

Osamu Saeki (Kyushu University)

Joint work with R. Araújo dos Santos (ICMC-USP, Brazil), M.A.B. Hohlenwerger (ICMC-USP, Brazil), T.O. Souza (UFU, Brazil)

Singularities in Generic Geometry and its Applications

June 4, 2015, at Kobe

$\S1$. Real Milnor Fibrations

Link of a map germ

§1. Real Milnor Fibrations §2. Neuwirth–Stallings Pairs §3. Topology of Milnor Fibers

Let $f: (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$ be a polynomial map germ, $n \ge p \ge 2$.

Link of a map germ

§1. Real Milnor Fibrations §2. Neuwirth–Stallings Pairs §3. Topology of Milnor Fibers

Let $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$ be a polynomial map germ, $n \ge p \ge 2$. We assume that it has an **isolated singularity** at 0.

Link of a map germ

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

Let $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$ be a polynomial map germ, $n \ge p \ge 2$. We assume that it has an **isolated singularity** at 0.

Then, for $0 < \forall \varepsilon << 1$, the link $K = f^{-1}(0) \cap S_{\varepsilon}^{n-1}$ is a codimension p submanifold of S_{ε}^{n-1} .

Fibration theorem

§1. Real Milnor Fibrations §2. Neuwirth–Stallings Pairs §3. Topology of Milnor Fibers

Theorem 1.1 (Milnor, 1968)

There exists a smooth locally trivial fibration $\varphi: S_{\varepsilon}^{n-1} \setminus K \to S^{p-1}$.

Fibration theorem

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

Theorem 1.1 (Milnor, 1968) There exists a smooth locally trivial fibration $\varphi : S_{\varepsilon}^{n-1} \setminus K \to S^{p-1}$.

More precisely, there is a trivialization of a tubular nbhd $N(K) = K \times D^p$ s.t. $\varphi|_{N(K)\setminus K}$ coincides with $\frac{f}{||f||} : N(K) \setminus K = K \times (D^p \setminus \{0\}) \rightarrow D^p \setminus \{0\} \rightarrow S^{p-1}.$

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

The closure F_f of a fiber of Milnor fibration, $\varphi : S_{\varepsilon}^{n-1} \setminus K \to S^{p-1}$, is called the **Milnor fiber**, which is a compact manifold with boundary.

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

The closure F_f of a fiber of Milnor fibration, $\varphi : S_{\varepsilon}^{n-1} \setminus K \to S^{p-1}$, is called the **Milnor fiber**, which is a compact manifold with boundary.

We have dim $F_f = n - p$, dim K = n - p - 1, $\partial F_f = K$.

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

The closure F_f of a fiber of Milnor fibration, $\varphi : S_{\varepsilon}^{n-1} \setminus K \to S^{p-1}$, is called the **Milnor fiber**, which is a compact manifold with boundary.

We have dim $F_f = n - p$, dim K = n - p - 1, $\partial F_f = K$.

Milnor fibration φ is trivial if F_f is homeomorphic to the disk D^{n-p} .

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

The closure F_f of a fiber of Milnor fibration, $\varphi : S_{\varepsilon}^{n-1} \setminus K \to S^{p-1}$, is called the **Milnor fiber**, which is a compact manifold with boundary.

We have dim $F_f = n - p$, dim K = n - p - 1, $\partial F_f = K$.

Milnor fibration φ is **trivial** if F_f is homeomorphic to the disk D^{n-p} . For example, the projection map germ has trivial Milnor fibration.

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

The closure F_f of a fiber of Milnor fibration, $\varphi : S_{\varepsilon}^{n-1} \setminus K \to S^{p-1}$, is called the **Milnor fiber**, which is a compact manifold with boundary.

We have dim $F_f = n - p$, dim K = n - p - 1, $\partial F_f = K$.

Milnor fibration φ is **trivial** if F_f is homeomorphic to the disk D^{n-p} . For example, the projection map germ has trivial Milnor fibration.

Problem 1.2 (Milnor, 1968) For which dimensions $n \ge p \ge 2$ do non-trivial examples exist ?

Theorem 1.3 (Church–Lamotke, 1976 + **Poincaré Conj.)** (a) For $0 \le n - p \le 2$, non-trivial examples occur precisely for (n,p) = (2,2), (4,3), (4,2).(b) For $n - p \ge 4$, non-trivial examples occur for all (n,p). (c) For n - p = 3, non-trivial examples occur precisely for (n,p) = (5,2), (8,5) and possibly for (6,3).

Theorem 1.3 (Church–Lamotke, 1976 + **Poincaré Conj.)** (a) For $0 \le n - p \le 2$, non-trivial examples occur precisely for (n, p) = (2, 2), (4, 3), (4, 2).(b) For $n - p \ge 4$, non-trivial examples occur for all (n, p). (c) For n - p = 3, non-trivial examples occur precisely for (n, p) = (5, 2), (8, 5) and possibly for (6, 3).

(n,p) = (6,3) was the unique unsolved dimension pair !

Theorem 1.3 (Church–Lamotke, 1976 + **Poincaré Conj.)** (a) For $0 \le n - p \le 2$, non-trivial examples occur precisely for (n, p) = (2, 2), (4, 3), (4, 2).(b) For $n - p \ge 4$, non-trivial examples occur for all (n, p). (c) For n - p = 3, non-trivial examples occur precisely for (n, p) = (5, 2), (8, 5) and possibly for (6, 3).

(n,p) = (6,3) was the unique unsolved dimension pair !

Theorem 1.4 (R.A. dos Santos, M.A.B. Hohlenwerger, T.O.Souza and O.S., 2014) There exist polynomial map germs $(\mathbb{R}^6, 0) \rightarrow (\mathbb{R}^3, 0)$ with an isolated singularity at 0 with NON-TRIVIAL Milnor fibration.

\S **2. Neuwirth–Stallings Pairs**

NS-pair

Definition 2.1 (Looijenga, 1971) $K = K^{n-p-1}$: oriented submanifold of S^{n-1} with trivial normal bundle. We allow $K = \emptyset$. Suppose $\exists \psi : S^{n-1} \setminus K \to S^{p-1}$ locally trivial fibration s.t. for a trivialization $N(K) = K \times D^p$ of a tubular nbhd of K, $\psi|_{N(K)\setminus K}$ coincides with

$$N(K) \setminus K = K \times (D^p \setminus \{0\}) \xrightarrow{\pi} S^{p-1},$$

where $\pi(x, y) = y/||y||$.

NS-pair

Definition 2.1 (Looijenga, 1971) $K = K^{n-p-1}$: oriented submanifold of S^{n-1} with trivial normal bundle. We allow $K = \emptyset$. Suppose $\exists \psi : S^{n-1} \setminus K \to S^{p-1}$ locally trivial fibration s.t. for a trivialization $N(K) = K \times D^p$ of a tubular nbhd of K, $\psi|_{N(K)\setminus K}$ coincides with

$$N(K) \setminus K = K \times (D^p \setminus \{0\}) \xrightarrow{\pi} S^{p-1},$$

where $\pi(x, y) = y / ||y||$.

Then, the pair (S^{n-1}, K^{n-p-1}) is called a **Neuwirth–Stallings pair**, or an **NS-pair** for short.

NS-pair

Definition 2.1 (Looijenga, 1971) $K = K^{n-p-1}$: oriented submanifold of S^{n-1} with trivial normal bundle. We allow $K = \emptyset$. Suppose $\exists \psi : S^{n-1} \setminus K \to S^{p-1}$ locally trivial fibration s.t. for a trivialization $N(K) = K \times D^p$ of a tubular nbhd of K, $\psi|_{N(K)\setminus K}$ coincides with

$$N(K) \setminus K = K \times (D^p \setminus \{0\}) \xrightarrow{\pi} S^{p-1},$$

where $\pi(x, y) = y/||y||$.

Then, the pair (S^{n-1}, K^{n-p-1}) is called a **Neuwirth–Stallings pair**, or an **NS-pair** for short.

It is also called a **fibered knot** or an **open book structure**.

NS-pair

Definition 2.1 (Looijenga, 1971) $K = K^{n-p-1}$: oriented submanifold of S^{n-1} with trivial normal bundle. We allow $K = \emptyset$. Suppose $\exists \psi : S^{n-1} \setminus K \to S^{p-1}$ locally trivial fibration s.t. for a trivialization $N(K) = K \times D^p$ of a tubular nbhd of K, $\psi|_{N(K)\setminus K}$ coincides with

$$N(K) \setminus K = K \times (D^p \setminus \{0\}) \xrightarrow{\pi} S^{p-1},$$

where $\pi(x, y) = y/||y||$.

Then, the pair (S^{n-1}, K^{n-p-1}) is called a **Neuwirth–Stallings pair**, or an **NS-pair** for short. It is also called a **fibered knot** or an **open book structure**.

The closure F of a fiber of ψ is called a **fiber**.

Looijenga construction

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

Theorem 2.2 (Looijenga, 1971) (S^{n-1}, K^{n-p-1}) : an NS-pair with fiber F s.t. $K^{n-p-1} \neq \emptyset$ $\implies \exists polynomial map germ (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^p, 0)$ with an isolated singularity at 0 s.t. the associated NS-pair (Milnor fibration) is isomorphic to the connected sum

$$(S^{n-1}, K^{n-p-1}) \ddagger ((-1)^n S^{n-1}, (-1)^{n-p} K^{n-p-1}),$$

with fiber the boundary connected sum $F\natural(-1)^{n-p}F$.

Looijenga construction

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

Theorem 2.2 (Looijenga, 1971) (S^{n-1}, K^{n-p-1}) : an NS-pair with fiber F s.t. $K^{n-p-1} \neq \emptyset$ $\implies \exists polynomial map germ (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^p, 0)$ with an isolated singularity at 0 s.t. the associated NS-pair (Milnor fibration) is isomorphic to the connected sum

$$(S^{n-1}, K^{n-p-1}) \sharp ((-1)^n S^{n-1}, (-1)^{n-p} K^{n-p-1}),$$

with fiber the boundary connected sum $F\natural(-1)^{n-p}F$.

For our problem, it is enough to construct a **non-trivial NS-pair** (S^5, K^2) .

Looijenga construction

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

Theorem 2.2 (Looijenga, 1971) (S^{n-1}, K^{n-p-1}) : an NS-pair with fiber F s.t. $K^{n-p-1} \neq \emptyset$ $\implies \exists polynomial map germ (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^p, 0)$ with an isolated singularity at 0 s.t. the associated NS-pair (Milnor fibration) is isomorphic to the connected sum

$$(S^{n-1}, K^{n-p-1}) \sharp ((-1)^n S^{n-1}, (-1)^{n-p} K^{n-p-1}),$$

with fiber the boundary connected sum $F\natural(-1)^{n-p}F$.

For our problem, it is enough to construct a **non-trivial NS-pair** (S^5, K^2) .

This is purely a differential topology problem !

Strategy

 1° . We classify smooth locally trivial fibrations

 $F^3 \hookrightarrow E^5 \to S^2$

with fiber F^3 a compact (simply connected) 3-manifold with $\partial F^3 = K^2$ s.t. the boundary fibration $\partial F^3 \hookrightarrow \partial E^5 \to S^2$ is trivial.

Strategy

 1° . We **classify** smooth locally trivial fibrations

 $F^3 \hookrightarrow E^5 \to S^2$

with fiber F^3 a compact (simply connected) 3-manifold with $\partial F^3 = K^2$ s.t. the boundary fibration $\partial F^3 \hookrightarrow \partial E^5 \to S^2$ is trivial.

Then, $\partial E^5 = \partial F^3 \times S^2 = K^2 \times S^2$.

Strategy

 1° . We **classify** smooth locally trivial fibrations

 $F^3 \hookrightarrow E^5 \to S^2$

with fiber F^3 a compact (simply connected) 3-manifold with $\partial F^3 = K^2$ s.t. the boundary fibration $\partial F^3 \hookrightarrow \partial E^5 \to S^2$ is trivial.

Then, $\partial E^5 = \partial F^3 \times S^2 = K^2 \times S^2$.

Attach $K^2 \times D^3$ to E^5 along the boundaries to get a closed 5-dim. manifold $\widetilde{E^5}$.

Strategy

 1° . We **classify** smooth locally trivial fibrations

 $F^3 \hookrightarrow E^5 \to S^2$

with fiber F^3 a compact (simply connected) 3-manifold with $\partial F^3 = K^2$ s.t. the boundary fibration $\partial F^3 \hookrightarrow \partial E^5 \to S^2$ is trivial.

Then,
$$\partial E^5 = \partial F^3 \times S^2 = K^2 \times S^2$$
.

Attach $K^2 \times D^3$ to E^5 along the boundaries to get a closed 5-dim. manifold $\widetilde{E^5}$.

 E^5 has a so-called "open book structure".

Strategy

 1° . We **classify** smooth locally trivial fibrations

 $F^3 \hookrightarrow E^5 \to S^2$

with fiber F^3 a compact (simply connected) 3-manifold with $\partial F^3 = K^2$ s.t. the boundary fibration $\partial F^3 \hookrightarrow \partial E^5 \to S^2$ is trivial.

Then,
$$\partial E^5 = \partial F^3 \times S^2 = K^2 \times S^2$$
.

Attach $K^2 \times D^3$ to E^5 along the boundaries to get a closed 5-dim. manifold $\widetilde{E^5}$.

 $E^{5}\ \mathrm{has}\ \mathrm{a}\ \mathrm{so-called}\ \text{``open book structure''}$.

2°. We then **characterize** those fibrations with $E^5 \cong S^5$. Such $(\widetilde{E^5}, K^2 \times \{0\}), 0 \in D^3$, gives an NS-pair with fiber F^3 . If $F^3 \not\cong D^3$, we are done.

Fiber

Let (S^5, K^2) be an NS-pair. Since S^5 never fibers over S^2 , we have $K^2 \neq \emptyset$. We have a fibration $\psi: S^5 \setminus \text{Int } N(K^2) \to S^2$ with fiber F.

By the homotopy exact sequence

$$\pi_2(S^5 \setminus \operatorname{Int} N(K^2)) \to \pi_2(S^2) \to \pi_1(F) \to \pi_1(S^5 \setminus \operatorname{Int} N(K^2)),$$

Fiber

Let (S^5, K^2) be an NS-pair. Since S^5 never fibers over S^2 , we have $K^2 \neq \emptyset$. We have a fibration $\psi : S^5 \setminus \text{Int } N(K^2) \to S^2$ with fiber F.

By the homotopy exact sequence

$$\pi_2(S^5 \setminus \operatorname{Int} N(K^2)) \to \pi_2(S^2) \to \pi_1(F) \to \pi_1(S^5 \setminus \operatorname{Int} N(K^2)),$$

we can deduce that F is **simply connected**.

Fiber

Let (S^5, K^2) be an NS-pair. Since S^5 never fibers over S^2 , we have $K^2 \neq \emptyset$. We have a fibration $\psi : S^5 \setminus \text{Int } N(K^2) \to S^2$ with fiber F.

By the homotopy exact sequence

$$\pi_2(S^5 \setminus \operatorname{Int} N(K^2)) \to \pi_2(S^2) \to \pi_1(F) \to \pi_1(S^5 \setminus \operatorname{Int} N(K^2)),$$

we can deduce that F is **simply connected**.

The solution to the **Poincaré Conjecture** implies $F \cong S^3_{(k+1)} = S^3 \setminus \bigcup^{k+1} \operatorname{Int} D^3$.

Fiber

Let (S^5, K^2) be an NS-pair. Since S^5 never fibers over S^2 , we have $K^2 \neq \emptyset$. We have a fibration $\psi : S^5 \setminus \text{Int } N(K^2) \to S^2$ with fiber F.

By the homotopy exact sequence

$$\pi_2(S^5 \setminus \operatorname{Int} N(K^2)) \to \pi_2(S^2) \to \pi_1(F) \to \pi_1(S^5 \setminus \operatorname{Int} N(K^2)),$$

we can deduce that F is **simply connected**.

The solution to the **Poincaré Conjecture** implies $F \cong S^3_{(k+1)} = S^3 \setminus \bigcup^{k+1} \operatorname{Int} D^3$. So, our fibration is

$$S^3_{(k+1)} \hookrightarrow E^5 \to S^2.$$

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

Such fibrations are classified by $\pi_1(\text{Diff}(S^3_{(k+1)}, \partial S^3_{(k+1)}))$, where $\text{Diff}(S^3_{(k+1)}, \partial S^3_{(k+1)})$ is the group of diffeomorphisms which fix the boundary pointwise.

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

Such fibrations are classified by $\pi_1(\text{Diff}(S^3_{(k+1)}, \partial S^3_{(k+1)}))$, where $\text{Diff}(S^3_{(k+1)}, \partial S^3_{(k+1)})$ is the group of diffeomorphisms which fix the boundary pointwise.

Consider a disjoint union $\cup^{k+1}B^3$ "standardly" embedded in S^3 . Let $\text{Diff}(S^3, \cup^{k+1}B^3)$ be the group of diffeomorphisms which fix $\cup^{k+1}B^3$ pointwise.

\$1. Real Milnor Fibrations \$2. Neuwirth–Stallings Pairs \$3. Topology of Milnor Fibers

Such fibrations are classified by $\pi_1(\text{Diff}(S^3_{(k+1)}, \partial S^3_{(k+1)})))$, where $\text{Diff}(S^3_{(k+1)}, \partial S^3_{(k+1)})$ is the group of diffeomorphisms which fix the boundary pointwise.

Consider a disjoint union $\cup^{k+1}B^3$ "standardly" embedded in S^3 . Let $\text{Diff}(S^3, \cup^{k+1}B^3)$ be the group of diffeomorphisms which fix $\cup^{k+1}B^3$ pointwise.

Lemma 2.3 (Cerf, 1968) The canonical map

$$\operatorname{Diff}(S^3, \cup^{k+1}B^3) \to \operatorname{Diff}(S^3_{(k+1)}, \partial S^3_{(k+1)})$$

is a weak homotopy equivalence.

\$1. Real Milnor Fibrations \$2. Neuwirth–Stallings Pairs \$3. Topology of Milnor Fibers

Such fibrations are classified by $\pi_1(\text{Diff}(S^3_{(k+1)}, \partial S^3_{(k+1)}))$, where $\text{Diff}(S^3_{(k+1)}, \partial S^3_{(k+1)})$ is the group of diffeomorphisms which fix the boundary pointwise.

Consider a disjoint union $\cup^{k+1}B^3$ "standardly" embedded in S^3 . Let $\text{Diff}(S^3, \cup^{k+1}B^3)$ be the group of diffeomorphisms which fix $\cup^{k+1}B^3$ pointwise.

Lemma 2.3 (Cerf, 1968) The canonical map

$$\operatorname{Diff}(S^3, \cup^{k+1}B^3) \to \operatorname{Diff}(S^3_{(k+1)}, \partial S^3_{(k+1)})$$

is a weak homotopy equivalence.

Thus, our fiber bundles are classified by $\pi_1(\text{Diff}(S^3, \cup^{k+1}B^3))$.
Cerf-Palais Theorem

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

Let $\operatorname{Emb}(\cup^{k+1}B^3, S^3)$ be the space of embeddings.

Cerf-Palais Theorem

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

Let $\operatorname{Emb}(\cup^{k+1}B^3, S^3)$ be the space of embeddings.

Theorem 2.4 (Cerf–Palais) We have the locally trivial fiber bundle $\operatorname{Diff}(S^3, \cup^{k+1}B^3) \hookrightarrow \operatorname{Diff}(S^3) \to \operatorname{Emb}(\cup^{k+1}B^3, S^3).$

Cerf-Palais Theorem

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

Let $\operatorname{Emb}(\cup^{k+1}B^3, S^3)$ be the space of embeddings.

Theorem 2.4 (Cerf–Palais) We have the locally trivial fiber bundle $\operatorname{Diff}(S^3, \cup^{k+1}B^3) \hookrightarrow \operatorname{Diff}(S^3) \to \operatorname{Emb}(\cup^{k+1}B^3, S^3).$

We can also prove

Lemma 2.5 Emb $(\cup^{k+1}B^3, S^3) \simeq \mathbb{F}_{k+1}(S^3) \times O(3)^{k+1}$, where

 $\mathbb{F}_{k+1}(S^3) = \{ (x_1, x_2, \dots, x_{k+1}) \mid x_i \in S^3, x_j \neq x_\ell, j \neq \ell \},\$

which is called the **configuration space**.

Classification result

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

By the homotopy exact sequence of the bundle

 $\operatorname{Diff}(S^3, \cup^{k+1}B^3) \hookrightarrow \operatorname{Diff}(S^3) \to \operatorname{Emb}(\cup^{k+1}B^3, S^3)$

together with the above lemma, we see that

$$\pi_2(\mathbb{F}_{k+1}(S^3)) \cong \pi_1(\operatorname{Diff}(S^3, \cup^{k+1}B^3)).$$

Classification result

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

By the homotopy exact sequence of the bundle

 $\operatorname{Diff}(S^3, \cup^{k+1}B^3) \hookrightarrow \operatorname{Diff}(S^3) \to \operatorname{Emb}(\cup^{k+1}B^3, S^3)$

together with the above lemma, we see that

$$\pi_2(\mathbb{F}_{k+1}(S^3)) \cong \pi_1(\text{Diff}(S^3, \cup^{k+1}B^3)).$$

Lemma 2.6 (Fadell–Husseini 2001) $\pi_2(\mathbb{F}_{k+1}(S^3)) \cong \mathbb{Z}^{k(k-1)/2}$.

Classification result

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

By the homotopy exact sequence of the bundle

 $\operatorname{Diff}(S^3, \cup^{k+1}B^3) \hookrightarrow \operatorname{Diff}(S^3) \to \operatorname{Emb}(\cup^{k+1}B^3, S^3)$

together with the above lemma, we see that

$$\pi_2(\mathbb{F}_{k+1}(S^3)) \cong \pi_1(\operatorname{Diff}(S^3, \cup^{k+1}B^3)).$$

Lemma 2.6 (Fadell–Husseini 2001) $\pi_2(\mathbb{F}_{k+1}(S^3)) \cong \mathbb{Z}^{k(k-1)/2}$.

Thus, our bundles $S^3_{(k+1)} \hookrightarrow E^5 \to S^2$ are in one-to-one correspondence with the elements in $\mathbb{Z}^{k(k-1)/2}$. This corresponds to a $k \times k$ skew-symmetric integer matrix as follows.

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

Among the k + 1 boundary components of E^5 , we choose k of them and attach k copies of the trivial fibration $D^3 \times S^2 \to S^2$ to get

$$S^3_{(1)} \hookrightarrow Y \xrightarrow{\widetilde{\psi}} S^2,$$

where $S_{(1)}^3 = S_{(k+1)}^3 \cup (\cup^k D^3) \cong D^3$ and $Y = E^5 \cup (\cup^k D^3 \times S^2)$.

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

Among the k + 1 boundary components of E^5 , we choose k of them and attach k copies of the trivial fibration $D^3 \times S^2 \to S^2$ to get

$$S^3_{(1)} \hookrightarrow Y \xrightarrow{\widetilde{\psi}} S^2,$$

where $S_{(1)}^3 = S_{(k+1)}^3 \cup (\cup^k D^3) \cong D^3$ and $Y = E^5 \cup (\cup^k D^3 \times S^2)$. This new fibration is trivial, since its boundary fibration is trivial.

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

Among the k + 1 boundary components of E^5 , we choose k of them and attach k copies of the trivial fibration $D^3 \times S^2 \to S^2$ to get

$$S^3_{(1)} \hookrightarrow Y \xrightarrow{\widetilde{\psi}} S^2,$$

where $S_{(1)}^3 = S_{(k+1)}^3 \cup (\cup^k D^3) \cong D^3$ and $Y = E^5 \cup (\cup^k D^3 \times S^2)$. This new fibration is trivial, since its boundary fibration is trivial. Thus, the above fibration is identified with $Y \cong D^3 \times S^2 \to S^2$.

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

Among the k + 1 boundary components of E^5 , we choose k of them and attach k copies of the trivial fibration $D^3 \times S^2 \to S^2$ to get

$$S^3_{(1)} \hookrightarrow Y \xrightarrow{\widetilde{\psi}} S^2,$$

where $S_{(1)}^3 = S_{(k+1)}^3 \cup (\cup^k D^3) \cong D^3$ and $Y = E^5 \cup (\cup^k D^3 \times S^2)$. This new fibration is trivial, since its boundary fibration is trivial. Thus, the above fibration is identified with $Y \cong D^3 \times S^2 \to S^2$. Furthermore, the k copies of $D^3 \times S^2$ attached to E^5 give rise to k disjoint embedded 2-spheres $\{0\} \times S^2$.

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

Among the k + 1 boundary components of E^5 , we choose k of them and attach k copies of the trivial fibration $D^3 \times S^2 \to S^2$ to get

$$S^3_{(1)} \hookrightarrow Y \xrightarrow{\widetilde{\psi}} S^2,$$

where $S_{(1)}^3 = S_{(k+1)}^3 \cup (\cup^k D^3) \cong D^3$ and $Y = E^5 \cup (\cup^k D^3 \times S^2)$. This new fibration is trivial, since its boundary fibration is trivial. Thus, the above fibration is identified with $Y \cong D^3 \times S^2 \to S^2$. Furthermore, the k copies of $D^3 \times S^2$ attached to E^5 give rise to k disjoint embedded 2-spheres $\{0\} \times S^2$. We can attach $S^2 \times D^3$ to $Y = D^3 \times S^2$ to get S^5 .

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

Among the k + 1 boundary components of E^5 , we choose k of them and attach k copies of the trivial fibration $D^3 \times S^2 \to S^2$ to get

$$S^3_{(1)} \hookrightarrow Y \xrightarrow{\widetilde{\psi}} S^2,$$

where $S_{(1)}^3 = S_{(k+1)}^3 \cup (\cup^k D^3) \cong D^3$ and $Y = E^5 \cup (\cup^k D^3 \times S^2)$. This new fibration is trivial, since its boundary fibration is trivial. Thus, the above fibration is identified with $Y \cong D^3 \times S^2 \to S^2$. Furthermore, the k copies of $D^3 \times S^2$ attached to E^5 give rise to k disjoint embedded 2-spheres $\{0\} \times S^2$. We can attach $S^2 \times D^3$ to $Y = D^3 \times S^2$ to get S^5 .

Then, the k disjoint sections give k disjoint (oriented) 2-spheres S_i^2 , $i = 1, 2, \ldots, k$, embedded in S^5 .

Among the k + 1 boundary components of E^5 , we choose k of them and attach k copies of the trivial fibration $D^3 \times S^2 \to S^2$ to get

$$S^3_{(1)} \hookrightarrow Y \xrightarrow{\widetilde{\psi}} S^2,$$

where $S_{(1)}^3 = S_{(k+1)}^3 \cup (\cup^k D^3) \cong D^3$ and $Y = E^5 \cup (\cup^k D^3 \times S^2)$. This new fibration is trivial, since its boundary fibration is trivial. Thus, the above fibration is identified with $Y \cong D^3 \times S^2 \to S^2$. Furthermore, the k copies of $D^3 \times S^2$ attached to E^5 give rise to k disjoint embedded 2-spheres $\{0\} \times S^2$. We can attach $S^2 \times D^3$ to $Y = D^3 \times S^2$ to get S^5 .

Then, the k disjoint sections give k disjoint (oriented) 2-spheres S_i^2 , $i = 1, 2, \ldots, k$, embedded in S^5 .

Thus, we have the linking matrix $L = (lk(S_i^2, S_j^2))_{1 \le i,j \le k}$.

Classification by linking matrix

§1. Real Milnor Fibrations §2. Neuwirth–Stallings Pairs §3. Topology of Milnor Fibers

We adopt the convention that the diagonal entries $lk(S_i^2, S_i^2)$ are all zero.

Classification by linking matrix

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

We adopt the convention that the diagonal entries $lk(S_i^2, S_i^2)$ are all zero. Then, L is a $k \times k$ skew-symmetric integer matrix.

Classification by linking matrix

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

We adopt the convention that the diagonal entries $lk(S_i^2, S_i^2)$ are all zero. Then, L is a $k \times k$ skew-symmetric integer matrix.

All these arguments imply that we have the following one-to-one correspondence by the **linking matrix**:

{isomorphism classes of our fiber bundles $S^3_{(k+1)} \hookrightarrow E^5 \to S^2$ } \downarrow { $k \times k$ skew-symmetric integer matrices $L = (\operatorname{lk}(S^2_i, S^2_i))_{1 \le i,j \le k}$ }

Characterization theorem

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

We see easily that \widetilde{E}^5 is simply connected. It is known that a smooth **homotopy** 5-sphere is always **diffeomorphic to** S^5 .

Characterization theorem

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

We see easily that \widetilde{E}^5 is simply connected. It is known that a smooth **homotopy** 5-**sphere** is always **diffeomorphic to** S^5 .

Therefore, by a standard (but tedious) computation based on Mayer-Vietoris exact sequence for **homology**, we get the following.

Characterization theorem

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

We see easily that \widetilde{E}^5 is simply connected. It is known that a smooth **homotopy** 5-**sphere** is always **diffeomorphic to** S^5 .

Therefore, by a standard (but tedious) computation based on Mayer-Vietoris exact sequence for **homology**, we get the following.

Theorem 2.7 We have $\widetilde{E}^5 \cong S^5$, i.e., our fiber bundle comes from an NS pair iff det $L = \pm 1$.

Main theorem

§1. Real Milnor Fibrations §2. Neuwirth-Stallings Pairs §3. Topology of Milnor Fibers

It is easy to construct $k \times k$ skew-symmetric matrix of determinant ± 1 as long as k is even.

Thus, by the **Looijenga construction**, we get the following.

Main theorem

 $\S1.$ Real Milnor Fibrations $\$ 2. Neuwirth–Stallings Pairs $\$ 3. Topology of Milnor Fibers

It is easy to construct $k \times k$ skew-symmetric matrix of determinant ± 1 as long as k is even.

Thus, by the **Looijenga construction**, we get the following.

Corollary 2.8 For $\forall k = 0, 2, 4, ..., \exists NS$ -pair (S^5, L_{k+1}) with $L_{k+1} \cong \cup^{k+1} S^2$. Consequently, \exists polynomial map germ $(\mathbb{R}^6, 0) \rightarrow (\mathbb{R}^3, 0)$ with an isolated singularity at 0 s.t. associated NS-pair is isomorphic to $(S^5, L_{k+1} \sharp (-L_{k+1}))$. In particular, $L_{k+1} \sharp (-L_{k+1})$ consists of 2k + 1 components.

Main theorem

§1. Real Milnor Fibrations §2. Neuwirth–Stallings Pairs §3. Topology of Milnor Fibers

It is easy to construct $k \times k$ skew-symmetric matrix of determinant ± 1 as long as k is even.

Thus, by the **Looijenga construction**, we get the following.

Corollary 2.8 For $\forall k = 0, 2, 4, ..., \exists NS$ -pair (S^5, L_{k+1}) with $L_{k+1} \cong \cup^{k+1} S^2$. Consequently, \exists polynomial map germ $(\mathbb{R}^6, 0) \rightarrow (\mathbb{R}^3, 0)$ with an isolated singularity at 0 s.t. associated NS-pair is isomorphic to $(S^5, L_{k+1} \sharp (-L_{k+1}))$. In particular, $L_{k+1} \sharp (-L_{k+1})$ consists of 2k + 1 components.

This answers Milnor's non-triviality question for (n, p) = (6, 3).

§3. Topology of Milnor Fibers

Bouquet theorem

§1. Real Milnor Fibrations §2. Neuwirth–Stallings Pairs §3. Topology of Milnor Fibers

If $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ is a **complex** polynomial map germ with an isolated singularity at 0, then the Milnor fiber is homotopy equivalent to the **bouquet of spheres**

 $\vee^{\mu}S^{n-1}.$

Bouquet theorem

§1. Real Milnor Fibrations §2. Neuwirth–Stallings Pairs §3. Topology of Milnor Fibers

If $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ is a **complex** polynomial map germ with an isolated singularity at 0, then the Milnor fiber is homotopy equivalent to the **bouquet of spheres**

 $\vee^{\mu}S^{n-1}.$

In the **real** case, it is easy to construct an example of a polynomial map germ with an isolated singularity whose Milnor fiber is NOT homotopy equivalent to the bouquet of spheres.

Bouquet theorem

§1. Real Milnor Fibrations §2. Neuwirth–Stallings Pairs §3. Topology of Milnor Fibers

If $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ is a **complex** polynomial map germ with an isolated singularity at 0, then the Milnor fiber is homotopy equivalent to the **bouquet of spheres**

 $\vee^{\mu}S^{n-1}.$

In the **real** case, it is easy to construct an example of a polynomial map germ with an isolated singularity whose Milnor fiber is NOT homotopy equivalent to the bouquet of spheres.

However, we have the following.

Bouquet theorem (2)

§1. Real Milnor Fibrations §2. Neuwirth–Stallings Pairs §3. Topology of Milnor Fibers

Proposition 3.1 Let $f : (\mathbb{R}^{2n}, 0) \to (\mathbb{R}^n, 0)$ be a polynomial map germ with an isolated singularity at the origin, $n \ge 2$.

Then, the Milnor fiber F_f has the homotopy type of $\bigvee S^{n-1}$, where it means a point when $\mu = 0$.

Bouquet theorem (2)

§1. Real Milnor Fibrations §2. Neuwirth–Stallings Pairs §3. Topology of Milnor Fibers

Proposition 3.1 Let $f : (\mathbb{R}^{2n}, 0) \to (\mathbb{R}^n, 0)$ be a polynomial map germ with an isolated singularity at the origin, $n \ge 2$.

Then, the Milnor fiber F_f has the homotopy type of $\bigvee S^{n-1}$, where it means a point when $\mu = 0$.

Proposition 3.2 Let $f: (\mathbb{R}^{2n+1}, 0) \to (\mathbb{R}^n, 0)$ be a polynomial map germ with an isolated singularity at the origin, $n \ge 3$. Then, $H_{n-1}(F_f)$ is torsion free if and only if F_f has the homotopy type of $\begin{pmatrix} \mu \\ \bigvee S^{n-1} \end{pmatrix} \lor \begin{pmatrix} \mu \\ \bigvee S^n \end{pmatrix}$, where it means a point when $\mu = 0$.

Non-trivial examples

§1. Real Milnor Fibrations §2. Neuwirth–Stallings Pairs §3. Topology of Milnor Fibers

Non-trivial examples due to Church–Lamotke (1976) have **contractible Milnor fibers** (but with non-simply connected links).

Non-trivial examples

§1. Real Milnor Fibrations §2. Neuwirth–Stallings Pairs §3. Topology of Milnor Fibers

Non-trivial examples due to Church–Lamotke (1976) have **contractible Milnor fibers** (but with non-simply connected links). Using our techniques for (n, p) = (6, 3), we get the following.

Non-trivial examples

\$1. Real Milnor Fibrations \$2. Neuwirth–Stallings Pairs \$3. Topology of Milnor Fibers

Non-trivial examples due to Church–Lamotke (1976) have **contractible Milnor fibers** (but with non-simply connected links). Using our techniques for (n, p) = (6, 3), we get the following.

Proposition 3.3 For each pair of dimensions (2n, p), $2 \le p \le n$, $\exists polynomial map germ (\mathbb{R}^{2n}, 0) \rightarrow (\mathbb{R}^p, 0)$ with an isolated singularity at 0 s.t. the Milnor fiber is homotopy equivalent to

$$\bigvee^{\mu} S^{n-1}, \quad \mu > 0.$$

Non-trivial examples (II)

§1. Real Milnor Fibrations §2. Neuwirth–Stallings Pairs §3. Topology of Milnor Fibers

Proposition 3.4

For each pair of dimensions (2n + 1, p), $2 \le p \le n$, \exists polynomial map germ $(\mathbb{R}^{2n+1}, 0) \rightarrow (\mathbb{R}^p, 0)$ with an isolated singularity at 0 s.t. the Milnor fiber is homotopy equivalent to

$$\left(\bigvee^{\mu} S^{n-1}\right) \vee \left(\bigvee^{\mu} S^{n}\right), \quad \mu > 0$$

Non-trivial examples (II)

§1. Real Milnor Fibrations §2. Neuwirth–Stallings Pairs §3. Topology of Milnor Fibers

Proposition 3.4

For each pair of dimensions (2n + 1, p), $2 \le p \le n$, \exists polynomial map germ $(\mathbb{R}^{2n+1}, 0) \rightarrow (\mathbb{R}^p, 0)$ with an isolated singularity at 0 s.t. the Milnor fiber is homotopy equivalent to

$$\left(\bigvee^{\mu} S^{n-1}\right) \vee \left(\bigvee^{\mu} S^{n}\right), \quad \mu > 0.$$

These provide NEW NON-TRIVIAL examples !

Idea of construction

§1. Real Milnor Fibrations §2. Neuwirth–Stallings Pairs §3. Topology of Milnor Fibers

We first construct a fiber bundle

$$S^n_{(k+1)} \hookrightarrow E^{2n-1} \to S^{n-1}$$

such that it is trivial on the boundary, using a $k \times k$ integer matrix L which is $(-1)^n$ -symmetric whose diagonal entries all vanish.

Idea of construction

\$1. Real Milnor Fibrations \$2. Neuwirth–Stallings Pairs \$3. Topology of Milnor Fibers

We first construct a fiber bundle

$$S^n_{(k+1)} \hookrightarrow E^{2n-1} \to S^{n-1}$$

such that it is trivial on the boundary, using a $k \times k$ integer matrix L which is $(-1)^n$ -symmetric whose diagonal entries all vanish. This is possible by a homotopy theoretic argument involving certain **configuration spaces**, similar to the previous case.

Idea of construction

\$1. Real Milnor Fibrations \$2. Neuwirth–Stallings Pairs \$3. Topology of Milnor Fibers

We first construct a fiber bundle

$$S^n_{(k+1)} \hookrightarrow E^{2n-1} \to S^{n-1}$$

such that it is trivial on the boundary, using a $k \times k$ integer matrix L which is $(-1)^n$ -symmetric whose diagonal entries all vanish. This is possible by a homotopy theoretic argument involving certain **configuration spaces**, similar to the previous case. If the matrix L has determinant ± 1 , then we see that the associated closed manifold \tilde{E}^{2n-1} is a homotopy (2n-1)-sphere.
Idea of construction

\$1. Real Milnor Fibrations \$2. Neuwirth–Stallings Pairs \$3. Topology of Milnor Fibers

We first construct a fiber bundle

$$S^n_{(k+1)} \hookrightarrow E^{2n-1} \to S^{n-1}$$

such that it is trivial on the boundary, using a $k \times k$ integer matrix Lwhich is $(-1)^n$ -symmetric whose diagonal entries all vanish. This is possible by a homotopy theoretic argument involving certain **configuration spaces**, similar to the previous case. If the matrix L has determinant ± 1 , then we see that the associated closed manifold \tilde{E}^{2n-1} is a homotopy (2n-1)-sphere. This may not be diffeomorphic to S^{2n-1} .

Idea of construction

\$1. Real Milnor Fibrations \$2. Neuwirth–Stallings Pairs \$3. Topology of Milnor Fibers

We first construct a fiber bundle

$$S^n_{(k+1)} \hookrightarrow E^{2n-1} \to S^{n-1}$$

such that it is trivial on the boundary, using a $k \times k$ integer matrix L which is $(-1)^n$ -symmetric whose diagonal entries all vanish. This is possible by a homotopy theoretic argument involving certain **configuration spaces**, similar to the previous case. If the matrix L has determinant ± 1 , then we see that the associated closed manifold \tilde{E}^{2n-1} is a homotopy (2n-1)-sphere. This may not be diffeomorphic to S^{2n-1} . However, $\tilde{E}^{2n-1} \sharp (-\tilde{E}^{2n-1})$ is diffeomorphic to S^{2n-1} .

 $\S1.$ Real Milnor Fibrations $\$ S2. Neuwirth–Stallings Pairs $\$ S3. Topology of Milnor Fibers

Then, the **Looijenga construction** leads to a polynomial map germ $f: (\mathbb{R}^{2n}, 0) \rightarrow (\mathbb{R}^n, 0)$ with an isolated singularity at 0 whose Milnor fibration is non-trivial.

 $\S1.$ Real Milnor Fibrations $\$ S2. Neuwirth–Stallings Pairs $\$ S3. Topology of Milnor Fibers

Then, the **Looijenga construction** leads to a polynomial map germ $f: (\mathbb{R}^{2n}, 0) \rightarrow (\mathbb{R}^n, 0)$ with an isolated singularity at 0 whose Milnor fibration is non-trivial.

Considering the composition with a canonical projection

 $(\mathbb{R}^{2n}, 0) \to (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$

for $n > p \ge 2$, we get again a non-trivial example.

 $\S1.$ Real Milnor Fibrations $\$ S2. Neuwirth–Stallings Pairs $\$ S3. Topology of Milnor Fibers

Then, the **Looijenga construction** leads to a polynomial map germ $f: (\mathbb{R}^{2n}, 0) \rightarrow (\mathbb{R}^n, 0)$ with an isolated singularity at 0 whose Milnor fibration is non-trivial.

Considering the **composition with a canonical projection**

 $(\mathbb{R}^{2n}, 0) \to (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$

for $n > p \ge 2$, we get again a non-trivial example.

For $(\mathbb{R}^{2n+1}, \mathbb{R}^p)$, we first apply the **spinning construction** to the non-trivial NS-pair (S^{2n-1}, K^{n-1}) constructed above, to get a non-trivial NS-pair $(S^{2n}, \widetilde{K}^n)$.

 $\S1.$ Real Milnor Fibrations $\$ S2. Neuwirth–Stallings Pairs $\$ S3. Topology of Milnor Fibers

Then, the **Looijenga construction** leads to a polynomial map germ $f: (\mathbb{R}^{2n}, 0) \rightarrow (\mathbb{R}^n, 0)$ with an isolated singularity at 0 whose Milnor fibration is non-trivial.

Considering the **composition with a canonical projection**

 $(\mathbb{R}^{2n}, 0) \to (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$

for $n > p \ge 2$, we get again a non-trivial example.

For $(\mathbb{R}^{2n+1}, \mathbb{R}^p)$, we first apply the **spinning construction** to the non-trivial NS-pair (S^{2n-1}, K^{n-1}) constructed above, to get a non-trivial NS-pair $(S^{2n}, \widetilde{K}^n)$.

Applying the Looijenga construction to this, we get a polynomial map germ $(\mathbb{R}^{2n+1}, 0) \rightarrow (\mathbb{R}^n, 0)$ with non-trivial Milnor fibration.

 $\S1.$ Real Milnor Fibrations $\$ S2. Neuwirth–Stallings Pairs $\$ S3. Topology of Milnor Fibers

Then, the **Looijenga construction** leads to a polynomial map germ $f: (\mathbb{R}^{2n}, 0) \rightarrow (\mathbb{R}^n, 0)$ with an isolated singularity at 0 whose Milnor fibration is non-trivial.

Considering the **composition with a canonical projection**

 $(\mathbb{R}^{2n}, 0) \to (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$

for $n > p \ge 2$, we get again a non-trivial example.

For $(\mathbb{R}^{2n+1}, \mathbb{R}^p)$, we first apply the **spinning construction** to the non-trivial NS-pair (S^{2n-1}, K^{n-1}) constructed above, to get a non-trivial NS-pair $(S^{2n}, \widetilde{K}^n)$.

Applying the Looijenga construction to this, we get a polynomial map germ $(\mathbb{R}^{2n+1}, 0) \rightarrow (\mathbb{R}^n, 0)$ with non-trivial Milnor fibration. Then, consider the composition with a canonical projection $\mathbb{R}^n \rightarrow \mathbb{R}^p$.

Thank you for your attention !