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ABSTRACT. This talk has two purposes.

(1) We classify singular fibers of proper C'™® stable maps of orientable 4-
manifolds into 3-manifolds up to right-left equivalence. We show that the
signature of the source oriented 4-manifold of such a stable map coincides
with the algebraic number of singular fibers of a certain type.

(2) For a generic map of negative codimension in general, we have a strat-
ification of the target manifold according to the fibers. Using this, we define
the universal complexzes of singular fibers similar to Vassiliev’s universal com-
plexes of multi-singularities. We show that their cohomology groups give rise
to cobordism invariants of smooth maps with a given set of local and global
singularities.

1. INTRODUCTION

Let f: M — N be a proper smooth map of an n-dimensional manifold M into
a p-dimensional manifold N. When its codimension p — n is nonnegative, 1.e. when
n < p, for any point y in the target N, the inverse image f~!(y) consists of a finite
number of points, provided that f is generic enough. Hence, in order to study the
semi-local behavior of a generic map f around (the inverse image of) a point y € N
we have only to consider the multi-germ f : (M, f=1(y)) — (N,y). Therefore, we
can use the well-developed theory of multi-jet spaces and their sections in order to
study such semi-local behaviors of generic maps.

However, if the codimension p — n is strictly negative, then the inverse image
f~(y) is no longer a discrete set. In general, f=!(y) forms a complex of positive
dimension n — p. Hence, we have to study the map germ f : (M, f~1(y)) —
(N,y) along a set of positive dimension, namely along a singular fiber. Surprisingly
enough, there has been no systematic study of such map germs in the literature, as
long as the author knows.

In this talk, we consider the codimension —1 case, i.e. the case withn—p =1, and
classify the right-left equivalence classes of generic map germs f : (M, f~1(y)) —
(N,y) for n = 2,3,4 (Theorem 2.2). For the case n = 3, Kushner, Levine and Porto
[6, 7] classified the singular fibers of C'*° stable maps of 3-manifolds into surfaces up
to diffeomorphism; however, they did not mention a classification up to right-left
equivalence (for details, see Definition 2.1 in §2).

Given a generic map f : M — N of negative codimension, the target manifold
N 1s naturally stratified according to the right-left equivalence classes of f-fibers.
By carefully investigating how the strata are incident to each other, we get some
information on the homology class represented by a set of the points in the target
whose associated fibers are of certain types. This leads to some limitations on the
co-existence of singular fibers. As an interesting and very important consequence
of such co-existence results, we show that for a C'™ stable map f : M — N of a
closed orientable 4-manifold M into a 3-manifold N, the Euler characteristic of the
source manifold M has the same parity as the number of singular fibers of type I11%
as depicted in Fig. 1 (Theorem 2.4). Furthermore, when the source 4-manifold is
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oriented, its signature coincides with the algebraic number of singular fibers of type
e (Theorem 2.5). Note that these kinds of results would be impossible if we used
the multi-germs of a given map at the singular points contained in a fiber instead of
considering the topology of the fibers. In other words, our idea of essentially using
the topology of singular fibers leads to new information on the global structure of
generic maps.

Furthermore, the natural stratification of the target manifold according to the
fibers enables us to generalize Vassiliev’s universal complex of multi-singularities
[12] to our case. In this talk, we define such universal complexes of singular fibers
and compute the corresponding cohomology groups in certain cases. It turns out
that cohomology classes of such complexes give rise to cobordism invariants for
maps with a given set of singularities in the sense of Riményi and Szfics [9].

For more details, refer to the preprint [10].

2. CLASSIFICATION OF SINGULAR FIBERS AND THEIR TOPOLOGY

Definition 2.1. Let f; : M; — N; be smooth maps, i = 0,1. For y; € N;, we say
that the fibers over yo and y; are diffeomorphic (or homeomorphic) if (fo)~(yo) C
My and (f1)~Y(y1) C M; are diffeomorphic (resp. homeomorphic) as subsets of
smooth manifolds. Furthermore, we say that the fibers over yy and y; are C'™
equivalent (or CV equivalent), if for some open neighborhoods U; of y; in N;, there
exist diffeomorphisms (resp. homeomorphisms) & : (fo)~Y(Us) — (f1)~1(U1) and
¢ : Uy = Uy with ¢(yo) = y1 which make the following diagram commutative:

((Fo)~ (o), (fo) "M wo)) —F—  ((51)~M (), (F1) " (w)
(21) ful lfl
(U, o) — (U1, ).

When the fibers over yo and y; are C* (or CV) equivalent, we also say that the
map germs fo : (Mo, (fo) ' (v0)) = (No,yo) and fi @ (M1, (f1)~" (1)) — (N1, 1)
are smoothly (or topologically) right-left equivalent. Note that then (fo)~*(yo) and
(f1)~1(y1) are diffeomorphic (resp. homeomorphic) to each other in the above sense.

Theorem 2.2. Let f : M — N be a proper U™ stable map of an orientable 4-
manifold M wnto a 3-manifold N. Then, every singular fiber of f is equivalent to
the disjoint union of one of the fibers as in Fig. 1 and a finite number of copies of
a fiber of the trivial circle bundle.

In Fig. 1, k denotes the codimension of the set of points in N whose corresponding
fibers are equivalent to the relevant one. Furthermore, I* IT* and III* mean the
names of the corresponding singular fibers, and “/” is used only for separating the
figures. Note that the list of singular fibers for proper stable maps of orientable
J-manifolds into surfaces consists of those fibers with £ < 2 of Fig. 1, and that the
list for proper Morse functions on orientable surfaces consists of those with x < 1.

Theorem 2.2 is proved as follows. We first list up all the possible 1-dimensional
complexes which arise as a singular fiber, by a careful combinatorial argument.
Then we use Ehresmann’s fibration theorem together with a classification of multi-
germs up to right equivalence [13, 2] to construct diffeomorphisms as in (2.1).

Theorem 2.2 has been generalized to the case of nonorientable source in [14].

As an immediate corollary to Theorem 2.2, we have the following. Compare this
with a result of Damon [1] about stable map germs in nice dimensions.

Corollary 2.3. Two fibers of proper C'™° stable maps of orientable n-manifolds
into (n — 1)-manifolds (n = 2,3,4) are C* equivalent if and only if they are C°
equivalent.
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FicUure 1. List of singular fibers of proper €' stable maps of
orientable 4-manifolds into 3-manifolds



By studying the adjacency of singular fibers, we obtain the following results.

Theorem 2.4. Let f: M — N be a U™ stable map of a closed orientable 4-
manifold into a 3-manifold. Then the number of singular fibers of f of type I11°
has the same parity as the Euler characteristic of M.

When the 4-manifold M is oriented, one can assign a sign (= %1) to each fiber
of type I11%. Then, we have the following.

Theorem 2.5 (T. Yamamoto and O. Saeki [11]). Let f: M — N be a C* stable
map of a closed oriented 4-manifold into a 3-manifold. Then the algebraic number
of singular fibers of f of type 1II® coincides with the signature of M.

3. UNIVERSAL COMPLEX FOR SINGULAR FIBERS

For n,p > 0, let Tpe(n,p) denote the set of all proper Thom maps between
manifolds of dimensions n and p. Recall that a Thom map is a stratified map with
respect to Whitney regular stratifications of the source and the target such that
it is a submersion on each stratum and satisfies a certain regularity condition (for
example, see [3]).

Definition 3.1. We say that an equivalence relation p = p, , among the fibers of
elements of Tor(n, p) is admissible if the following holds.

(1) C° equivalent fibers are equivalent with respect to p.

(2) For any two proper Thom maps f; : M; — N; and for any points y; €
Ni, © = 0,1, whose fibers are equivalent to each other with respect to p,
there exist neighborhoods U; of y; in N;, ¢ = 0,1, and a homeomorphism
o Up — Uy such that o(yo) = 31 and (o N 3(fo) = Ur N 3(f1) for
every equivalence class § of fibers with respect to p, where F(f;) is the set
of points in NV; over which lies a fiber of f; of type %

For an equivalence class % of fibers with respect to p, its codimension k = n(%)

is well-defined. For an equivalence class & of codimension « + 1, we take a proper
Thom map f with &(f) # 0. Let ¥ C &(f) be a top dimensional stratum, and
By, a small disk which intersects X transversely exactly at its center and whose

dimension coincides with the codimension of . Then By m%(f) consists of a finite

number of arcs which have Bs MY as a common end point. Let [§ : &] € Zs denote
the number of such arcs modulo two, which clearly does not depend on the choice
of By, ¥ or f by Definition 3.1 (2).

Let us construct a complex of fibers with coefficients in Zy with respect to the
admissible equivalence relation p as follows. For & > 0, let C*(Tpe(n, p), p) be the
Z,-vector space consisting of all formal linear combinations,

D mES (m €2s),
n(ﬁ'):n

which may possibly contain infinitely many terms, of the equivalence classes % of
fibers with codimension & with respect to the equivalence relation p. For k < 0, we
put C*(Tor(n,p), p) = 0. Define the Zs-linear map

Oy - C“(%r(n,p),p) — CK+1(7;DF(n’p)’p)
by
(3.1) 6/@(%) = ~Z [§ : é]é’



for % with Iﬁ?(%) = k. We warn the reader that the sum appearing in the right
hand side of (3.1) may possibly contain infinitely many terms. Nevertheless, for
a given equivalence class & of fibers, the number of equivalence classes % of fibers
with codimension « such that [% : @] # 0 is finite by virtue of the local finiteness of
the Whitney regular stratifications and the definition of an admissible equivalence
relation. Hence, the linear map d,, is well-defined.

It is not difficult to show that .41 0 d, = 0. Hence, (C*(Tpe(n,p),p),0x)x
constitutes a complex and its cohomology groups H” (7pc(n, p), p) are well-defined.

Remark 3.2. One can naturally define the multi-singularity equivalence by using
the multi-germs at the singular points contained in a fiber. This is an admissible
equivalence relation. Then the universal complex of singular fibers with respect
to the multi-singularity equivalence corresponds to Vassiliev’s universal complex of
multi-singularities [12] (see also [5, 8]).

It turns out that cohomology classes of the above constructed universal complex
of singular fibers give rise to cobordism invariants of singular maps in the sense
of Riményi and Sztics [9]. More precisely, every f € Tpe(n, p) naturally induces a
homomorphism ¢; : H*(Tor(n, p), p) = H*(N;Z2), and ¢y restricted to a certain
subgroup is a singular cobordism invariant of f. For example, we show that for
the fold cobordism of Morse functions on oriented surfaces, a complete cobordism
invariant constructed in [4] is also obtained in this way (in fact, we need a co-
oriented version of the universal complex of singular fibers for this purpose).

We also show that the above homomorphism ¢; can be used to characterize
cocycles of the universal complex of singular fibers.
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