

Osamu Saeki (Kyushu Univ.)

Joint work with Takahiro Yamamoto (Kyushu Sangyo Univ.)

July 13, 2015 Brazil – Mexico 2nd Meeting on Singularities, Salvador–Bahia–Brazil

$\S1$. Introduction

Morse function

§1. Introduction §2. Reeb Graph and Reeb Space §3. Proof §4. Low Dimensional Cases

All manifolds and maps are differentiable of class C^{∞} .

- Let N be a manifold with boundary.
- A C^∞ function $f:N\to {\bf R}$ is a Morse function if

(1) the critical points of f and $f|_{\partial N}$ are all **non-degenerate** and have **distinct values**, and

- (2) f is a **submersion** on a neighborhood of ∂N .
- (\iff critical points of $f|_{\partial N}$ are all **correct** critical points.)

Fact. f is a Morse function iff it is C^{∞} **stable**. It is also called a **correct function** in the literature.

A smooth map on a manifold with boundary is **admissible** if it is a submersion on a neighborhood of the boundary.

In this sense, every Morse function is admissible.

Example of a Morse function

§1. Introduction §2. Reeb Graph and Reeb Space §3. Proof §4. Low Dimensional Cases

The critical points of f and $f|_{\partial N}$ are non-degenerate. The critical values of f and $f|_{\partial N}$ are all distinct. f is a submersion near the boundary.

Cobordism

Let N_0 and N_1 be compact *n*-dim. manifolds with boundary. Morse functions $f_i: N_i \to \mathbf{R}$, i = 0, 1, are **admissibly cobordant** if

(1) ∃compact manifold Xⁿ⁺¹ with corners

(cobordism between the manifolds N₀ and N₁) s.t.
∂Xⁿ⁺¹ = N₀ ∪ Qⁿ ∪ N₁,
∂Qⁿ = ∂N₀ ∪ ∂N₁ (Qⁿ is a cobordism between ∂N₀ and ∂N₁),

(2) ∃F : Xⁿ⁺¹ → **R** × [0, 1],
(3) F|_{N0} = f₀ : N₀ → **R** × {0} and F|_{N1} = f₁ : N₁ → **R** × {1},
(4) F|_{Xⁿ⁺¹\(N₀∪N₁)} : Xⁿ⁺¹ \ (N₀ ∪ N₁) → **R** × (0, 1) is a proper admissible C[∞] map which has only folds and cusps as its singularities.

In this case, we call F an **admissible cobordism** between f_0 and f_1 .

fold: $(x_1, x_2, \dots, x_{n+1}) \mapsto (x_1, \pm x_2^2 \pm \dots \pm x_{n+1}^2)$, cusp: $(x_1, x_2, \dots, x_{n+1}) \mapsto (x_1, x_2^3 + x_1 x_2 \pm x_3^2 \pm \dots \pm x_{n+1}^2)$

§1. Introduction §2. Reeb Graph and Reeb Space §3. Proof §4. Low Dimensional Cases

Admissibility is important in the above definition. If we drop the condition, then any two Morse functions are cobordant!

Cobordism group

§1. Introduction §2. Reeb Graph and Reeb Space §3. Proof §4. Low Dimensional Cases

If a Morse function is admissibly cobordant to the function on the empty set \emptyset , then it is **null-cobordant**.

"Admissible cobordism" defines an equivalence relation on the set of all Morse functions on compact *n*-dim. manifolds with boundary. The set of all equivalence classes forms an **additive group** under disjoint union:

(1) the neutral element is the class of null-cobordant Morse functions, (2) $-[f: N \rightarrow \mathbf{R}] = [-f: N \rightarrow \mathbf{R}].$

Denote by $b\mathfrak{N}_n$ the additive group of all admissible cobordism classes and call it the *n*-dim. admissible cobordism group of Morse functions on manifolds with boundary.

Main theorem

§1. Introduction §2. Reeb Graph and Reeb Space §3. Proof §4. Low Dimensional Cases

Theorem 1.1 The 2-dim. admissible cobordism group of Morse functions $b\mathfrak{N}_2$ is cyclic of order two.

Remark 1.2 We had previously shown $\exists epimorphism b\mathfrak{N}_2 \rightarrow \mathbb{Z}_2$, using cohomology of the **universal complex of singular fibers**. This was presented in 13th International Workshop on $\mathbb{R} \& \mathbb{C}$ Singularities, São Carlos, in 2014. Prof. **Terry Gaffney** asked if it is an isomorphism. The above theorem affirmatively answers his question!

🛔 🖛 🐅 🌚 🌧

Morse functions on closed surfaces

\$1. Introduction \$2. Reeb Graph and Reeb Space \$3. Proof \$4. Low Dimensional Cases

For Morse functions on manifolds **without boundary**, the **fold cobordism groups** have been studied.

Two Morse functions on closed *n*-dim. manifolds are **fold cobordant** if there exists a cobordism $F: X^{n+1} \to \mathbf{R} \times [0, 1]$ between them which has only **fold** points as its singularities. (No cusp is allowed.)

Theorem 1.3 (Ikegami–Saeki 2003, Ikegami 2004) The fold cobordism group of Morse functions on closed surfaces is isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}$. The fold cobordism group for oriented closed surfaces is isomorphic to \mathbb{Z} .

The idea of our proof of the main theorem is based on [Ikegami–Saeki 2003].

§2. Reeb Graph and Reeb Space

Stein factorization

§1. Introduction §2. Reeb Graph and Reeb Space §3. Proof §4. Low Dimensional Cases

Definition 2.1 $f: N \to P$ smooth map For $x, x' \in N$, define $x \sim_f x'$ if (i) f(x) = f(x')(=y), and (ii) x and x' belong to the same connected component of $f^{-1}(y)$. $W_f = N/\sim_f$ quotient space $q_f: N \to W_f$ quotient map $\exists ! \overline{f} : W_f \to P$ that makes the diagram commutative: $N \xrightarrow{f} P$ $q_f \searrow \qquad \nearrow_{\bar{f}}$ W_{f} The above diagram is called the **Stein factorization** of f.

 W_f is called the **Reeb space** and \overline{f} the **Reeb map**.

Example

§1. Introduction §2. Reeb Graph and Reeb Space §3. Proof §4. Low Dimensional Cases

Reeb graph

 $\S1$. Introduction $\S2$. Reeb Graph and Reeb Space $\S3$. Proof $\S4$. Low Dimensional Cases

 $f: N \rightarrow \mathbf{R}$ Morse function on a compact **surface** with boundary

Lemma 2.2 Reeb space W_f is a finite **graph** whose vertices are the q_f -images of the critical points of f and $f|_{\partial N}$.

 W_f is also called a **Reeb graph**, and the continuous map $\overline{f}: W_f \to \mathbf{R}$ a **Reeb function**.

Each edge corresponds to a **circle regular fiber** or an **arc regular fiber**. We label each edge by 0 or 1, where 0 (resp. 1) means that it corresponds to a **circle** regular fiber (resp. an **arc** regular fiber). Such a Reeb graph is called a **labeled Reeb graph**.

Local forms of Reeb function

§1. Introduction §2. Reeb Graph and Reeb Space §3. Proof §4. Low Dimensional Cases

Around each vertex, $\overline{f}: W_f \to \mathbb{R}$ is locally equivalent to one of the height functions below (or their negatives). (The map \overline{f} is an embedding on each edge.)

Reeb space of a stable map

§1. Introduction §2. Reeb Graph and Reeb Space §3. Proof §4. Low Dimensional Cases

Lemma 2.3 Let $f: X^3 \to P^2$ be an **admissible** C^{∞} stable map of a compact 3-dim. manifold with boundary into a surface without boundary. Then, the Reeb space W_f is a compact 2-dim. **polyhedron**, which is **labeled**: each component of $W_f \setminus q_f(S(f))$ is labeled with 0 or 1, where S(f) is the set of singular points of f.

Furthermore, around each point of W_f , the Reeb map $\overline{f}: W_f \to P^2$ is **locally equivalent** to one of the maps as depicted below, where the relevant map is the vertical projection to a plane.

Local forms of Reeb maps (I)

§1. Introduction §2. Reeb Graph and Reeb Space §3. Proof §4. Low Dimensional Cases

Local forms of Reeb maps (II)

§1. Introduction §2. Reeb Graph and Reeb Space §3. Proof §4. Low Dimensional Cases

Reeb-like function

 $\S1$. Introduction $\S2$. Reeb Graph and Reeb Space $\S3$. Proof $\S4$. Low Dimensional Cases

Definition 3.1

Let G be a finite graph whose edges are **labeled** by 0 or 1. We assume that around each vertex of G, it is **locally homeomorphic** to one of the 9 local labeled Reeb graphs for Morse functions. Then, we call G a **labeled Reeb-like graph**.

Let $r: G \rightarrow \mathbf{R}$ be a continuous function such that

- 1. around each vertex of G, r is **locally equivalent** to one of the local Reeb functions of a Morse function, and
- 2. r is an embedding on each edge.

Then, we call $r: G \to \mathbf{R}$ a **Reeb-like function**.

These are **abstract generalizations of labeled Reeb graphs and Reeb functions** for Morse functions on compact surfaces with boundary.

Cobordism of Reeb-like functions

 $\S1.$ Introduction $~\S2.$ Reeb Graph and Reeb Space $~\S3.$ Proof $~\S4.$ Low Dimensional Cases

Definition 3.2 Two Reeb-like functions $r_i : G_i \to \mathbf{R}$, i = 0, 1, on **labeled** Reeb-like graphs are **cobordant** if \exists compact 2-dim. polyhedron W, \exists 1-dim. subpolyhedron $\Sigma(W)$, and \exists continuous map $R : W \to \mathbf{R} \times [0, 1]$ s.t.

- 1. connected components of $W \setminus \Sigma(W)$ are **labeled** with 0 or 1,
- 2. G_i are identified with "labeled" subcomplexes of W with regular neighborhoods of the forms $G_i \times [0, \varepsilon]$,
- 3. $r_0 = R|_{G_0} : G_0 \to \mathbf{R} \times \{0\}$ and $r_1 = R|_{G_1} : G_1 \to \mathbf{R} \times \{1\}$,
- 4. around each point of $W \setminus (G_0 \cup G_1)$, R is **locally equivalent** to the Reeb map $\overline{f} : W_f \to \mathbf{R} \times [0, 1]$ of a proper admissible C^{∞} stable map f of a 3-dim. manifold with boundary into a surface.

Cobordism group

 $\S1$. Introduction $\S2$. Reeb Graph and Reeb Space $\S3$. Proof $\S4$. Low Dimensional Cases

This is an **abstract generalization of the Reeb map of an admissible cobordism between two Morse functions** on compact surfaces with boundary.

The above relation defines an equivalence relation for Reeb-like functions. Furthermore, the set of all cobordism classes forms an **additive group** under the disjoint union.

We denote by $b\mathfrak{R}$ the additive group of all cobordism classes of Reeb-like functions on the labeled Reeb-like graphs and call it the **cobordism group of Reeb-like functions**.

Proof of main theorem

 $\S1.$ Introduction $~\S2.$ Reeb Graph and Reeb Space $~\S3.$ Proof $~\S4.$ Low Dimensional Cases

We have the natural map $\rho: b\mathfrak{N}_2 \to b\mathfrak{R}$, which associates to each admissible cobordism class of a Morse function f on a compact surface with boundary the cobordism class of the Reeb function $\overline{f}: W_f \to \mathbf{R}$. It is straightforward to see that this defines a homomorphism of additive

groups.

Proposition 3.3 The homomorphism $\rho: b\mathfrak{N}_2 \to b\mathfrak{R}$ is an isomorphism.

Surjectivity: Given a labeled Reeb-like graph, one can construct an associated Morse function on a compact surface with boundary.

Injectivity: Given an abstract cobordism W between two labeled Reeb graphs R_{f_i} for Morse functions, we first modify the cobordism in such a way that it is a regular neighborhood of $\Sigma(W) \cup R_{f_0} \cup R_{f_1}$. Then, one can construct an associated admissible cobordism between the Morse functions.

Cob. group of Reeb-like functions

 $\S1.$ Introduction $~\S2.$ Reeb Graph and Reeb Space $~\S3.$ Proof $~\S4.$ Low Dimensional Cases

It suffices to prove the following.

Proposition 3.4 The cobordism group $b\mathfrak{R}$ of Reeb-like functions is a cyclic group of order two generated by the cobordism class of the Reeb function of the Morse function as depicted below.

 $b\mathfrak{R}\cong \mathbb{Z}_2$

Define $\sigma : b\mathfrak{R} \to \mathbb{Z}_2$ by setting $\sigma([r : G \to \mathbb{R}])$ to be the modulo two number of vertices of type (1), (2), (3), (4), (8) and (9).

 σ is a well-defined homomorphism of abelian groups.

In fact, the homomorphism corresponds to a certain cohomology class of the **universal complex of singular fibers**.

The well-definedness of σ is a direct consequence of the fact that the representative of the cohomology class is a **cocycle**.

Moves for Reeb-like functions

 $\S1.$ Introduction $~\S2.$ Reeb Graph and Reeb Space $~\S3.$ Proof $~\S4.$ Low Dimensional Cases

Lemma 3.5 Let $r_i : G_i \to \mathbf{R}$, i = 0, 1, be Reeb-like functions on labeled Reeb-like graphs. If r_1 is obtained from r_0 by the **local moves** as depicted below or their negatives, then r_0 and r_1 are cobordant.

In fact, there are many more; we use only the above ones in the proof.

Elementary Reeb-like functions

 $\S1.$ Introduction $\$ 2. Reeb Graph and Reeb Space $\$ 3. Proof $\$ 84. Low Dimensional Cases

Let $r: G \to \mathbb{R}$ be an arbitrary Reeb-like function. We show [r] = 0 or $[r_6]$, where r_6 is the Reeb function of the Morse function mentioned above (see below).

We first **cut** the edges of G by moves III and IV to get a disjoint union of **elementary Reeb-like functions** (or their negatives) as follows.

 $[r_4] = [r_6]$

 $\S1$. Introduction $\S2$. Reeb Graph and Reeb Space $\S3$. Proof $\S4$. Low Dimensional Cases

$[r_6] + [r_8] = [r_6] + [r_9]$

§1. Introduction §2. Reeb Graph and Reeb Space §3. Proof §4. Low Dimensional Cases

 $[r_6] = [r_9]$

§1. Introduction §2. Reeb Graph and Reeb Space §3. Proof §4. Low Dimensional Cases

Thus, we have shown that $[r_4] = [r_6] = [r_8] = [r_9]$ generates $b\mathfrak{N}_2$. On the other hand, we have $\sigma([r_8]) = 1 \in \mathbb{Z}_2$ and $[r_8] + [r_8] = 0$ as below.

Hence, σ is an isomorphism.

\S 4. Low Dimensional Cases

$b\mathfrak{N}_0$ and $b\mathfrak{N}_1$

 $\S1.$ Introduction $\$ 2. Reeb Graph and Reeb Space $\$ 3. Proof $\$ 4. Low Dimensional Cases

Proposition 4.1 The 0-dimensional admissible cobordism group of Morse functions $b\mathfrak{N}_0$ is trivial.

Proposition 4.2 The 1-dimensional admissible cobordism group of Morse functions $b\mathfrak{N}_1$ is an infinite cyclic group generated by the admissible cobordism class of $f_0: [-1,2] \to \mathbf{R}$ given by $f_0(x) = x^2$, $x \in [-1,2]$.

In fact, $(\sharp(\text{positive end points}) - \sharp(\text{negative end points}))/2$ gives an isomorphism.

Problems

 $\S1.$ Introduction $\S2.$ Reeb Graph and Reeb Space $~\S3.$ Proof $~\S4.$ Low Dimensional Cases

Problem 4.3 Study the group structure of $b\mathfrak{N}_n$, $n \geq 3$.

Problem 4.4 Study the group structure of the oriented version $b\Omega_n$.

Problem 4.5 Study the group structures of the **admissible fold cobordism** group $b\mathfrak{F}_n$ and its oriented version.

§1. Introduction §2. Reeb Graph and Reeb Space §3. Proof §4. Low Dimensional Cases

Thank you for your attention!

