-trivial examples occur precisely for (n, p) =
(5, 2), (8, 5) and possibly for (6, 3).

(n, p) = (6, 3) was the unique unsolved dimension pair !

Theorem 1.4 (R.A. dos Santos, M.A.B. Hohlenwerger,
T.O.Souza and O.S., 2014)

There exist polynomial map germs (R6, 0) → (R3, 0) with an iso-
lated singularity at 0 with NON-TRIVIAL Milnor fibration.
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Definition 2.1 (Looijenga, 1971)
K = Kn−p−1 : oriented submanifold of Sn−1 with trivial normal bundle.
We allow K = ∅.
Suppose ∃ψ : Sn−1 \K → Sp−1 locally trivial fibration
s.t. for a trivialization N(K) = K ×Dp of a tubular nbhd of K,
ψ|N(K)\K coincides with

N(K) \K = K × (Dp \ {0})
π
→ Sp−1,

where π(x, y) = y/‖y‖.
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Definition 2.1 (Looijenga, 1971)
K = Kn−p−1 : oriented submanifold of Sn−1 with trivial normal bundle.
We allow K = ∅.
Suppose ∃ψ : Sn−1 \K → Sp−1 locally trivial fibration
s.t. for a trivialization N(K) = K ×Dp of a tubular nbhd of K,
ψ|N(K)\K coincides with

N(K) \K = K × (Dp \ {0})
π
→ Sp−1,

where π(x, y) = y/‖y‖.

Then, the pair (Sn−1, Kn−p−1) is called a Neuwirth–Stallings pair, or
an NS-pair for short.
It is also called a fibered knot or an open book structure.
The closure F of a fiber of ψ is called a fiber.
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Theorem 2.2 (Looijenga, 1971)
(Sn−1, Kn−p−1): an NS-pair with fiber F s.t. Kn−p−1 6= ∅
=⇒ ∃polynomial map germ (Rn, 0) → (Rp, 0) with an isolated
singularity at 0
s.t. the associated NS-pair (Milnor fibration) is isomorphic to the
connected sum

(Sn−1, Kn−p−1)♯((−1)nSn−1, (−1)n−pKn−p−1),

with fiber the boundary connected sum F♮(−1)n−pF .
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For our problem, it is enough to construct a non-trivial NS-pair
(S5, K2).
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Theorem 2.2 (Looijenga, 1971)
(Sn−1, Kn−p−1): an NS-pair with fiber F s.t. Kn−p−1 6= ∅
=⇒ ∃polynomial map germ (Rn, 0) → (Rp, 0) with an isolated
singularity at 0
s.t. the associated NS-pair (Milnor fibration) is isomorphic to the
connected sum

(Sn−1, Kn−p−1)♯((−1)nSn−1, (−1)n−pKn−p−1),

with fiber the boundary connected sum F♮(−1)n−pF .

For our problem, it is enough to construct a non-trivial NS-pair
(S5, K2).

This is purely a differential topology problem !
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1
◦. We classify smooth locally trivial fibrations

F 3 →֒ E5 → S2

with fiber F 3 a compact (simply connected) 3-manifold with ∂F 3 = K2

s.t. the boundary fibration ∂F 3 →֒ ∂E5 → S2 is trivial.
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1
◦. We classify smooth locally trivial fibrations

F 3 →֒ E5 → S2

with fiber F 3 a compact (simply connected) 3-manifold with ∂F 3 = K2

s.t. the boundary fibration ∂F 3 →֒ ∂E5 → S2 is trivial.

Then, ∂E5 = ∂F 3 × S2 = K2 × S2.

Attach K2 ×D3 to E5 along the boundaries to get a closed 5-dim.

manifold Ẽ5.

Ẽ5 has a so-called “open book structure”.

2
◦. We then characterize those fibrations with Ẽ5 ∼= S5.

Such (Ẽ5, K2 × {0}), 0 ∈ D3, gives an NS-pair with fiber F 3.
If F 3 6∼= D3, we are done.
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Let (S5, K2) be an NS-pair.
Since S5 never fibers over S2, we have K2 6= ∅.
We have a fibration ψ : S5 \ IntN(K2) → S2 with fiber F .

By the homotopy exact sequence

π2(S
5 \ IntN(K2)) → π2(S

2) → π1(F ) → π1(S
5 \ IntN(K2)),
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Let (S5, K2) be an NS-pair.
Since S5 never fibers over S2, we have K2 6= ∅.
We have a fibration ψ : S5 \ IntN(K2) → S2 with fiber F .

By the homotopy exact sequence

π2(S
5 \ IntN(K2)) → π2(S

2) → π1(F ) → π1(S
5 \ IntN(K2)),

we can deduce that F is simply connected.

The solution to the Poincaré Conjecture implies
F ∼= S3

(k+1) = S3 \ ∪k+1 IntD3. So, our fibration is

S3
(k+1) →֒ E5 → S2.
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Such fibrations are classified by π1(Diff(S
3
(k+1), ∂S

3
(k+1))), where

Diff(S3
(k+1), ∂S

3
(k+1)) is the group of diffeomorphisms which fix the

boundary pointwise.
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Such fibrations are classified by π1(Diff(S
3
(k+1), ∂S

3
(k+1))), where

Diff(S3
(k+1), ∂S

3
(k+1)) is the group of diffeomorphisms which fix the

boundary pointwise.
Consider a disjoint union ∪k+1B3 “standardly” embedded in S3.
Let Diff(S3,∪k+1B3) be the group of diffeomorphisms which fix ∪k+1B3

pointwise.

Lemma 2.3 (Cerf, 1968) The canonical map

Diff(S3,∪k+1B3) → Diff(S3
(k+1), ∂S

3
(k+1))

is a weak homotopy equivalence.

Thus, our fiber bundles are classified by π1(Diff(S
3,∪k+1B3)).
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Let Emb(∪k+1B3, S3) be the space of embeddings.
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Let Emb(∪k+1B3, S3) be the space of embeddings.

Theorem 2.4 (Cerf–Palais) We have the locally trivial fiber bundle

Diff(S3,∪k+1B3) →֒ Diff(S3) → Emb(∪k+1B3, S3).
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Let Emb(∪k+1B3, S3) be the space of embeddings.

Theorem 2.4 (Cerf–Palais) We have the locally trivial fiber bundle

Diff(S3,∪k+1B3) →֒ Diff(S3) → Emb(∪k+1B3, S3).

We can also prove

Lemma 2.5 Emb(∪k+1B3, S3) ≃ Fk+1(S
3)×O(3)k+1, where

Fk+1(S
3) = {(x1, x2, . . . , xk+1) | xi ∈ S3, xj 6= xℓ, j 6= ℓ},

which is called the configuration space.
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By the homotopy exact sequence of the bundle

Diff(S3,∪k+1B3) →֒ Diff(S3) → Emb(∪k+1B3, S3)

together with the above lemma, we see that

π2(Fk+1(S
3)) ∼= π1(Diff(S

3,∪k+1B3)).
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Lemma 2.6 (Fadell–Husseini 2001) π2(Fk+1(S
3)) ∼= Z

k(k−1)/2.
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By the homotopy exact sequence of the bundle

Diff(S3,∪k+1B3) →֒ Diff(S3) → Emb(∪k+1B3, S3)

together with the above lemma, we see that

π2(Fk+1(S
3)) ∼= π1(Diff(S

3,∪k+1B3)).

Lemma 2.6 (Fadell–Husseini 2001) π2(Fk+1(S
3)) ∼= Z

k(k−1)/2.

Thus, our bundles S3
(k+1) →֒ E5 → S2 are in one-to-one correspondence

with the elements in Z
k(k−1)/2.

This corresponds to a k × k skew-symmetric integer matrix as
follows.
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Among the k + 1 boundary components of E5, we choose k of them and
attach k copies of the trivial fibration D3 × S2 → S2 to get

S3
(1) →֒ Y

ψ̃
→ S2,

where S3
(1) = S3

(k+1) ∪ (∪kD3) ∼= D3 and Y = E5 ∪ (∪kD3 × S2).
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Among the k + 1 boundary components of E5, we choose k of them and
attach k copies of the trivial fibration D3 × S2 → S2 to get

S3
(1) →֒ Y

ψ̃
→ S2,

where S3
(1) = S3

(k+1) ∪ (∪kD3) ∼= D3 and Y = E5 ∪ (∪kD3 × S2).
This new fibration is trivial, since its boundary fibration is trivial.
Thus, the above fibration is identified with Y ∼= D3 × S2 → S2.
Furthermore, the k copies of D3 × S2 attached to E5 give rise to k
disjoint embedded 2-spheres {0} × S2.
We can attach S2 ×D3 to Y = D3 × S2 to get S5.
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attach k copies of the trivial fibration D3 × S2 → S2 to get

S3
(1) →֒ Y

ψ̃
→ S2,

where S3
(1) = S3

(k+1) ∪ (∪kD3) ∼= D3 and Y = E5 ∪ (∪kD3 × S2).
This new fibration is trivial, since its boundary fibration is trivial.
Thus, the above fibration is identified with Y ∼= D3 × S2 → S2.
Furthermore, the k copies of D3 × S2 attached to E5 give rise to k
disjoint embedded 2-spheres {0} × S2.
We can attach S2 ×D3 to Y = D3 × S2 to get S5.

Then, the k disjoint sections give k disjoint (oriented) 2-spheres S2
i ,

i = 1, 2, . . . , k, embedded in S5.
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Among the k + 1 boundary components of E5, we choose k of them and
attach k copies of the trivial fibration D3 × S2 → S2 to get

S3
(1) →֒ Y

ψ̃
→ S2,

where S3
(1) = S3

(k+1) ∪ (∪kD3) ∼= D3 and Y = E5 ∪ (∪kD3 × S2).
This new fibration is trivial, since its boundary fibration is trivial.
Thus, the above fibration is identified with Y ∼= D3 × S2 → S2.
Furthermore, the k copies of D3 × S2 attached to E5 give rise to k
disjoint embedded 2-spheres {0} × S2.
We can attach S2 ×D3 to Y = D3 × S2 to get S5.

Then, the k disjoint sections give k disjoint (oriented) 2-spheres S2
i ,

i = 1, 2, . . . , k, embedded in S5.
Thus, we have the linking matrix L = (lk(S2

i , S
2
j ))1≤i,j≤k.
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We adopt the convention that the diagonal entries lk(S2
i , S

2
i ) are all zero.
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We adopt the convention that the diagonal entries lk(S2
i , S

2
i ) are all zero.

Then, L is a k × k skew-symmetric integer matrix.

All these arguments imply that we have the following one-to-one
correspondence by the linking matrix:

{isomorphism classes of our fiber bundles S3
(k+1) →֒ E5 → S2}

l

{k × k skew-symmetric integer matrices L = (lk(S2
i , S

2
j ))1≤i,j≤k}
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We see easily that Ẽ5 is simply connected.
It is known that a smooth homotopy 5-sphere is always
diffeomorphic to S5.
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We see easily that Ẽ5 is simply connected.
It is known that a smooth homotopy 5-sphere is always
diffeomorphic to S5.
Therefore, by a standard (but tedious) computation based on
Mayer-Vietoris exact sequence for homology, we get the following.

Theorem 2.7
We have Ẽ5 ∼= S5, i.e., our fiber bundle comes from an NS pair iff
detL = ±1.
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It is easy to construct k × k skew-symmetric matrix of determinant ±1
as long as k is even.
Thus, by the Looijenga construction, we get the following.
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It is easy to construct k × k skew-symmetric matrix of determinant ±1
as long as k is even.
Thus, by the Looijenga construction, we get the following.

Corollary 2.8
For ∀k = 0, 2, 4, . . ., ∃NS-pair (S5, Lk+1) with Lk+1

∼= ∪k+1S2.
Consequently, ∃polynomial map germ (R6, 0) → (R3, 0) with an
isolated singularity at 0 s.t. associated NS-pair is isomorphic to
(S5, Lk+1♯(−Lk+1)).
In particular, Lk+1♯(−Lk+1) consists of 2k + 1 components.
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It is easy to construct k × k skew-symmetric matrix of determinant ±1
as long as k is even.
Thus, by the Looijenga construction, we get the following.

Corollary 2.8
For ∀k = 0, 2, 4, . . ., ∃NS-pair (S5, Lk+1) with Lk+1

∼= ∪k+1S2.
Consequently, ∃polynomial map germ (R6, 0) → (R3, 0) with an
isolated singularity at 0 s.t. associated NS-pair is isomorphic to
(S5, Lk+1♯(−Lk+1)).
In particular, Lk+1♯(−Lk+1) consists of 2k + 1 components.

This answers Milnor’s non-triviality question for (n, p) = (6, 3).



§3. Topology of Milnor
Fibers
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If f : (Cn, 0) → (C, 0) is a complex polynomial map germ with an
isolated singularity at 0, then the Milnor fiber is homotopy equivalent to
the bouquet of spheres

∨µSn−1.
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If f : (Cn, 0) → (C, 0) is a complex polynomial map germ with an
isolated singularity at 0, then the Milnor fiber is homotopy equivalent to
the bouquet of spheres

∨µSn−1.

In the real case, it is easy to construct an example of a polynomial map
germ with an isolated singularity whose Milnor fiber is NOT homotopy
equivalent to the bouquet of spheres.

However, we have the following.
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Proposition 3.1 Let f : (R2n, 0) → (Rn, 0) be a polynomial map
germ with an isolated singularity at the origin, n ≥ 2.

Then, the Milnor fiber Ff has the homotopy type of

µ∨
Sn−1, where

it means a point when µ = 0.
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Proposition 3.1 Let f : (R2n, 0) → (Rn, 0) be a polynomial map
germ with an isolated singularity at the origin, n ≥ 2.

Then, the Milnor fiber Ff has the homotopy type of

µ∨
Sn−1, where

it means a point when µ = 0.

Proposition 3.2 Let f : (R2n+1, 0) → (Rn, 0) be a polynomial map
germ with an isolated singularity at the origin, n ≥ 3.
Then, Hn−1(Ff ) is torsion free if and only if Ff has the homotopy

type of

(
µ∨
Sn−1

)
∨

(
µ∨
Sn

)
, where it means a point when

µ = 0.
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Non-trivial examples due to Church–Lamotke (1976) have contractible
Milnor fibers (but with non-simply connected links).
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Non-trivial examples due to Church–Lamotke (1976) have contractible
Milnor fibers (but with non-simply connected links).
Using our techniques for (n, p) = (6, 3), we get the following.

Proposition 3.3 For each pair of dimensions (2n, p), 2 ≤ p ≤ n,
∃polynomial map germ (R2n, 0) → (Rp, 0) with an isolated singular-
ity at 0 s.t. the Milnor fiber is homotopy equivalent to

µ∨
Sn−1, µ > 0.
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Proposition 3.4
For each pair of dimensions (2n + 1, p), 2 ≤ p ≤ n, ∃polynomial
map germ (R2n+1, 0) → (Rp, 0) with an isolated singularity at 0 s.t.
the Milnor fiber is homotopy equivalent to

(
µ∨
Sn−1

)
∨

(
µ∨
Sn

)
, µ > 0.
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Proposition 3.4
For each pair of dimensions (2n + 1, p), 2 ≤ p ≤ n, ∃polynomial
map germ (R2n+1, 0) → (Rp, 0) with an isolated singularity at 0 s.t.
the Milnor fiber is homotopy equivalent to

(
µ∨
Sn−1

)
∨

(
µ∨
Sn

)
, µ > 0.

These provide NEW NON-TRIVIAL examples !
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We first construct a fiber bundle

Sn(k+1) →֒ E2n−1 → Sn−1

such that it is trivial on the boundary, using a k × k integer matrix L
which is (−1)n-symmetric whose diagonal entries all vanish.
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which is (−1)n-symmetric whose diagonal entries all vanish.
This is possible by a homotopy theoretic argument involving certain
configuration spaces, similar to the previous case.
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This is possible by a homotopy theoretic argument involving certain
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If the matrix L has determinant ±1, then we see that the associated
closed manifold Ẽ2n−1 is a homotopy (2n− 1)-sphere.
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We first construct a fiber bundle

Sn(k+1) →֒ E2n−1 → Sn−1

such that it is trivial on the boundary, using a k × k integer matrix L
which is (−1)n-symmetric whose diagonal entries all vanish.
This is possible by a homotopy theoretic argument involving certain
configuration spaces, similar to the previous case.
If the matrix L has determinant ±1, then we see that the associated
closed manifold Ẽ2n−1 is a homotopy (2n− 1)-sphere.
This may not be diffeomorphic to S2n−1.
However, Ẽ2n−1♯(−Ẽ2n−1) is diffeomorphic to S2n−1.
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Then, the Looijenga construction leads to a polynomial map germ
f : (R2n, 0) → (Rn, 0) with an isolated singularity at 0 whose Milnor
fibration is non-trivial.
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Then, the Looijenga construction leads to a polynomial map germ
f : (R2n, 0) → (Rn, 0) with an isolated singularity at 0 whose Milnor
fibration is non-trivial.
Considering the composition with a canonical projection

(R2n, 0) → (Rn, 0) → (Rp, 0)

for n > p ≥ 2, we get again a non-trivial example.
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Considering the composition with a canonical projection
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For (R2n+1,Rp), we first apply the spinning construction to the
non-trivial NS-pair (S2n−1, Kn−1) constructed above, to get a non-trivial

NS-pair (S2n, K̃n).
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Then, the Looijenga construction leads to a polynomial map germ
f : (R2n, 0) → (Rn, 0) with an isolated singularity at 0 whose Milnor
fibration is non-trivial.
Considering the composition with a canonical projection

(R2n, 0) → (Rn, 0) → (Rp, 0)

for n > p ≥ 2, we get again a non-trivial example.

For (R2n+1,Rp), we first apply the spinning construction to the
non-trivial NS-pair (S2n−1, Kn−1) constructed above, to get a non-trivial

NS-pair (S2n, K̃n).
Applying the Looijenga construction to this, we get a polynomial map
germ (R2n+1, 0) → (Rn, 0) with non-trivial Milnor fibration.
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Then, the Looijenga construction leads to a polynomial map germ
f : (R2n, 0) → (Rn, 0) with an isolated singularity at 0 whose Milnor
fibration is non-trivial.
Considering the composition with a canonical projection

(R2n, 0) → (Rn, 0) → (Rp, 0)

for n > p ≥ 2, we get again a non-trivial example.

For (R2n+1,Rp), we first apply the spinning construction to the
non-trivial NS-pair (S2n−1, Kn−1) constructed above, to get a non-trivial

NS-pair (S2n, K̃n).
Applying the Looijenga construction to this, we get a polynomial map
germ (R2n+1, 0) → (Rn, 0) with non-trivial Milnor fibration.
Then, consider the composition with a canonical projection
R
n → R

p.
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Thank you for your attention !
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